Chapter 4

The Poisson Distribution

4.1 TheFish Distribution?

The Poisson distribution is named after Simeon-Denis Boi§s781-1840). In additionpoisson
is French for fish.

In this chapter we will study a family of probability distubons for a countably infinite sample
space, each member of which is calleBiaasson Distribution. Recall that a binomial distribution
is characterized by the values of two parameterandp. A Poisson distribution is simpler in that
it has only one parameter, which we denotethypronouncedheta. (Many books and websites
use\, pronounced lambda, insteadfWe save\ for a related purpose.) The paramefanust
be positive:# > 0. Below is the formula for computing probabilities for theigson.

—99w
P(X:x)zeT, forz =0,1,2,3,.. .. (4.1)

In this equationg is the famous number from calculus,

e = lim (1+1/n)" =271828....

n—

You might recall from the study of infinite series in calcyltizat
S b jal = e,
z=0

for any real numbeb. Thus,

YoP(X=a2)=e¢"> 6"/l =1.
=0 =0

Thus, we see that Formula 4.1 is a mathematically valid wassign probabilities to the nonneg-
ative integers.

The mean of the Poisson is its paramétare. ;, = 6. This can be proven using calculus and a
similar argument shows that the variance of a Poisson isegjgal tod; i.e. o2 = § ando = /0.
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When | write X ~ Poissonf) | mean thatX is a random variable with its probability distribu-
tion given by the Poisson with parameter vatue

| ask you for patience. | am going to delay my explanation oy wie Poisson distribution is
important in science.

Poisson probabilities can be computed by hand with a séieotlculator. Alternatively, you
can go to the following website, which is linked to our couwgsbpage:

http://stattrek.com/Tables/Poisson.aspx

| will give an example to illustrate the use of this site.
Let X ~ Poissonf). The website calculates five probabilities for you:

P(X =2); P(X <2); P(X <2); P(X > z); andP(X > z).

You must give as input your value éfand a value ofc. Suppose that | hav& ~ Poisson(10)
and | am interested i*(X = 8). | go to the site and type ‘8’ in the box labeled ‘Poisson rando
variable, and | type ‘10’ in the box labeled ‘Average ratesaiccess.” | click on the ‘Calculate’
box and the site gives me the following answers:

P(X = 8) = 0.1126; P(X < 8) = 0.2202; P(X < 8) = 0.3328; P(X > 8) = 0.6672;

andP(X > 8) = 0.7798.

(There is, of course, a great deal of redundancy in these fisev@'s b/c two pairs of events are
complements of each other.)

It can be shown that for the Poisson,fif < 5 then its probability histogram is markedly
asymmetrical, but i > 25 its probability histogram is approximately symmetric aradl4shaped.
This last statement suggests that we might use a normal tuceenpute approximate probabilities
for the Poisson, providetlis large.

For example, suppose that ~ Poisson(25) and | want to calculat& X > 30). We will use
a modification of the method we learned for the binomial.

First, we note that = 25 ando = /25 = 5. Thus, our approximating curve will be the normal
curve with these values for its mean and standard deviatitsing the continuity correction, we
replaceP(X > 30) with P(X > 29.5). Next, going to the normal curve website, we find that
the area above (to the right of) 29.5 is 0.1841. From the Boisgebsite, | find that the exact
probability is 0.1821.

To summarize: To approximate(X > z) for X ~ Poissonf),

¢ Use the normal curve with mean equabtand standard deviation equaly@.
e Find the area under the normal curve above (to the rightzof} (0.5).

If 6 is unknown we can use the valuefto estimate it. The point estimatedsand, following
the presentation for the binomial, we can use the snc tombtaapproximate confidence interval
for 6. The result is:

T+ 2\/7.
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Here is an example of its use.
Ralph assumes that has a Poisson distribution, but does not know the valde biie observes
x = 30. His point estimate of the mean is 30 and his 95% confideneeviaitis

30 + 1.96v/30 = 30 = 10.7 = [19.3,40.7].

We will now investigate the accuracy of the snc approxinratiBuppose that, in faat, = 40.
The 95% confidence interval will be correct if, and only if,

X —1.96VX <40 < X +1.96VX.

After algebra, this becomd80 < X < 54). The probability of this event, from the website, is
0.9428, which is pretty close to the desired 0.9500.

| repeated this analysis (calculating the exact probagbihat the CI is correct) for several
values off); my results are below.

0: 30 35 40 50 100
Exact Prob. of Correct Interval0.9308 0.9368 0.9428 0.9487 0.9450

In my opinion, the snc approximation works adequatelygfor 40. If you believe that might be
smaller than 40 (and evidence of this would b&ifvas smaller than 40), then you might want to
use an exact method, as I illustrated for the binomial. In, fdee website that gives us exact Cl's
for the binomial also gives exact CI’s for the Poisson.

Bart assumes that ~ Poissonf) but does not know the value 6f He observes{ = 3 and
wants to obtain:

e The two-sided 95% CI fof; and
e The upper one-sided 95% CI fér

| will use the website to find Bart’'s Cl's. | type ‘3’ (the valuwg X) into the ‘Observed Events:’
box and click on compute. (I don’t need to specify the confugelevel b/c the 95% two-sided CI
is the default answer for this site.) | get6187, 8.7673] as the exact two-sided 95% ClI fér

For the one-sided Cl, | scroll down and type ‘5’ in the ‘uppat' tox and ‘0’ in the ‘lower tail’
box. Then | scroll up and hit compute. | get the 00008, 7.7537]. This is clearly a computer
error—round-off error—b/c the lower bound must be 0. So,ahswer is that 7.7537 is the 95%
upper bound fo#.

4.2 Poisson Approximation to the Binomial

Earlier | promised that | would provide some motivation ftudying the Poisson distribution.
We have seen that for the binomialyifis moderately large angis not too close to 0 (remem-

ber, we don’t worry aboup being close to 1) then a normal curve gives good approximatio

binomial probabilities. In this section we will see thapifs close to 0 and: is large, the Poisson
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can be used to approximate the binomial. Thus, the Poissondass an approximate method in
one of the situations in which the normal curve approxinratgopoor.

| will show you the derivation of this fact below. If you havetrstudied calculus and limits,
you might find it to be too difficult to follow. This proof will ot be on any exam in this course.
Remember, ifX ~ Bin(n, p), then for a fixed value af,

n!
PX=xz)=——p"¢"".
( @) zl(n — x)!p 1

Now, replacep in this formula byf/n. In my ‘limit’ argument below, as: grows,d will remain
fixed which means that = 6 /n will become smaller. We get:

P(X =) = M%x)!w/n)m /)T =
0" n! .
el s ey gy SO

Now the term in the square brackets:

n!
(n—x)n*(1—0/n)*’

for x fixed, converges (i.e. gets closer and closer) to i as oo; thus, it can be ignored for large
n.
As shown in calculus, as — oo,
(1—20/n)"

converges te~’. The result follows.

In the old days this result was very useful. For very largeand smallp and computations
performed by hand, the Poisson might be preferred to workiitly the binomial. Nowadays, as
we will see below, this result is important mostly b/c it ggues greater insight into problems.

Next, we will consider estimation. Suppose that we have 10,000 BT and there are= 10
successes observed. The website for the exact binomiatleme® interval give§).0005, 0.0018]
for the 95% two-sided confidence interval forAlternatively, we can approximate the distribution
of X by the Poisson with parametér= 10000p. Using the observed = 10, the exact 95%
two-sided confidence interval foris [4.7954, 18.3904]. The Cl is an assertion that the following
inequality is true:

4.7954 < 0 < 18.3904.

Now we substituté = 10000p and this becomes
4.7954 < 10000p < 18.3904.
Dividing thru by 10000, we get the following CI far.

0.0005 < p < 0.0018,
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the same answer we had when we used the binomial distribution

Now, | would understand if you feel, “Why should we learn tottle confidence interval for
p two ways?” Fair enough; but computers ideally do more that give us answers to specific
guestions; they let us learn about patterns in answers.

For example, suppos& ~ Poissonf) and we observ&X = 0. From the website, the 95%
one-sided confidence interval féis [0, 2.9957]. Why is this interesting?

Well, I have said that we don't care about cases whete). But sometimes we might hope for
p = 0. Borrowing from the movieArmageddon, let every day be a trial and the day is a ‘success’
if the Earth is hit by a asteroid/meteor that destroys all harife. Obviously, throughout human
habitation of this planet there have been no successes.n@igeiccesses in trials, the above
answer indicates that we are 95% confident that 2.9957 /n. Just don’t ask me exactly what
equals. Or how | know that the trials are i.i.d.

4.3 The Poisson Process

The binomial distribution is appropriate for counting sesses im i.i.d. trials. Forp small andn
large, the binomial can be well approximated by the Pois$bms, it is not too surprising to learn
that the Poisson is also a model for counting successes.

Consider a process evolving in time in which at ‘random tinseEcesses occur. What does
this possibly mean? Perhaps the following picture will help

O O O 0O
A\ A\ Ay

O 0O) O
I I | A4 Ay A\

T T
0 1 2 3 4 5

Q
6

In this picture, observation begins at time- 0 and time passing is denoted by moving to the
right on the number line. At certain times, a success willuscdenoted by the letter ‘O’ placed
on the number line. Here are some examples of such processes.

1. A ‘target’ is placed near radioactive material and whemev radioactive particle hits the
target we have a success.

2. Anintersection is observed. A success is the occurrehae accident.
3. A hockey (soccer) game is watched. A success occurs wheaayoal is scored.
4. On aremote stretch of highway, a success occurs when ee@hisses.

The idea is that the times of occurrences of successes caenptedicted with certainty. We
would like, however, to be able to calculate probabilitid® do this, we need a mathematical
model, much like our mathematical model for BT.

Our model is called th@oisson Process. A careful mathematical presentation and derivation
is beyond the goals of this course. Here are the basic ideas:
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1. The number of successes in disjoint intervals are ind#gretof each other.

For example, in a Poisson Process, the number of succesesiitiervall0, 3] is indepen-
dent of the number of successes in the intefvad].

2. The probability distribution of the number of successasnted in any time interval depends
only on the length of the interval.

For example, the probability of getting exactly five sucesss the same for intervél, 2.5]
as itis for interval3.5, 6.0].

3. Successes cannot be simultaneous.

With these assumptions, it turns out that the probabilisgribution of the number of successes
in any interval of time is the Poisson distribution with parametewvhered = A x w, wherew > 0
is the length of the interval antl > 0 is a feature of the process, often calledrise.

| have presented the Poisson Process as occurring in onaslione—time. It also can be
applied if the one dimension is, say, distance. For exangptesearcher could be walking along
a path and at unpredictable places find successes. AlsopthgoR Process can be extended to
two or three dimensions. For example, in two dimensions eareher could be searching a field
for a certain plant or animal that is deemed a success. | tirmensions a researcher could be
searching a volume of air, water or dirt looking for somethof interest.

The modification needed for two or three dimensions is quitgke: the process still has a rate,
again called\, and now the number of successes in an area or volume hassoRdistribution
with ¢ equal to the rate multiplied by the area or volume, whichéveppropriate.

4.4 Independent Poissons

Earlier we learned that iK', X», ..., X,, are i.i.d. dichotomous outcomes (success or failure), then
we can calculate probabilities for the sum of these gliys

Probabilities forX are given by the binomial distribution. There is a similasutt for the Poisson,
but the conditions are actually weaker. The interestedereadn think about how the following
fact is implied by the Poisson Process.

Suppose thatfar= 1,2, 3, ..., n, the random variabl&’; ~ Poissonf;) and that the sequence
of X;,’s are independent. (If all of th&’s are the same, then we have i.i.d. The pointis that we don't
need the i.d., just the independence.) Define= >"" , 6;. The result is tha ~ Poissor{. ).

B/c of this result we will often (as | have done above), but aletays, pretend that we have
one Poisson random variable, even if, in reality, we have a suimadpendent Poisson random
variable. | will illustrate what | mean with an estimationaem®ple.

Suppose that Cathy observes 10 i.i.d. Poisson random \esiadach with parametér She
summarizes the ten values she obtains by computing theit, t&t, remembering thatX’ ~
Poisson{06). Cathy can then calculate a CI fobd and convert it to a Cl foéf.
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For example, suppose that Cathy observes a total of 92 wreetotdis her 10 values. B/c 92
is so large, | will use the snc to obtain a two-sided 95% Clifaft. It is:

92 +1.96v/92 = 92 + 18.800 = [73.200, 110.800).

Thus, the two-sided 95% ClI faris [7.320, 11.080]. BTW, the exact Cl fol 06 is [74.165, 112.83].
This is typically what happens; the exact CI for a Poissoiifted to the right of the approximate
Cl.

4.5 Why Bother with the Poisson?

Suppose that we plan to observe an i.i.d. sequence of randoiables and that each random
variable has for possible values; 1,2, .... (This scenario frequently occurs in science.) In this
chapter | have suggested that we assume that each rand@hblgdras a Poisson distribution. But
why? What do we gain? Why not just do the following? Define

where there is now a sequence of probabilities known onlyatane. As a researcher we can try to
estimate this sequence.

This question is an example af if not the, fundamental question a researcher always consid-
ers: How much math structure should we impose on a problemfai@ly, the Poisson leads to
values forpg, p1, po, . ... The difference is that with the Poisson we impose a stracbur these
probabilities, whereas in the ‘general case’ we do not ire@ostructure.

As with many things in human experience, many people are xtrere on this issue. Some
people put too much faith in the Poisson (or other assumadtstes) and cling to it even when the
data make its continued assumption ridiculous; othersnctae moral high ground and proclaim:
“I don’t make unnecessary assumptions.” | cannot give ygurales for how to behave; instead, |
will give you an extended example of how answers change wheechange assumptions.

Let us consider a Poisson Process in two dimensions. Forem@ness, imagine you are in a
field searching for a plant/insect that you don't particlyldike; i.e. you will be happiest if there
are none. Thus, you might want to know the numerical valuB©f = 0). Of course,P(X = 0)
is what we callp, and for the Poisson it is equal ¢to°.

Suppose itis true (i.e. this is what Nature knows) that- Poisson(0.6931) which makes

P(X =0) = e %93 = 0.500.
Suppose further that we have two researchers:
e ResearchefA assumes Poisson with unknown

e ResearcheB assumes no parametric structure; Bavants to knowp.
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Note that both researchers want to get an estimate of 0.500(f§ = 0).

Suppose that the two researchers observe the same datdy namel0 trials. Who will do
better? Well, we answer this question by simulating the .datased my computer to simulate
n = 10 i.i.d. trials from the Poisson(0.6931) and obtained thiotwing data:

1,0,1,0,3,1,2,0,0, 4.

ResearcheB counts four occurrences of ‘0’ in the sample and estim&es = 0) to be4/10 =
0.4. ResearcheA estimate® by the mean of the 10 number$2/10 = 1.2 and then estimates
P(X = 0) by e~ 2 = 0.3012. In this one simulated data set, each researcher’s estigate low
and Researchd@ does better thaA.

One data set, however, is not conclusive. So, | simulatedh®9@ data sets of size= 10 to
obtain a total of 1000 simulated data sets. In this simulaBometime#\ did better, sometime8
did better. Statisticians try to decide which does betteraN.

First, we look at how each researcher did on average. If yeuaae the 1,000 estimates for
A you get 0.5226 and foB you get 0.5066. Surprisingl, who makes fewer assumptions, is,
on average, closer to the truth. When we find a result in a siimd study that seems surprising
we should wonder whether it is a false alarm caused by theoappate nature of simulation
answers. While | cannot explawhy at this point, | will simply say that this isot a falsealarm. A
conseqguence of assuming Poisson is that, especially fdl eahazes ofrn, there can be somaas
in the mean performance of an estimate. By contrast, thdalatthe mean of the estimates By
exceeds 0.5 is not meaningful; i®'s method does not possess bias.

| will still conclude thatA is better tharB, despite the bias; | will now describe the basis for
this conclusion.

From the point-of-view of Nature, who knows the truth, evesgimate value has an errer=
estimate minus truth. In this simulation the ereois the estimate minus 0.5. Now errors can be
positive or negative. Also, trying to make sense of 1000rsri®too difficult; we need a way to
summarize them. Statisticians advocate averaging theseafter making sure that the negatives
and positives don’t cancel. We have two preferred ways afiglthis:

e Convert each error to asbsolute error by taking its absolute value.

e Convert each error to squared error by squaring it.

For my simulation study, thenean absolute error is 0.1064 forA and 0.1240 foB. B/c there is

a minimum theoretical value of O for the mean absolute ertanakes sense to summarize this
difference by saying that the mean absolute errorAas 14.2% smaller than it is foB. This
14.2% is my preferred measure and why | conclude it better tharB.

As we will see, statisticians like to square errors, althojgstifying this in an intuitive way
is a bit difficult. 1 will just remark that for this simulatiostudy, the mean squared error #ris
0.001853 and foB it is 0.002574. (B/c all of the absolute errors are 0.5 or $anadquaring the
errors make them smaller.)

To revisit the issue of bias, | repeated the above simulatiody, but now withn = 100. The
mean of the estimates fér is 0.5006 and foB is 0.5007. These discrepancies from 0.5 are not
meaningful; i.e. there is no bias.
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