
Chapter 12

Inference for Two Numerical Populations

12.1 Comparing the Means of Two Populations; Independent
Samples

We have two populations. If you want to study them individually, use the methods of Chapter 11.
In this section we learn how to compare the populations, using estimation and hypothesis testing.

In this section we assume that we have random samples from thetwo populations and that the
samples are independent. (Independent samples were discussed in Chapter 9.)

We begin with some notation. The first population has meanµ1, standard deviationσ1 and
varianceσ2

1. The second population has meanµ2, standard deviationσ2 and varianceσ2
2.

Of course, the researcher does not know these six numbers, but Nature does.
We begin with the problem of estimation. Our goal is to estimateµ1 − µ2. Our data consist of

independent random samples from the two populations.
Denote the data from the first population by:x1, x2, . . . , xn1

; and denote the data from the
second population by:y1, y2, . . . , yn2

.
It is, of course, important to look at the data and think aboutthe purpose of the research. If it

seems reasonable scientifically to compare the two populations by comparing their means, then we
will proceed with the methods introduced in this section.

We summarize our two sets of data by computing their means andstandard deviations, which
are denoted by:

X̄, S1, Ȳ andS2

when we view them as random variables, with observed values:

x̄, s1, ȳ ands2.

Our point estimate ofµ1 − µ2 is X̄ − Ȳ .
There is a CLT for this problem too. First, it shows us how to standardize our estimator:

W =
(X̄ − Ȳ ) − (µ1 − µ2)
√

(σ2
1/n1) + (σ2

2/n2)
. (12.1)
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Second, it states that we can approximate probabilities forW by using the snc and that in the limit
as both sample sizes become larger and larger, the approximations are accurate.

First, we need to eliminate the unknown parameters in the denominator ofW . Because there
are now two unknown parameters where in Chapter 11 there was one, this will require additional
care. Second, we will need to decide what to use for our reference curve: the snc of the CLT (and
Slutsky) or thet curves of Gosset.

When all the smoke has cleared, statisticians suggest threemethods, referred to in my text as
Cases 1, 2 and 3. I personally think that Case 2 is scientifically worthless, so we won’t cover it.
(It is mathematically interesting, which is, in my opinion, why books feature it. Me, I put it in the
book because I wanted someone else to use my book too.)

We will begin with Case 3; I will follow the popular terminology and call this the large sample
approximation method.

12.1.1 Case 3: The Large Sample Approximation

Case 3 makes a lot of sense to the new student of Statistics: simply replace the population variances
by their corresponding sample variances. This changes our earlierW to W3. (The 3 is for Case 3.)

W3 =
(X̄ − Ȳ ) − (µ1 − µ2)
√

(S2
1/n1) + (S2

2/n2)
. (12.2)

Case 3 states that we should use the snc as our reference curve. This leads to the following formula
for the CI forµ1 − µ2:

(x̄ − ȳ) ± z

√

s2
1

n1
+

s2
2

n2
. (12.3)

I will illustrate the use of this formula with an example froma student project.
A trial consisted of Luke hitting a baseball. In treatment 1,he used an aluminum bat and and

in treatment 2 he used a wooden bat. The response is the distance, in feet, that Luke hit the ball.
Luke assigned 40 hits to each treatment, by randomization.

In order to analyze his data, we will assume that we have independent random samples from
two populations. Luke’s data yielded the following summarystatistics:

x̄ = 179.6, s1 = 62.1, n1 = 40, ȳ = 166.2, s2 = 54.2 andn2 = 40.

The 95% confidence interval for(µ1 − µ2) is

(179.6 − 166.2) ± 1.96

√

(62.1)2

40
+

(54.2)2

40
= 13.4 ± 25.5 = [−12.1, 38.9].

In words, based on my confidence interval, Luke’s data are inconclusive. The mean with the
aluminum bat is between 12.1 feet smaller and 38.9 feet larger than the mean with the wooden bat.

Our Case 3 CI is based on two approximations: replacing the population variances with the
sample variances and using the snc. It is natural (especially in view of all our work in Chapter 11)
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to wonder whether the approximation is good. The answer turns out to be surprising. The Case 3
CI works well if both sample sizes are 20 or larger.

Note there is no reference to skewness. I will digress to discuss why skewness, which was so
important in Chapter 11, is now unimportant.

First, I will show you the results of a simulation study. Suppose that the pdf is the same for both
populations and the pdf is strongly skewed to the right. Thus, the difference of the means that I am
trying to estimate is 0. I took independent random samples, both of size 20, from the populations
and constructed the 95% CI for Case 3. I did this 1,000 times. My results are: 19 of the CIs are
too large and 27 are too small. Thus, 954 (95.4%) are correct!I will discuss this example and this
issue in lecture.

Case 3 also yields a hypothesis test. The null hypothesis is:H0 : µ1 = µ2, and there are three
options for the alternative:

H1 : µ1 > µ2; µ1 < µ2; or µ1 6= µ2.

Next we note that ifH0 is true, then the quantityµ1 − µ2 in the numerator ofW3 becomes 0. This
leads us to our test statistic:

Z =
X̄ − Ȳ

√

(S2
1/n1) + (S2

2/n2)
. (12.4)

Once we collect our data, we calculatez, the observed value ofZ, and calculate our approximate
P-value using the rule introduced in Chapter 9.

Case 3 willnot be on the final. We have learned it for two reasons.

• It is very important in practice.

• It helps get us ready for Case 1.

12.1.2 Case 1: Assuming Equal Population Variances

If either (or both) sample size is small (fewer than 20) then two related difficulties arise.

• The sample variance from the small sample size is not a very accurate estimate of its popu-
lation variance.

• The snc may not give a very accurate approximation to a probability of interest.

The second of these difficulties is not major; just replace the snc by at curve (although the
issue of df is vexing). The first difficulty is more serious.

We are required to make an additional assumption about our problem. We must assume that
σ2

1 = σ2
2.

Be carefulnot to read too much into this assumption. Just as I stated in Chapter 11, a researcher
never knows the numerical value of a population variance. I amnot assuming that I know either
σ2

1 or σ2
2 ; I am assuming that these two unknown variances are the same number. (Here is a weak

analogy. I meet two people who appear, to me, to be identical twins. Whereas I don’t know either
person’s age, I am willing to assume their ages are the same.)
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But still, assumingσ2
1 = σ2

2 does seembig. (In fact, Case 2 drops this assumption.) Here are
some of the reasons why I advocate using Case 1.

1. Whereas we assume the two variances areexactly equal to derive the formula below, lots of
simulation studies and some math theory suggest that all we really need in practice is for the
variances to be close. (Interestingly, the proper way to compare variances is by taking their
ratio, not difference.)

2. If the variances are very different (remember my lecture example on the effect of two social
policies on length of life) then scientifically comparing the means is not a good way to
compare the populations. Thus, Case 2 provides a mathematical solution to a problem that
is not interesting to a scientist!

3. We never see theσ’s in practice, but we do see the sd’s of the two sets of data. Itis my
experience that if the two populations being compared are even the leastbit similar, then
their sample sd’s are close, which provides evidence that their σ’s are close.

4. Finally, if your data gives you very different sd’s (despite my experiences related above),
you can then decide not to use Case 1 and try to figure out some other way to analyze the
data (perhaps by defining successes and failures and reverting to Chapter 9). Or, if you are
stubborn, you can read about Case 2 in my text (or any of a largenumber of other texts).

Well, that is enough enrichment/intellectual honesty. Let’s now learn about the method.
Because of the Case 1 assumption, the two variances in the denominator ofW are the same

number; call the common value ofσ1 andσ2, just plainσ without a subscript.
We need to use our data to estimateσ2. Our data gives uss2

1 ands2
2. One idea is that we could

ignore one of these and use the other one to estimateσ2, but, intuitively, it makes more sense to
combine them in some way. The ‘obvious’ way to combine them isto calculate their mean:

(s2
1 + s2

2)/2.

This obvious way turns out to be ‘best’ mathematically ifn1 = n2. If the sample sizes differ,
however, we can improve on the obvious method. The idea is that we should give more ‘weight’
or ‘emphasis’ to the sample variance that is based on more data.

After studying this problem for some time, mathematicians discovered that the ‘best’ way to
combine the sample variances is to computes2

p, where the ‘p’ is for the word ‘pooled:’

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
. (12.5)

Note the following about this formula fors2
p:

1. Each sample variance appears in the numerator.

2. The coefficient of each sample variance is equal to its degrees of freedom.

3. The sum of the coefficients equals the number in the denominator.
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4. If n1 = n2, thens2
p = (s2

1 + s2
2)/2, our obvious combination.

If we replace the unknownσ2’s in W with S2
p , we get

W1 =
(X̄ − Ȳ ) − (µ1 − µ2)
√

(S2
p/n1) + (S2

p/n2)
.

Statisticians like to factorS2
p out of the square root, giving:

W1 =
(X̄ − Ȳ ) − (µ1 − µ2)

Sp

√

(1/n1) + (1/n2)
.

Gosset showed that the appropriate reference curve forW1 is thet curve withdf = n1 +n2−2.
There are two ways to remember the formula for df:

1. Add the sample sizes and then remember to subtract 2 (unlike subtracting one as we did in
Chapter 11).

2. Add the df from each sample.

The second of these methods is preferred by statisticians and explains why we prefer to think in
degrees of freedom rather than sample sizes;df’s add.

In any event, the formula for the CI is below:

(x̄ − ȳ) ± tsp

√

1

n1
+

1

n2
.

In this formula,t is obtained from thet calculator with df equal ton1 + n2 − 2, as given above. I
will illustrate the use of this formula with two examples of student projects.

The data in this example come from a class project submitted by Sheryl. A trial consisted of
Sheryl performing a 1.5 mile sprint on her bicycle. In treatment 1, Sheryl loaded her pannier with
20 pounds and in treatment 2 she removed her pannier from her bike. The response is the time,
in seconds, Sheryl required to complete the sprint. Sheryl assigned 5 trials to each treatment by
randomization.

In order to analyze her data, we will assume that we have independent random samples from
two populations. Sheryl’s data yielded the following summary statistics:

x̄ = 383.2, s1 = 4.38, n1 = 5, ȳ = 355.2, s2 = 4.87, andn2 = 5.

We begin our analysis by computings2
p.

s2
p =

4(4.38)2 + 4(4.87)2

5 + 5 − 2
=

4(19.18) + 4(23.72)

8
= 21.45.

Thus,sp =
√

21.45 = 4.63.
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The 95% confidence interval for(µ1 − µ2) is

(383.2 − 355.2) ± 2.306(4.63)
√

1/5 + 1/5 = 28.0 ± 6.75 = [21.25, 34.75].

In words, based on my confidence interval, I conclude that Sheryl’s mean time increases by
between 21.25 and 34.75 seconds when the weighted pannier isadded to her bike.

The data in this next example come from a class project performed by Dawn. A trial consisted
of Dawn placing 10 cat treats in front of her cat Bob (no relation). In treatment 1, the treats were
chicken-flavored and in treatment 2 they were tuna-flavored.The response is the number of treats
Bob eats in 10 minutes. Dawn completed 20 trials, using randomization to assign 10 trials to each
flavor.

In order to analyze her data, we will assume that we have independent random samples from
two populations. Dawn’s data yielded the following summarystatistics:

x̄ = 5.1, s1 = 2.025, n1 = 10, ȳ = 2.9, s2 = 2.079, andn2 = 10.

We begin our analysis by computings2
p.

s2
p =

9(2.025)2 + 9(2.079)2

10 + 10 − 2
=

9(4.10) + 9(4.32)

18
= 4.21.

Thus,sp =
√

4.21 = 2.052.
The 95% confidence interval for(µ1 − µ2) is

(5.1 − 2.9) ± 2.101(2.052)
√

1/10 + 1/10 = 2.2 ± 1.93 = [0.27, 4.13].

In words, based on my confidence interval, I conclude that Bob’s mean consumption of treats
increases by between 0.27 and 4.13 when he is offered chickenrather than tuna flavor.

Case 1 also yields a hypothesis test. The hypotheses are the same in Case 1 as they are in
Case 3. The test statistic is:

T =
X̄ − Ȳ

Sp

√

(1/n1) + (1/n2)
.

On the assumption the null hypothesis is correct, the sampling distribution ofT is thet curve with
df = n1 + n2 − 2.

We find the P-value followingexactly the same rules we learned in Chapter 11. I will illustrate
the ideas with Dawn’s data on Bob.

Dawn chose the alternative thatµ1 6= µ2. The observed value of the test statistic is:

t =
2.2

2.025
√

1/10 + 1/10
= 2.43.

The area to the right of 2.43 under the t-curve with 18 df is 0.0129. Thus, the P-value for the third
alternative is2(0.0129) = 0.0258.
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We could also do a hypothesis test for Sheryl’s data, but it strikes me as silly. (Before we collect
data weknow that the weight will slow her. It is interesting to estimatehow much she is slowed,
but testing the null of no slowing seems, as I said above, silly.) Anyways, it is below.

t =
28.0

4.63
√

1/5 + 1/5
= 9.56.

Using our online calculator, the approximate P-value for the alternative> is 0.00001. Using a
more precise program, I find that the area is 0.000006, or 6 in one million.

12.2 Paired Data

Recall Formula 12.3, the CI forµ1−µ2 in Case 3. The half-width of the CI isz
√

(s2
1/n1) + (s2

2/n2).
The following often happens in practice. The values ofx̄ and ȳ are sufficiently different so that
the results are of practical importance (see Chapter 8), butthe CI is so wide that the study is not
conclusive. The interval is wide becauses1 and/ors2 is large. But why is a standard deviation
large? It is large because there is a large amount of subject-to-subject variation. Now we could fix
this problem by makingn1 and/orn2 larger, but more subjects in a study costs more money and
sometimes runs the ethical risk of exposing more people to aninferior treatment.

There is another approach. We can try to reduce the subject-to-subject variation. Here is the
idea. Suppose I have two treatments for a medical condition.Instead of having one group of people
receiving one treatment and another group of people receiving the other treatment, why not give
each person both treatments? Then we can compare the treatments within each person; thus, if
Ralph is in the study we can compare Ralph’s responses to the treatments.

Of course, for many studies it is physically impossible to give a person both treatments; in
these studies my new idea won’t work. But there are studies where it is possible to give a person
both treatments.

Consider a study of two treatments for headache pain, call them drug A (treatment 1) and drug
B (treatment 2). A trial is to wait until a person has a headache and then have the person take one
of the drugs. The response is a the person’s subjective assessment of head pain 30 minutes after
taking the drug, measured on a scale of 0 (no pain) to 10 (worstpain ever).

There are issues of experimental design that I will discuss briefly. First, the subject should be
ignorant of which drug is taken when. Also, it could bias the study if, say, every person took drug
A first and then drug B. There are two ways to deal with this possible ‘order bias.’

1. For each patient, the order of the drugs—A first or B first— isdecided by randomization.
The analysis would ignore the actual order for each patient and hope that randomization has
reduced the effect of the bias, if indeed it exists.

2. Another idea is to have across-over design. In this case, one-half of the subjects take drug
A first and the other subjects take drug B first. Once selected for study, by whatever method,
subjects are assigned to these two groups by randomization.The analysis of the data includes
an evaluation as to whether the order is important.
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Table 12.1: Hypothetical Data on Headache Relief.

Subject
Drug 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
B 3 0 4 3 5 1 2 2 4 3 4 7 5 6 8 7
Difference −1 2 −1 0 −1 3 3 3 2 3 3 0 3 2 1 2

In practice, if you really are worried that an order effect might be large, then you should definitely
use the cross-over design. If you believe that the order effect is either nonexistent or small, then
you will probably opt for randomization because using a cross-over design makes the analysis of
the data more difficult. Regarding this last point, we do not have time in these notes to learn how
to analyze a cross-over design.

Table 12.1 presents hypothetical data to show the possible impact of this ‘subject reuse.’ Re-
member that smaller numbers for pain are better. Following our usual practice—remember that
drug A is treatment 1— we will denote the above data in the ‘A’ row asx’s, the data in the ‘B’ row
asy’s and the data in the ‘Difference’ row asd’s. Thus, each subject has anx, ay and ad = x− y.
I obtained the following summary statistics:

x̄ = 5.500, s1 = 2.366, ȳ = 4.000, s2 = 2.251, d̄ = 1.500 andsd = 1.592,

wheresd denotes the standard deviation of the 16 differences. Note that d̄ = x̄ − ȳ = 5.500 −
4.000 = 1.500. This is how it should be: the mean of the differences equals the differences of the
means.

If we use the population model, thenµ1 − µ2 = µd. Note that we cannot use our rules for
variances from Chapter 7, because there is no reason to believe thatX andY are independent;
in fact, looking at the data makes me virtually certain they are not independent: Regardless of
treatment some subjects tend to have low levels of pain and some tend to have high levels of pain.

We can use the methods of Chapter 11 to obtain a CI forµd and/or conduct a test of hypotheses.
Using our web calculator, we find that thet for the 95% CI withdf = n − 1 = 16 − 1 = 15 is
2.131. Thus, the 95% CI forµd is

1.500 ± 2.131(1.592/
√

16) = 1.500 ± 0.848 = [0.652, 2.348].

This CI allows us to conclude that B is better than A; on average on drug B pain is between 0.624
and 2.376 units smaller than on drug A.

For a hypotheses test, usually a researcher will select 0 as the special value of interest forµd;
i.e. one is usually interested in whether the population means are equal. I will make this choice for
these data and use the two-sided alternative.
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The observed value of the test statistic is

t =
1.500

1.592/
√

16
= 3.769.

With the help of our online calculator, the area under thet(15) curve to the right of 3.769 is 0.0009.
Doubling this value, we obtain 0.0018 as the approximate P-value. This very small P-value means
we have very strong evidence for the alternative; thus, we would reject the null for any common
choice ofα.

It is instructive to consider a ‘pretend’ study. Let’s imagine that the researchers used 32 subjects
and each subject was assigned one treatment, 16 subjects to each treatment. Each subject recorded
a response for just one headache. Now, let’s pretend that this new study obtained the values for
x’s andy’s given in Table 12.1. In other words, let’s pretend that thedata in this table came from
independent random samples.

First, we can compute the 95% CI forµ1 −µ2. The value oft in the CI fordf = n1 +n2 − 2 =
16 + 16 − 2 = 30 is 2.042. Also, for the values ofs1 ands2 given earlier, you can verify that
sp = 2.309. Thus, the CI is

(5.500 − 4.000) ± 2.042(2.309)
√

(1/16) + (1/16) = 1.500 ± 1.667 = [−0.167, 3.167].

This CI includes 0, so it is inconclusive. We cannot decide which drug is better. Note also that the
half-width of this interval, 1.667 is almost twice as large as the half-width of the CI obtained with
subject reuse, which was 0.848.

We can test the null that the two populations have the same mean versus the two-sided alterna-
tive. The observed value of the test statistic is

t =
1.500

2.309
√

(1/16) + (1/16)
= 1.837.

With the help of our online calculator, the area under thet(30) curve to the right of 1.837 is 0.0381.
Doubling this value, we obtain 0.0762 as the approximate P-value. This borderline P-value means
we have moderate evidence for the alternative, but we would fail to reject the null forα = 0.05.

In summary, in this hypothetical example of headaches, subject reuse greatly improved the
efficiency of our analyses.

I will do another quick example of subject reuse. As I write this (November, 2009), the Yankees
have just won their 27th World Series. There was much talk this season about all the home runs
that were hit in the new Yankee Stadium. I decided to investigate the issue of whether it is easier
to hit home runs in Yankee Stadium. (Note to baseball fans: I do not claim that this is the best way
to study this issue; think of some ways you might improve on this study.)

There were nine Yankee players who played regularly; they all had at least 383 official at-bats
and at least 13 home runs. (Of the remaining players, the mostofficial at-bats was 248 and the
most home runs was seven.) For each player I calculatedd: the number of home runs he hit in
home games minus the number he hit in away games. The sorted data are:

−13,−2, 3, 5, 6, 6, 8, 9, 10.

145



The small outlier,−13, surprised me; Nick Swisher had a few more at-bats in away games, but not
nearly enough to explain his 21 home runs on the road, compared to only 8 at home. I calculated
the following summary statistics:̄d = 3.56 andsd = 7.16. The 95% CI forµd is

3.56 ± 2.306(7.16/
√

9) = 3.56 ± 5.50 = [−1.94, 9.06].

This interval is inconclusive and very wide. I am surprised at this answer. It is instructive to see
what would happen if we drop Nick Swisher’s−13 from the analysis. The summary statistics
become:d̄ = 5.63 andsd = 3.81. Notice that dropping one outlier, reduced the standard deviation
by 47%, from 7.16 to 3.81! The 95% CI forµd is

5.63 ± 2.365(3.81/
√

8) = 5.63 ± 3.19 = [2.44, 9.82].

This new analysis tells a completely different story than the data including Swisher.
I am not advocating throwing out Swisher’s data. But you should understand how much one

observation can change an analysis. Swisher has played for three teams in the three seasons 2007–
2009, including only one with the Yankees. The Yankees couldhave easily signed a different
player than Swisher and I would not be surprised if he is gone from NY by next season. (I was
wrong.)

We have seen two examples of ‘subject reuse’ also called ‘subdividing subjects.’ The other
way that paired data arises is by matching units. One needs tobe very careful when matching units
because if you do it the wrong way it can invalidate your study.

First, let me give you an improper way to match subjects. Suppose that a researcher wants to
perform a study to see which state has taller men in college: Wisconsin or Minnesota. (Yes, this
is a silly study.) The researcher plans to select 20 men at random from each population and, thus,
will use Case 3 to compare the means.

Now Nature, played by me, enters the picture. Unbeknownst tothe researcher, both populations
have the same pdf, which I will take to be the normal pdf withµ = 69 andσ = 2.75 inches. The
researcher has just learned about paired data and decides topair the men after sampling; i.e. the
researcher will take the tallest man from each state and forma pair. After forming this first pair,
the researcher will take the tallest remaining man from eachstate and form a pair. And so on, until
the shortest man from each state is selected to form a pair. This sounds like a good idea to many
researchers, but it is wrong!

I will prove to you that it is wrong by performing a computer simulation. I simulated 10,000
runs of the above study. To be precise, each run consisted of:

1. Selecting independent random samples, both of size 20, from the two populations.

2. Obtaining the sorted data from Wisconsin:x(1), x(2), x(3), . . . x(20), and
Minnesota:y(1), y(2), y(3), . . . y(20).

3. Calculating the 20 differences of the sorted data:

d1 = x(1) − y(1), d2 = x(2) − y(2), . . . d20 = x(20) − y(20).
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4. Calculatingd̄, sd and the 95% CI forµd: d̄ ± 2.093(sd/
√

20).

Now remember, I created the populations so thatµd = 0. Thus, a simulated CI is correct if, and
only if, it contains 0. In my 10,000 simulated runs, 6,061 of the ‘95% CI’s’ were incorrect! This is
amazingly bad! CI’s that are supposed to be incorrect 5% of the time in the long run are incorrect
almost 61% of the time!

Most researchers, I conjecture, have too much sense of shameto cheat as blatantly as I have
described above: sort two independent samples and then formpairs. But many, I suspect cheat
almost as badly. My evidence? I found several texts on “Introductory Statistics in Psychology”
that advocate the following.

1. Select two independent samples.

2. Measure some feature of each subject that is not the response, but is directly related to the
response. (For the height example, they might advocate forming pairs based on weight.)

3. Sort values based on the feature and form pairs based on these sorted values, as I did above
for the heights.

4. Analyze as paired data.

This is also cheating. Now the size of the cheat won’t be as large as above (almost 61% instead of
the advertised 5% above), but it will be sizable and it will becheating.

So, why do people cheat like this? (I know, I ask the silliest rhetorical questions.) Well,
researchers usually like to find differences and if one can proclaim, “I have found a difference and
there is only a 5% chance I made an error,” it sounds so much better than the more accurate, “I
have found a difference, but there might be a 61% chance I madean error.”

So, when is it valid to match units? Two situations.

1. For observational studies, you must form pairs for the entire population. Then select a ran-
dom sample of pairs.

I don’t see how you could do this for the height study, unless you measure every man in both
states, which would eliminate the need for estimation. But you could do this for some studies.
For example, suppose you are interested in comparing the heights of all married men in Wisconsin
to the heights of all married women. (At the time of this typing, in Wisconsin legal marriage is
between exactly two persons and the two persons must be one ofeach sex.) A natural way to form
pairs is to have each married couple be a pair. Then by sampling couples you automatically sample
pairs. This sampling strategy would be better than independent samples if there is a strong enough
tendency in society for tall to marry tall and short to marry short. (Weight or age might work better
than height, but I really don’t know much about how people choose marriage partners.)

2. For experimental studies, you may form pairs however you want as long as you do this before
you randomly assign one member of each pair to each treatment.
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Table 12.2: Study of the Preview Feature in Tetris.
Pair

Treatment 1 2 3 4 5 6 7 8 9 10
1: Preview 106 112 118 102 112 110 130 110 127 138
2: No preview 84 93 86 86 94 88 108 91 79 91
(1) − (2) 12 19 32 16 18 22 22 19 48 47

Well, I don’t have much else to say, but rather than leave you with a blank page in these notes,
I will give one more example.

Let’s return to the game of Tetris. We learned in Chapter 6 that the individual trials definitely
have memory. But now I want to focus on an entire game as a trial. Many years ago, I enjoyed
playing Tetris (I was pretty horrible at every other video game). My game had a feature that
allowed you to see or not see the next shape while you are manipulating the current shape. (Seeing
was the default.) It seemed to me that selecting the default,preview, option would lead to much
higher scores. So, I decided to collect data to investigate this matter.

A game is a trial and the response is the number of lines I completed before the game ended. I
decided to perform 20 trials, with 10 on each setting. I was very worried that fatigue or boredom
would affect my later scores, so I formed pairs out of consecutive trials: 1 and 2; 3 and 4; and so
on. Within each pair I randomly assigned one game to each treatment. My data are in Table 12.2.

Not surprisingly, and obviously from even a quick glance at the data, I was a much better
player with the preview option. It is not so clear that pairing was needed; we shall explore this
issue below.

I calculated the following summary statistics:

x̄ = 116.5, s1 = 11.56, ȳ = 90.0, s2 = 7.77, d̄ = 26.5 andsd = 11.87,

With df = 9, the value needed for the 95% CI ist = 2.262. Thus, the 95% CI forµd is

26.50 ± 2.262(11.87/
√

10) = 26.50 ± 8.49 = [18.01, 34.99].

At the 95% confidence level, on average, my ability increasedbetween 18 and 35 lines when I had
the preview option on.

For comparison, we will now pretend that the data come from independent random samples.
First,

s2
p = [(11.56)2 + (7.77)2]/2 = 97.00.

Thus,sp = 9.85. The 95% CI forµ1 − µ2 is

(116.5 − 90.0) ± 2.101(9.85)
√

1/10 + 1/10 = 26.50 ± 9.25 = [17.25, 35.75].

Pairing was effective, but not by much.
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