
Chapter 4

The Poisson Distribution

4.1 The Fish Distribution?

The Poisson distribution is named after Simeon-Denis Poisson (1781–1840). In addition,poisson
is French for fish.

In this chapter we will study a family of probability distributions for a countably infinite sample
space, each member of which is called aPoisson Distribution. Recall that a binomial distribution
is characterized by the values of two parameters:n andp. A Poisson distribution is simpler in that
it has only one parameter, which we denote byθ, pronouncedtheta. (Many books and websites
useλ, pronounced lambda, instead ofθ. We saveλ for a related purpose.) The parameterθ must
be positive:θ > 0. Below is the formula for computing probabilities for the Poisson.

P (X = x) =
e−θθx

x!
, for x = 0, 1, 2, 3, . . . . (4.1)

In this equation,e is the famous number from calculus,

e = lim
n→∞

(1 + 1/n)n = 2.71828 . . . .

You might recall from the study of infinite series in calculus, that

∞∑

x=0

bx/x! = eb,

for any real numberb. Thus,

∞∑

x=0

P (X = x) = e−θ

∞∑

x=0

θx/x! = 1.

Thus, we see that Formula 4.1 is a mathematically valid way toassign probabilities to the nonneg-
ative integers.

The mean of the Poisson is its parameterθ; i.e.µ = θ. This can be proven using calculus and a
similar argument shows that the variance of a Poisson is alsoequal toθ; i.e.σ2 = θ andσ =

√
θ.
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When I writeX ∼ Poisson(θ) I mean thatX is a random variable with its probability distribu-
tion given by the Poisson with parameter valueθ.

I ask you for patience. I am going to delay my explanation of why the Poisson distribution is
important in science.

Poisson probabilities can be computed by hand with a scientific calculator. Alternatively, you
can go to the following website, which is linked to our coursewebpage:

http://stattrek.com/Tables/Poisson.aspx

I will give an example to illustrate the use of this site.
Let X ∼ Poisson(θ). The website calculates five probabilities for you:

P (X = x); P (X < x); P (X ≤ x); P (X > x); andP (X ≥ x).

You must give as input your value ofθ and a value ofx. Suppose that I haveX ∼ Poisson(10)
and I am interested inP (X = 8). I go to the site and type ‘8’ in the box labeled ‘Poisson random
variable,’ and I type ‘10’ in the box labeled ‘Average rate ofsuccess.’ I click on the ‘Calculate’
box and the site gives me the following answers:

P (X = 8) = 0.1126; P (X < 8) = 0.2202; P (X ≤ 8) = 0.3328; P (X > 8) = 0.6672;

andP (X ≥ 8) = 0.7798.

(There is, of course, a great deal of redundancy in these five answers b/c two pairs of events are
complements of each other.)

It can be shown that for the Poisson, ifθ ≤ 5 then its probability histogram is markedly
asymmetrical, but ifθ ≥ 25 its probability histogram is approximately symmetric and bell-shaped.
This last statement suggests that we might use a normal curveto compute approximate probabilities
for the Poisson, providedθ is large.

For example, suppose thatX ∼ Poisson(25) and I want to calculateP (X ≥ 30). We will use
a modification of the method we learned for the binomial.

First, we note thatµ = 25 andσ =
√

25 = 5. Thus, our approximating curve will be the normal
curve with these values for its mean and standard deviation.Using the continuity correction, we
replaceP (X ≥ 30) with P (X ≥ 29.5). Next, going to the normal curve website, we find that
the area above (to the right of) 29.5 is 0.1841. From the Poisson website, I find that the exact
probability is 0.1821.

To summarize: To approximateP (X ≥ x) for X ∼ Poisson(θ),

• Use the normal curve with mean equal toθ and standard deviation equal to
√

θ.

• Find the area under the normal curve above (to the right of) (x − 0.5).

If θ is unknown we can use the value ofX to estimate it. The point estimate isx and, following
the presentation for the binomial, we can use the snc to obtain an approximate confidence interval
for θ. The result is:

x ± z
√

x.

42



Here is an example of its use.
Ralph assumes thatX has a Poisson distribution, but does not know the value ofθ. He observes

x = 30. His point estimate of the mean is 30 and his 95% confidence interval is

30 ± 1.96
√

30 = 30 ± 10.7 = [19.3, 40.7].

We will now investigate the accuracy of the snc approximation. Suppose that, in fact,θ = 40.
The 95% confidence interval will be correct if, and only if,

X − 1.96
√

X ≤ 40 ≤ X + 1.96
√

X.

After algebra, this becomes(30 ≤ X ≤ 54). The probability of this event, from the website, is
0.9428, which is pretty close to the desired 0.9500.

I repeated this analysis (calculating the exact probability that the CI is correct) for several
values ofθ; my results are below.

θ: 30 35 40 50 100
Exact Prob. of Correct Interval0.9308 0.9368 0.9428 0.9487 0.9450

In my opinion, the snc approximation works adequately forθ ≥ 40. If you believe thatθ might be
smaller than 40 (and evidence of this would be ifX was smaller than 40), then you might want to
use an exact method, as I illustrated for the binomial. In fact, the website that gives us exact CI’s
for the binomial also gives exact CI’s for the Poisson.

Bart assumes thatX ∼ Poisson(θ) but does not know the value ofθ. He observesX = 3 and
wants to obtain:

• The two-sided 95% CI forθ; and

• The upper one-sided 95% CI forθ.

I will use the website to find Bart’s CI’s. I type ‘3’ (the valueof X) into the ‘Observed Events:’
box and click on compute. (I don’t need to specify the confidence level b/c the 95% two-sided CI
is the default answer for this site.) I get[0.6187, 8.7673] as the exact two-sided 95% CI forθ.

For the one-sided CI, I scroll down and type ‘5’ in the ‘upper tail’ box and ‘0’ in the ‘lower tail’
box. Then I scroll up and hit compute. I get the CI:[0.0008, 7.7537]. This is clearly a computer
error—round-off error—b/c the lower bound must be 0. So, theanswer is that 7.7537 is the 95%
upper bound forθ.

4.2 Poisson Approximation to the Binomial

Earlier I promised that I would provide some motivation for studying the Poisson distribution.
We have seen that for the binomial, ifn is moderately large andp is not too close to 0 (remem-

ber, we don’t worry aboutp being close to 1) then a normal curve gives good approximations to
binomial probabilities. In this section we will see that ifp is close to 0 andn is large, the Poisson
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can be used to approximate the binomial. Thus, the Poisson provides an approximate method in
one of the situations in which the normal curve approximation is poor.

I will show you the derivation of this fact below. If you have not studied calculus and limits,
you might find it to be too difficult to follow. This proof will not be on any exam in this course.
Remember, ifX ∼ Bin(n, p), then for a fixed value ofx,

P (X = x) =
n!

x!(n − x)!
pxqn−x.

Now, replacep in this formula byθ/n. In my ‘limit’ argument below, asn grows,θ will remain
fixed which means thatp = θ/n will become smaller. We get:

P (X = x) =
n!

x!(n − x)!
(θ/n)x(1 − θ/n)n−x =

θx

x!
[

n!

(n − x)!nx(1 − θ/n)x
](1 − θ/n)n.

Now the term in the square brackets:

n!

(n − x)!nx(1 − θ/n)x
,

for x fixed, converges (i.e. gets closer and closer) to 1 asn → ∞; thus, it can be ignored for large
n.

As shown in calculus, asn → ∞,
(1 − θ/n)n

converges toe−θ. The result follows.
In the old days this result was very useful. For very largen and smallp and computations

performed by hand, the Poisson might be preferred to workingwith the binomial.Nowadays, as
we will see below, this result is important mostly b/c it gives us greater insight into problems.

Next, we will consider estimation. Suppose that we haven = 10,000 BT and there arex = 10
successes observed. The website for the exact binomial confidence interval gives[0.0005, 0.0018]
for the 95% two-sided confidence interval forp. Alternatively, we can approximate the distribution
of X by the Poisson with parameterθ = 10000p. Using the observedx = 10, the exact 95%
two-sided confidence interval forθ is [4.7954, 18.3904]. The CI is an assertion that the following
inequality is true:

4.7954 ≤ θ ≤ 18.3904.

Now we substituteθ = 10000p and this becomes

4.7954 ≤ 10000p ≤ 18.3904.

Dividing thru by 10000, we get the following CI forp:

0.0005 ≤ p ≤ 0.0018,
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the same answer we had when we used the binomial distribution.
Now, I would understand if you feel, “Why should we learn to dothe confidence interval for

p two ways?” Fair enough; but computers ideally do more than just give us answers to specific
questions; they let us learn about patterns in answers.

For example, supposeX ∼ Poisson(θ) and we observeX = 0. From the website, the 95%
one-sided confidence interval forθ is [0, 2.9957]. Why is this interesting?

Well, I have said that we don’t care about cases wherep = 0. But sometimes we might hope for
p = 0. Borrowing from the movie,Armageddon, let every day be a trial and the day is a ‘success’
if the Earth is hit by a asteroid/meteor that destroys all human life. Obviously, throughout human
habitation of this planet there have been no successes. Given 0 successes inn trials, the above
answer indicates that we are 95% confident thatp ≤ 2.9957/n. Just don’t ask me exactly whatn
equals. Or how I know that the trials are i.i.d.

4.3 The Poisson Process

The binomial distribution is appropriate for counting successes inn i.i.d. trials. Forp small andn
large, the binomial can be well approximated by the Poisson.Thus, it is not too surprising to learn
that the Poisson is also a model for counting successes.

Consider a process evolving in time in which at ‘random times’ successes occur. What does
this possibly mean? Perhaps the following picture will help.

0 1 2 3 4 5 6
O O O O O O O O

In this picture, observation begins at timet = 0 and time passing is denoted by moving to the
right on the number line. At certain times, a success will occur, denoted by the letter ‘O’ placed
on the number line. Here are some examples of such processes.

1. A ‘target’ is placed near radioactive material and whenever a radioactive particle hits the
target we have a success.

2. An intersection is observed. A success is the occurrence of an accident.

3. A hockey (soccer) game is watched. A success occurs whenever a goal is scored.

4. On a remote stretch of highway, a success occurs when a vehicle passes.

The idea is that the times of occurrences of successes cannotbe predicted with certainty. We
would like, however, to be able to calculate probabilities.To do this, we need a mathematical
model, much like our mathematical model for BT.

Our model is called thePoisson Process. A careful mathematical presentation and derivation
is beyond the goals of this course. Here are the basic ideas:
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1. The number of successes in disjoint intervals are independent of each other.

For example, in a Poisson Process, the number of successes inthe interval[0, 3] is indepen-
dent of the number of successes in the interval[5, 6].

2. The probability distribution of the number of successes counted in any time interval depends
only on the length of the interval.

For example, the probability of getting exactly five successes is the same for interval[0, 2.5]
as it is for interval[3.5, 6.0].

3. Successes cannot be simultaneous.

With these assumptions, it turns out that the probability distribution of the number of successes
in any interval of time is the Poisson distribution with parameterθ, whereθ = λ×w, wherew > 0
is the length of the interval andλ > 0 is a feature of the process, often called itsrate.

I have presented the Poisson Process as occurring in one dimension—time. It also can be
applied if the one dimension is, say, distance. For example,a researcher could be walking along
a path and at unpredictable places find successes. Also, the Poisson Process can be extended to
two or three dimensions. For example, in two dimensions a researcher could be searching a field
for a certain plant or animal that is deemed a success. In three dimensions a researcher could be
searching a volume of air, water or dirt looking for something of interest.

The modification needed for two or three dimensions is quite simple: the process still has a rate,
again calledλ, and now the number of successes in an area or volume has a Poisson distribution
with θ equal to the rate multiplied by the area or volume, whicheveris appropriate.

4.4 Independent Poissons

Earlier we learned that ifX1, X2, . . . , Xn are i.i.d. dichotomous outcomes (success or failure), then
we can calculate probabilities for the sum of these guysX:

X = X1 + X2 + . . . Xn.

Probabilities forX are given by the binomial distribution. There is a similar result for the Poisson,
but the conditions are actually weaker. The interested reader can think about how the following
fact is implied by the Poisson Process.

Suppose that fori = 1, 2, 3, . . . , n, the random variableXi ∼ Poisson(θi) and that the sequence
of Xi’s are independent. (If all of theθi’s are the same, then we have i.i.d. The point is that we don’t
need the i.d., just the independence.) Defineθ+ =

∑
n

i=1 θi. The result is thatX ∼ Poisson(θ+).
B/c of this result we will often (as I have done above), but notalways, pretend that we have

one Poisson random variable, even if, in reality, we have a sum ofindependent Poisson random
variable. I will illustrate what I mean with an estimation example.

Suppose that Cathy observes 10 i.i.d. Poisson random variables, each with parameterθ. She
summarizes the ten values she obtains by computing their total, X, remembering thatX ∼
Poisson(10θ). Cathy can then calculate a CI for10θ and convert it to a CI forθ.
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For example, suppose that Cathy observes a total of 92 when she totals her 10 values. B/c 92
is so large, I will use the snc to obtain a two-sided 95% CI for10θ. It is:

92 ± 1.96
√

92 = 92 ± 18.800 = [73.200, 110.800].

Thus, the two-sided 95% CI forθ is [7.320, 11.080]. BTW, the exact CI for10θ is [74.165, 112.83].
This is typically what happens; the exact CI for a Poisson is shifted to the right of the approximate
CI.

4.5 Why Bother with the Poisson?

Suppose that we plan to observe an i.i.d. sequence of random variables and that each random
variable has for possible values:0, 1, 2, . . .. (This scenario frequently occurs in science.) In this
chapter I have suggested that we assume that each random variable has a Poisson distribution. But
why? What do we gain? Why not just do the following? Define

p0 = P (X = 0), p1 = P (X = 1), p2 = P (X = 2), . . . ,

where there is now a sequence of probabilities known only to nature. As a researcher we can try to
estimate this sequence.

This question is an example ofa, if not the, fundamental question a researcher always consid-
ers: How much math structure should we impose on a problem? Certainly, the Poisson leads to
values forp0, p1, p2, . . .. The difference is that with the Poisson we impose a structure on these
probabilities, whereas in the ‘general case’ we do not impose a structure.

As with many things in human experience, many people are too extreme on this issue. Some
people put too much faith in the Poisson (or other assumed structures) and cling to it even when the
data make its continued assumption ridiculous; others claim the moral high ground and proclaim:
“I don’t make unnecessary assumptions.” I cannot give you any rules for how to behave; instead, I
will give you an extended example of how answers change when we change assumptions.

Let us consider a Poisson Process in two dimensions. For concreteness, imagine you are in a
field searching for a plant/insect that you don’t particularly like; i.e. you will be happiest if there
are none. Thus, you might want to know the numerical value ofP (X = 0). Of course,P (X = 0)
is what we callp0 and for the Poisson it is equal toe−θ.

Suppose it is true (i.e. this is what Nature knows) thatX ∼ Poisson(0.6931) which makes

P (X = 0) = e−0.6931 = 0.500.

Suppose further that we have two researchers:

• ResearcherA assumes Poisson with unknownθ.

• ResearcherB assumes no parametric structure; i.e.B wants to knowp0.

47



Note that both researchers want to get an estimate of 0.500 for P (X = 0).
Suppose that the two researchers observe the same data, namely n = 10 trials. Who will do

better? Well, we answer this question by simulating the data. I used my computer to simulate
n = 10 i.i.d. trials from the Poisson(0.6931) and obtained the following data:

1, 0, 1, 0, 3, 1, 2, 0, 0, 4.

ResearcherB counts four occurrences of ‘0’ in the sample and estimatesP (X = 0) to be4/10 =
0.4. ResearcherA estimatesθ by the mean of the 10 numbers:12/10 = 1.2 and then estimates
P (X = 0) by e−1.2 = 0.3012. In this one simulated data set, each researcher’s estimateis too low
and ResearcherB does better thanA.

One data set, however, is not conclusive. So, I simulated 999more data sets of sizen = 10 to
obtain a total of 1000 simulated data sets. In this simulation, sometimesA did better, sometimesB
did better. Statisticians try to decide which does better overall.

First, we look at how each researcher did on average. If you average the 1,000 estimates for
A you get 0.5226 and forB you get 0.5066. Surprisingly,B, who makes fewer assumptions, is,
on average, closer to the truth. When we find a result in a simulation study that seems surprising
we should wonder whether it is a false alarm caused by the approximate nature of simulation
answers. While I cannot explainwhy at this point, I will simply say that this isnot a false alarm. A
consequence of assuming Poisson is that, especially for small values ofn, there can be somebias
in the mean performance of an estimate. By contrast, the factthat the mean of the estimates byB
exceeds 0.5 is not meaningful; i.e.B’s method does not possess bias.

I will still conclude thatA is better thanB, despite the bias; I will now describe the basis for
this conclusion.

From the point-of-view of Nature, who knows the truth, everyestimate value has an error:e =
estimate minus truth. In this simulation the errore is the estimate minus 0.5. Now errors can be
positive or negative. Also, trying to make sense of 1000 errors is too difficult; we need a way to
summarize them. Statisticians advocate averaging the errors after making sure that the negatives
and positives don’t cancel. We have two preferred ways of doing this:

• Convert each error to anabsolute error by taking its absolute value.

• Convert each error to asquared error by squaring it.

For my simulation study, themean absolute error is 0.1064 forA and 0.1240 forB. B/c there is
a minimum theoretical value of 0 for the mean absolute error,it makes sense to summarize this
difference by saying that the mean absolute error forA is 14.2% smaller than it is forB. This
14.2% is my preferred measure and why I conclude thatA is better thanB.

As we will see, statisticians like to square errors, although justifying this in an intuitive way
is a bit difficult. I will just remark that for this simulationstudy, the mean squared error forA is
0.001853 and forB it is 0.002574. (B/c all of the absolute errors are 0.5 or smaller, squaring the
errors make them smaller.)

To revisit the issue of bias, I repeated the above simulationstudy, but now withn = 100. The
mean of the estimates forA is 0.5006 and forB is 0.5007. These discrepancies from 0.5 are not
meaningful; i.e. there is no bias.

48


