Chapter 12

|nference for Two Numerical Populations

12.1 Comparing the Means of Two Populations; Independent
Samples

We have two populations. If you want to study them individigalse the methods of Chapter 11.
In this section we learn how to compare the populations,gusgtimation and hypothesis testing.

In this section we assume that we have random samples frotwthgopulations and that the
samples are independent. (Independent samples were shsidasChapter 9.)

We begin with some notation. The first population has megnstandard deviatioa; and
varianceo?. The second population has mean standard deviation, and variancer?.

Of course, the researcher does not know these six numbedalwre does.

We begin with the problem of estimation. Our goal is to estema — 1». Our data consist of
independent random samples from the two populations.

Denote the data from the first population by;, z,, ..., z,,; and denote the data from the
second population by, o, . . ., Yn,-

It is, of course, important to look at the data and think alibatpurpose of the research. If it
seems reasonable scientifically to compare the two popukaby comparing their means, then we
will proceed with the methods introduced in this section.

We summarize our two sets of data by computing their meanstamdlard deviations, which
are denoted by:

X, St, Y andS;

when we view them as random variables, with observed values:
T, 81,y andSQ.

Our point estimate ofi; — s is X — Y.
There is a CLT for this problem too. First, it shows us how mnslardize our estimator:

(X =Y) = (1 — po)
_ (12.1)
V(@3 /n1) + (03/n2)
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Second, it states that we can approximate probabilitieBfdry using the snc and that in the limit
as both sample sizes become larger and larger, the approsimsare accurate.

First, we need to eliminate the unknown parameters in themémator ofl1. Because there
are now two unknown parameters where in Chapter 11 there mastlis will require additional
care. Second, we will need to decide what to use for our reéereurve: the snc of the CLT (and
Slutsky) or thef curves of Gosset.

When all the smoke has cleared, statisticians suggest mneg®ods, referred to in my text as
Cases 1, 2 and 3. | personally think that Case 2 is scientyfieadrthless, so we won’t cover it.
(It is mathematically interesting, which is, in my opinion, why books feature iteM put it in the
book because | wanted someone else to use my book too.)

We will begin with Case 3; | will follow the popular terminady and call this the large sample
approximation method.

12.1.1 Case 3: TheLarge Sample Approximation

Case 3 makes alot of sense to the new student of Statistieglysieplace the population variances
by their corresponding sample variances. This changesaslie€l to 3. (The 3 is for Case 3.)
V(S2/m1) + (83/ns)

Case 3 states that we should use the snc as our reference Thiwéeads to the following formula

for the Cl foru; — po:
st | S
(T —79) 2/ —+ —. (12.3)
s o

| will illustrate the use of this formula with an example frarstudent project.

A trial consisted of Luke hitting a baseball. In treatmenhé&,used an aluminum bat and and
in treatment 2 he used a wooden bat. The response is theatsiarfeet, that Luke hit the ball.
Luke assigned 40 hits to each treatment, by randomization.

In order to analyze his data, we will assume that we have iexggnt random samples from
two populations. Luke’s data yielded the following summstatistics:

T =179.6,s51 = 62.1,n; =40,y = 166.2, s, = 54.2 andny = 40.

The 95% confidence interval fof; — uo) is

62.1)2 (54.2)2
(179.6 — 166.2) = 1.96\/( 40) . 40) — 1344255 = [-12.1,38.9).

In words, based on my confidence interval, Luke’s data arenaltisive. The mean with the

aluminum bat is between 12.1 feet smaller and 38.9 feetiddinge the mean with the wooden bat.
Our Case 3 Cl is based on two approximations: replacing tipailption variances with the

sample variances and using the snc. It is natural (espgaialiew of all our work in Chapter 11)
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to wonder whether the approximation is good. The answestatn to be surprising. The Case 3
Cl works well if both sample sizes are 20 or larger.

Note there is no reference to skewness. | will digress tousisevhy skewness, which was so
important in Chapter 11, is now unimportant.

First, 1 will show you the results of a simulation study. Saope that the pdf is the same for both
populations and the pdf is strongly skewed to the right. Tthesdifference of the means that | am
trying to estimate is 0. | took independent random sampleth bf size 20, from the populations
and constructed the 95% CI for Case 3. | did this 1,000 timeg.rédults are: 19 of the Cls are
too large and 27 are too small. Thus, 954 (95.4%) are cortewill discuss this example and this
issue in lecture.

Case 3 also yields a hypothesis test. The null hypothesigjs:i.; = u2, and there are three
options for the alternative:

Hy o > po; i < pag; OF fig # fig.

Next we note that i, is true, then the quantity; — u» in the numerator of¥’; becomes 0. This
leads us to our test statistic: 7_7
7 = _ . (12.4)
V(S3/n1) + (53/ns)
Once we collect our data, we calculatethe observed value df, and calculate our approximate
P-value using the rule introduced in Chapter 9.
Case 3 willnot be on the final. We have learned it for two reasons.

e Itis very important in practice.

e It helps get us ready for Case 1.

12.1.2 Case l: Assuming Equal Population Variances
If either (or both) sample size is small (fewer than 20) thea telated difficulties arise.

e The sample variance from the small sample size is not a veyrate estimate of its popu-
lation variance.

e The snc may not give a very accurate approximation to a pibtyadf interest.

The second of these difficulties is not major; just replaceghc by & curve (although the
issue of df is vexing). The first difficulty is more serious.

We are required to make an additional assumption about alriggn. We must assume that
0? = o2.

Be carefulnot to read too much into this assumption. Just as | stated int€hap, a researcher
never knows the numerical value of a population variance. lreohassuming that | know either
o? or o3; | am assuming that these two unknown variances are the sambar. (Here is a weak
analogy. | meet two people who appear, to me, to be identiéakt Whereas | don’t know either

person’s age, | am willing to assume their ages are the same.)
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But still, assumingr? = o2 does seenbig. (In fact, Case 2 drops this assumption.) Here are
some of the reasons why | advocate using Case 1.

1. Whereas we assume the two varianceszaetly equal to derive the formula below, lots of
simulation studies and some math theory suggest that akally meed in practice is for the
variances to be close. (Interestingly, the proper way topme variances is by taking their
ratio, not difference.)

2. If the variances are very different (remember my lectwaneple on the effect of two social
policies on length of life) then scientifically comparingetmeans is not a good way to
compare the populations. Thus, Case 2 provides a mathehsoicition to a problem that
is not interesting to a scientist!

3. We never see the's in practice, but we do see the sd’s of the two sets of datas rity
experience that if the two populations being compared are even the leiasimilar, then
their sample sd’s are close, which provides evidence tleat &'s are close.

4. Finally, if your data gives you very different sd’s (degpimy experiences related above),
you can then decide not to use Case 1 and try to figure out sdmee why to analyze the
data (perhaps by defining successes and failures and rey&tiChapter 9). Or, if you are
stubborn, you can read about Case 2 in my text (or any of a taugeer of other texts).

Well, that is enough enrichment/intellectual honesty.d ebw learn about the method.

Because of the Case 1 assumption, the two variances in tloeiestor of 1/ are the same
number; call the common value of ando,, just plainc without a subscript.

We need to use our data to estimate Our data gives us; ands3. One idea is that we could
ignore one of these and use the other one to estintatbut, intuitively, it makes more sense to
combine them in some way. The ‘obvious’ way to combine theto t=alculate their mean:

(52 + 53)/2.

This obvious way turns out to be ‘best’ mathematically:if = n,. If the sample sizes differ,
however, we can improve on the obvious method. The idea tsabahould give more ‘weight’
or ‘emphasis’ to the sample variance that is based on moee dat

After studying this problem for some time, mathematiciaissovered that the ‘best’ way to
combine the sample variances is to commﬁte/vhere the ‘p’ is for the word ‘pooled:’

2 (n1 —1)s7 4 (ng — 1)53.

12.5
p ny + No — 2 ( )

Note the following about this formula fostf,:
1. Each sample variance appears in the numerator.
2. The coefficient of each sample variance is equal to itsegegof freedom.

3. The sum of the coefficients equals the number in the deraiorin
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4. If ny = ny, thens? = (s} + s3)/2, our obvious combination.

If we replace the unknowa®’s in W with S?, we get

(X V) — (=)
\/(53/?11) + (S2/n2)

Statisticians like to factais’z out of the square root, giving:

1=

X))
Sy (1 /m) + (1/ma)

Gosset showed that the appropriate reference curvé’fas thet curve withdf = ny +mno — 2.
There are two ways to remember the formula for df:

1. Add the sample sizes and then remember to subtract 2 éusiiktracting one as we did in
Chapter 11).

2. Add the df from each sample.

The second of these methods is preferred by statisticiash®agplains why we prefer to think in
degrees of freedom rather than sample sidé's add.
In any event, the formula for the Cl is below:

1 1
T— )t —+ —.
(T —7) Sp\/ T + g

In this formula,t is obtained from the calculator with df equal ta; + n, — 2, as given above. |
will illustrate the use of this formula with two examples afident projects.

The data in this example come from a class project submitgesheryl. A trial consisted of
Sheryl performing a 1.5 mile sprint on her bicycle. In treatihl, Sheryl loaded her pannier with
20 pounds and in treatment 2 she removed her pannier fromiker bhe response is the time,
in seconds, Sheryl required to complete the sprint. Shesgigaed 5 trials to each treatment by
randomization.

In order to analyze her data, we will assume that we have e#gnt random samples from
two populations. Sheryl's data yielded the following sunmyrstatistics:

T =383.2,51 =4.38,n1 =5,y = 355.2, 50 = 4.87, andny = 5.

We begin our analysis by computimg.

o _ 44387 +4(487)7 _ 4(19.18) + 4(23.72)

P 5+5—2 8
Thus,s, = v/21.45 = 4.63.

= 21.45.
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The 95% confidence interval fdf; — o) is

(383.2 — 355.2) = 2.306(4.63)4/1/5 + 1/5 = 28.0 & 6.75 = [21.25, 34.75].

In words, based on my confidence interval, | conclude thaty$lanean time increases by
between 21.25 and 34.75 seconds when the weighted panagides to her bike.

The data in this next example come from a class project peddrby Dawn. A trial consisted
of Dawn placing 10 cat treats in front of her cat Bob (no rela}i In treatment 1, the treats were
chicken-flavored and in treatment 2 they were tuna-flavoféae: response is the number of treats
Bob eats in 10 minutes. Dawn completed 20 trials, using ramztion to assign 10 trials to each
flavor.

In order to analyze her data, we will assume that we have enlgnt random samples from
two populations. Dawn’s data yielded the following summstafistics:

T =>51,8 =2.025n; =10,y = 2.9, s = 2.079, andn, = 10.
We begin our analysis by computimg.

o _ 9(2:025)° +9(2.079) _ 9(4.10) + 9(4.32)

= = = 4.21.
P 10410 — 2 18

Thus,s, = v/4.21 = 2.052.
The 95% confidence interval fdf; — uo) is

(5.1 — 2.9) £ 2.101(2.052)/1/10 + 1/10 = 2.2 + 1.93 = [0.27,4.13].

In words, based on my confidence interval, | conclude thatBotean consumption of treats
increases by between 0.27 and 4.13 when he is offered chiakieer than tuna flavor.
Case 1 also yields a hypothesis test. The hypotheses arartteia Case 1 as they are in
Case 3. The test statistic is: o
X-Y
T= .
Spy/(1/1) + (1/n2)

On the assumption the null hypothesis is correct, the sagpliistribution of7" is thet curve with
df =n1+ny — 2.

We find the P-value followingxactly the same rules we learned in Chapter 11. | will illustrate
the ideas with Dawn’s data on Bob.

Dawn chose the alternative that # .. The observed value of the test statistic is:

2.2

©2.025,/1/10 + 1/10

The area to the right of 2.43 under the t-curve with 18 df i@® Thus, the P-value for the third
alternative i22(0.0129) = 0.0258.

t = 2.43.
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We could also do a hypothesis test for Sheryl’s data, butikest me as silly. (Before we collect
data weknow that the weight will slow her. It is interesting to estiméw@v much she is slowed,
but testing the null of no slowing seems, as | said above, sAnyways, it is below.

28.0
4.63,/1/5+1/5

Using our online calculator, the approximate P-value far #fternative> is 0.00001. Using a
more precise program, | find that the area is 0.000006, or &é&oillion.

t = 9.56.

12.2 Paired Data

Recall Formula 12.3, the ClI fgr, — i, in Case 3. The half-width of the CI }s\/(s%/nl) + (s3/n3).
The following often happens in practice. The values@ndy are sufficiently different so that
the results are of practical importance (see Chapter 8)thau€Cl is so wide that the study is not
conclusive. The interval is wide becauseand/ors; is large. But why is a standard deviation
large? It is large because there is a large amount of sutgesatbject variation. Now we could fix
this problem by making:; and/orn, larger, but more subjects in a study costs more money and
sometimes runs the ethical risk of exposing more people fafanor treatment.

There is another approach. We can try to reduce the sulgextkject variation. Here is the
idea. Suppose | have two treatments for a medical condibimtead of having one group of people
receiving one treatment and another group of people raagitie other treatment, why not give
each person both treatments? Then we can compare the treaatmiéhin each person; thus, if
Ralph is in the study we can compare Ralph’s responses todhtgrtents.

Of course, for many studies it is physically impossible teega person both treatments; in
these studies my new idea won'’t work. But there are studiesyavt is possible to give a person
both treatments.

Consider a study of two treatments for headache pain, cathttirug A (treatment 1) and drug
B (treatment 2). A trial is to wait until a person has a heaéaahd then have the person take one
of the drugs. The response is a the person’s subjectivesassas of head pain 30 minutes after
taking the drug, measured on a scale of 0 (no pain) to 10 (waistever).

There are issues of experimental design that | will discuidl. First, the subject should be
ignorant of which drug is taken when. Also, it could bias thedy if, say, every person took drug
A first and then drug B. There are two ways to deal with this flmdssorder bias.’

1. For each patient, the order of the drugs—A first or B first—déxided by randomization.
The analysis would ignore the actual order for each patiedtepe that randomization has
reduced the effect of the bias, if indeed it exists.

2. Another idea is to have@oss-over design. In this case, one-half of the subjects take drug
A first and the other subjects take drug B first. Once selecestéidy, by whatever method,
subjects are assigned to these two groups by randomizadti@analysis of the data includes
an evaluation as to whether the order is important.
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Table 12.1: Hypothetical Data on Headache Relief.

Subject
Drug 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 22 33 44556 6 7 7 8 8 9 9
B 3 0 4 3 512 24 3 4 7 5 6 &8 7
Difference -1 2 -1 0 -1 3 3 3 2 3 3 0 3 2 1 2

In practice, if you really are worried that an order effecgimibe large, then you should definitely
use the cross-over design. If you believe that the ordectifeeither nonexistent or small, then
you will probably opt for randomization because using a sfoger design makes the analysis of
the data more difficult. Regarding this last point, we do rentéhtime in these notes to learn how
to analyze a cross-over design.

Table 12.1 presents hypothetical data to show the possiipadt of this ‘subject reuse.” Re-
member that smaller numbers for pain are better. Followimgusual practice—remember that
drug A is treatment 1— we will denote the above data in thed&asz’s, the data in the ‘B’ row
asy’s and the data in the ‘Difference’ row @%. Thus, each subject has apay and ad = x —y.
| obtained the following summary statistics:

7 = 5.500, s; = 2.366, 7 = 4.000, s; = 2.251,d = 1.500 ands, = 1.592,

wheres,; denotes the standard deviation of the 16 differences. Nwtieit= 7 — § = 5.500 —
4.000 = 1.500. This is how it should be: the mean of the differences equmeslifferences of the
means.

If we use the population model, then — u» = pg. Note that we cannot use our rules for
variances from Chapter 7, because there is no reason tovéehat X andY are independent;
in fact, looking at the data makes me virtually certain they mot independent:. Regardless of
treatment some subjects tend to have low levels of pain ame $end to have high levels of pain.

We can use the methods of Chapter 11 to obtain a Gl f@nd/or conduct a test of hypotheses.
Using our web calculator, we find that tihdor the 95% Cl withdf = n -1 =16—-1 = 151is
2.131. Thus, the 95% ClI far, is

1.500 & 2.131(1.592/v/16) = 1.500 & 0.848 = [0.652, 2.348).

This CI allows us to conclude that B is better than A; on averaig drug B pain is between 0.624
and 2.376 units smaller than on drug A.

For a hypotheses test, usually a researcher will select Beasptecial value of interest fouy;
i.e. one is usually interested in whether the populationmaeae equal. | will make this choice for
these data and use the two-sided alternative.
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The observed value of the test statistic is
L 1500
1.592/4/16

With the help of our online calculator, the area under:ti&) curve to the right of 3.769 is 0.0009.
Doubling this value, we obtain 0.0018 as the approximatalBev This very small P-value means
we have very strong evidence for the alternative; thus, weleveeject the null for any common
choice ofa.

Itis instructive to consider a ‘pretend’ study. Let’s imagithat the researchers used 32 subjects
and each subject was assigned one treatment, 16 subjeetsttreatment. Each subject recorded
a response for just one headache. Now, let's pretend theah#w study obtained the values for
x’s andy’s given in Table 12.1. In other words, let’s pretend thatdlaéa in this table came from
independent random samples.

First, we can compute the 95% CI for — u». The value of inthe Cl fordf = ny +ny, —2 =
16 + 16 — 2 = 30 is 2.042. Also, for the values of, and s, given earlier, you can verify that
sp = 2.309. Thus, the Cl is

= 3.769.

(5.500 — 4.000) % 2.042(2.309),/(1/16) + (1/16) = 1.500 % 1.667 = [~0.167, 3.167).

This Cl includes 0, so it is inconclusive. We cannot decidéctvidrug is better. Note also that the
half-width of this interval, 1.667 is almost twice as largethe half-width of the Cl obtained with
subject reuse, which was 0.848.

We can test the null that the two populations have the same regaus the two-sided alterna-
tive. The observed value of the test statistic is

1.500

- 2.309,/(1/16) + (1/16)

= 1.837.

With the help of our online calculator, the area under:l36) curve to the right of 1.837 is 0.0381.
Doubling this value, we obtain 0.0762 as the approximatalBev This borderline P-value means
we have moderate evidence for the alternative, but we wauldd reject the null for = 0.05.

In summary, in this hypothetical example of headaches,estibguse greatly improved the
efficiency of our analyses.

| will do another quick example of subject reuse. As | writisifiNovember, 2009), the Yankees
have just won their 27th World Series. There was much takk $kson about all the home runs
that were hit in the new Yankee Stadium. | decided to invastighe issue of whether it is easier
to hit home runs in Yankee Stadium. (Note to baseball fane:riat claim that this is the best way
to study this issue; think of some ways you might improve as study.)

There were nine Yankee players who played regularly; thlyaal at least 383 official at-bats
and at least 13 home runs. (Of the remaining players, the offistal at-bats was 248 and the
most home runs was seven.) For each player | calcul&tétde number of home runs he hit in
home games minus the number he hit in away games. The sottedréa

-13,-2,3,5,6,6,8,9, 10.
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The small outlier—13, surprised me; Nick Swisher had a few more at-bats in awayegabut not
nearly enough to explain his 21 home runs on the road, cordgarenly 8 at home. | calculated
the following summary statisticet = 3.56 ands,; = 7.16. The 95% ClI foru, is

3.56 & 2.306(7.16/1/9) = 3.56 + 5.50 = [—1.94, 9.06].

This interval is inconclusive and very wide. | am surprisédh#s answer. It is instructive to see
what would happen if we drop Nick Swishersl3 from the analysis. The summary statistics
become:d = 5.63 ands; = 3.81. Notice that dropping one outlier, reduced the standaribtien

by 47%, from 7.16 to 3.81! The 95% CI fo; is

5.63 & 2.365(3.81/v/8) = 5.63 & 3.19 = [2.44,9.82).

This new analysis tells a completely different story thamdhata including Swisher.

| am not advocating throwing out Swisher’s data. But you should usid@d how much one
observation can change an analysis. Swisher has playdaréa teams in the three seasons 2007—
2009, including only one with the Yankees. The Yankees ctialde easily signed a different
player than Swisher and | would not be surprised if he is gopomfNY by next season. (I was
wrong.)

We have seen two examples of ‘subject reuse’ also calleddigiging subjects.” The other
way that paired data arises is by matching units. One nedaksvery careful when matching units
because if you do it the wrong way it can invalidate your study

First, let me give you an improper way to match subjects. $apghat a researcher wants to
perform a study to see which state has taller men in collegeca¥Msin or Minnesota. (Yes, this
is a silly study.) The researcher plans to select 20 men dorarfrom each population and, thus,
will use Case 3 to compare the means.

Now Nature, played by me, enters the picture. Unbeknowrtsigtoesearcher, both populations
have the same pdf, which | will take to be the normal pdf witk- 69 ando = 2.75 inches. The
researcher has just learned about paired data and deciges tihe men after sampling; i.e. the
researcher will take the tallest man from each state and gopair. After forming this first pair,
the researcher will take the tallest remaining man from estiate and form a pair. And so on, until
the shortest man from each state is selected to form a pais. sbunds like a good idea to many
researchers, but it is wrong!

| will prove to you that it is wrong by performing a computensilation. | simulated 10,000
runs of the above study. To be precise, each run consisted of:

1. Selecting independent random samples, both of size @, the two populations.

2. Obtaining the sorted data from Wisconsin;y, z(2), 2(3), - - - Z(20), and
Minnesotazy 1y, Y2y, Y(3) - - - Y(20)-

3. Calculating the 20 differences of the sorted data:
di =20y — ya), d2 = T@2) — Y@), - - - d20 = T(20) — Y(20)-
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4. Calculating, s; and the 95% ClI foyiy: d £ 2.093(s4/+/20).

Now remember, | created the populations so fhat= 0. Thus, a simulated Cl is correct if, and
only if, it contains 0. In my 10,000 simulated runs, 6,061ra 195% CI's’ were incorrect! This is
amazingly bad! CI's that are supposed to be incorrect 5%efithe in the long run are incorrect
almost 61% of the time!

Most researchers, | conjecture, have too much sense of sttaoieat as blatantly as | have
described above: sort two independent samples and thendams. But many, | suspect cheat
almost as badly. My evidence? | found several texts on “thiobory Statistics in Psychology”
that advocate the following.

1. Select two independent samples.

2. Measure some feature of each subject that is not the regpbut is directly related to the
response. (For the height example, they might advocateifigrpairs based on weight.)

3. Sort values based on the feature and form pairs based sa $beted values, as | did above
for the heights.

4. Analyze as paired data.

This is also cheating. Now the size of the cheat won’t be &las above (almost 61% instead of
the advertised 5% above), but it will be sizable and it willdheating.

So, why do people cheat like this? (I know, | ask the sillidsttorical questions.) Well,
researchers usually like to find differences and if one caclpmm, “I have found a difference and
there is only a 5% chance | made an error,” it sounds so mudbritbian the more accurate, “I
have found a difference, but there might be a 61% chance | ma@eror.”

So, when is it valid to match units? Two situations.

1. For observational studies, you must form pairs for théemopulation. Then select a ran-
dom sample of pairs.

| don’t see how you could do this for the height study, unless yneasure every man in both
states, which would eliminate the need for estimation. But gould do this for some studies.
For example, suppose you are interested in comparing tigiatseaf all married men in Wisconsin
to the heights of all married women. (At the time of this tygimn Wisconsin legal marriage is
between exactly two persons and the two persons must be @aehbfsex.) A natural way to form
pairs is to have each married couple be a pair. Then by sagwdinples you automatically sample
pairs. This sampling strategy would be better than indepethsamples if there is a strong enough
tendency in society for tall to marry tall and short to marnpg. (Weight or age might work better
than height, but | really don’t know much about how peoplead®marriage partners.)

2. For experimental studies, you may form pairs however yaotas long as you do this before
you randomly assign one member of each pair to each treatment
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Table 12.2: Study of the Preview Feature in Tetris.
Pair
Treatment 1 2 3 4 5 6 7 8 9 10
1: Preview 106 112 118 102 112 110 130 110 127 138
2:Nopreview 84 93 86 86 94 88 108 91 79 91
(1) —(2) 12 19 32 16 18 22 22 19 48 47

Well, I don’t have much else to say, but rather than leave yil &vblank page in these notes,
| will give one more example.

Let’s return to the game of Tetris. We learned in Chapter 6 tth@individual trials definitely
have memory. But now | want to focus on an entire game as a tany years ago, | enjoyed
playing Tetris (I was pretty horrible at every other videargg. My game had a feature that
allowed you to see or not see the next shape while you are milatiipg the current shape. (Seeing
was the default.) It seemed to me that selecting the defanajew, option would lead to much
higher scores. So, | decided to collect data to investigasenatter.

A game is a trial and the response is the number of lines | ceteglbefore the game ended. |
decided to perform 20 trials, with 10 on each setting. | way veorried that fatigue or boredom
would affect my later scores, so | formed pairs out of conteedrials: 1 and 2; 3 and 4; and so
on. Within each pair | randomly assigned one game to eactmesd. My data are in Table 12.2.

Not surprisingly, and obviously from even a quick glancels tlata, | was a much better
player with the preview option. It is not so clear that pagrwas needed; we shall explore this
issue below.

| calculated the following summary statistics:

T =116.5,5, = 11.56,7 = 90.0, 55 = 7.77,d = 26.5 ands, = 11.87,
With df = 9, the value needed for the 95% Cltis- 2.262. Thus, the 95% CI foy, is
26.50 + 2.262(11.87/v/10) = 26.50 + 8.49 = [18.01, 34.99).

At the 95% confidence level, on average, my ability incredsstd/een 18 and 35 lines when | had
the preview option on.
For comparison, we will now pretend that the data come frodependent random samples.
First,
sz = [(11.56)% + (7.77)%] /2 = 97.00.

Thus,s, = 9.85. The 95% ClI foru; — po is

(116.5 — 90.0) = 2.101(9.85)4/1/10 + 1/10 = 26.50 & 9.25 = [17.25, 35.75].

Pairing was effective, but not by much.
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