
Chapter 3

Estimation of p

3.1 Point and Interval Estimates ofp

Suppose that we have Bernoulli Trials (BT). So far, in every example I have told you the (numer-
ical) value ofp. In science, usually the value ofp is unknown to the researcher. In such cases,
scientists and statisticians use data from the BT toestimate the value ofp. Note that the word
estimate is a technical term that has a precise definition in this course. I don’t particularly like the
choice of the wordestimate for what we do, but I am not the tsar of the Statistics world!

It will be very convenient for your learning if we distinguish between two creatures. First, is
Nature, who knows everything and, in particular, knows the value ofp. Second is the researcher
who is ignorant of the value ofp.

Here is the idea. A researcher plans to observen BT, but does not know the value ofp. After
the BT have been observed the researcher will use the information obtained to make a statement
about whatp might be.

After observing the BT, the researcher counts the number of successes,x, in then BT. We
definep̂ = x/n, the proportion of successes in the sample, to be thepoint estimateof p.

For example, if I observen = 20 BT and countx = 13 successes, then my point estimate ofp
is p̂ = 13/20 = 0.65.

It is trivially easy to calculatêp = x/n; thus, based on your experiences in previous math
courses, you might expect that we will move along to the next topic. But we won’t.

What we do in a Statistics course isevaluate the behavior of our procedure. What does this
mean? Statisticians evaluate procedures by seeing how theyperformin the long run.

We say that the point estimatêp is correct if, and only if, p̂ = p. Obviously, any honest
researcher wants the point estimate to be correct. Let’s go back to the example of a researcher who
observes 13 successes in 20 BT and calculatesp̂ = 13/20 = 0.65.

The researcher schedules a press conference and the following exchange is recorded.

• Researcher: I know that all Americans are curious about the value ofp. I am here today to
announce that based on my incredible effort, wisdom and brilliance, I estimatep to be 0.65.

• Reporter: Great, but what is the actual value ofp? Are you saying thatp = 0.65?
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• Researcher: Well, I don’t actually know whatp is, but I certainly hope that it equals 0.65.
As I have stated many times, nobody is better than I at obtaining correct point estimates.

• Reporter: Granted, but is anybody worse than you at obtaining correct point estimates?

• Researcher: (Mumbling) Well, no. You see, the problem is that only Nature knows the actual
value ofp. No mere researcher will ever know it.

• Reporter: Then why are we here?

Before we follow the reporter’s suggestion and give up, let’s see what we can learn.
Let’s bring Nature into the analysis. Suppose that Nature knows thatp = 0.75. Well, Nature

knows that the researcher in the above press conference has an incorrect point estimate. But let’s
proceed beyond that one example.

Consider a researcher who decides to observen = 20 BT and use them to estimatep. What
will happen?

Well, we don’t know what will happen. The researchermight observex = 15 successes, giving
p̂ = 15/20 = 0.75 which would be a correct point estimate. Sadly, of course, the researcher would
not know it is correct; only Nature would.

Given what we were doing in Chapters 1 and 2, it occurs to us to calculate a probability. After
all, we use probabilities to quantify uncertainty.

So, before the researcher observes the 20 BT, Nature decidesto calculate the probability that
the point estimate will be correct. This probability is, of course,

P (X = 15) =
20!

15!5!
(0.75)15(0.25)5,

which I find, with the help of the binomial website, to be 0.2023. There are two rather obvious
undesirable features to this answer.

1. Only Nature knows whether the point estimate is correct; indeed, before the data are col-
lected, only Nature can calculate the probability the pointestimate will be correct.

2. The probability that the point estimate will be correct isdisappointingly small.

(And note that for most values ofp, it is impossible for the point estimate to be correct. For one of
countless possible examples, suppose thatn = 20 as in the current discussion andp = 0.43. It is
impossible to obtain̂p = 0.43.)

As we shall see repeatedly in this course, what often happensis that by collecting more data
our procedure becomes ‘better’ in some way. Thus, suppose that the researcher plans to observe
n = 100 BT, with p still equal to 0.75. The probability that the point estimatewill be correct is,

P (X = 75) =
100!

75!25!
(0.75)75(0.25)25,

which I find, with the help of the website, to be 0.0918. This isvery upsetting! More data makes
the probability of a correct point estimate smaller, not larger.

The difficulty lies in our desire to havêp beexactly correct. Close is good too. In fact, statisti-
cians like to say,
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Close counts in horse shoes, hand grenades and estimation.

But what do I mean by close? Well, for an example to move us along, suppose we decide that
if p̂ is within 0.05 ofp then it isclose enough for us to be happy. Revisiting the two computations
above, we see that forn = 20 andp = 0.75, close enough means(14 ≤ X ≤ 16). The probability
of this happening, again with the help of the website, is 0.5606. Forn = 100 close enough means
(70 ≤ X ≤ 80). The probability of this happening is 0.7967. As a final example, for n = 1000,
close enough means(700 ≤ X ≤ 800). The probability of this happening is 0.9998, a virtual
certainty to a statistician.

Here is another way to view my ‘close enough’ argument above.Instead of estimatingp by the
single number (point)̂p we use aninterval estimate, in this example the closed interval isp̂±0.05.
As you may have learned in a math class, a closed interval is aninterval the includes its endpoints.
In this class, all interval estimates are closed intervals.Analogous to our earlier definition, we say
that the interval estimate is correct if, and only if, the interval containsp. Thus, saying that̂p is
within 0.05 ofp (my working definition of close enough in the example above) is equivalent to
saying thatp is in the interval estimate; i.e. the interval estimate is correct.

Henceforth, I will not talk about̂p being close enough top; I will talk about whether an interval
estimate is correct. Let’s look at the example above again with this new perspective.

For the valuep = 0.75 I studied the performance of the interval estimatep̂ ± 0.05 for three
possible values ofn: 20, 100 and 1000. I found that asn becomes larger, the probability that the
researcher would obtain a correct interval estimate also becomes larger.

My example above—the interval estimatep̂ ± 0.05—is called a fixed-width interval estimate
because the researcher decides in advance to have an interval estimate with a width (the distance
between the upper and lower boundaries of the estimate) of 0.10 (or, as statisticians prefer to say, a
half-width of 0.05). Fixed-width interval estimates arenot very popular because of the following
feature.

Let us return to the example ofn = 100 BT with a fixed-width interval estimate of̂p±0.05. As
I stated above, ifp = 0.75 then the probability that the interval estimate will be correct is 0.7967.
As we shall now see, this probability changes ifp changes.

In particular, suppose thatp = 0.95. Then, the interval estimatêp± 0.05 will be correct if, and
only if, (90 ≤ X ≤ 100). Using the website, the probability of this event is 0.9885.If, however,
p = 0.50, then the interval estimate will be correct, if, and only if,(45 ≤ X ≤ 55). The probability
of this event is 0.7288.

I will summarize these computations in the following table:

p : 0.50 0.75 0.95
Prob. of being correct: 0.7288 0.7967 0.9885

This is a very unsatisfactory result! With a sample of sizen = 100 the researcher has very little
idea as to the probability the interval will be correct because he/she does not know the value ofp.
There are some general properties (not quite theorems) of fixed-width interval estimates, some of
which are hinted at in our table above, namely:

1. The probability of being correct is symmetric inp around 0.50; i.e. the probability of being
correct is the same for success rate1 − p as it is for success ratep. Thus, for example, if

35



p = 0.05 then the probability the interval will be correct is 0.9885,the same as it is for
p = 0.95.

2. Viewed as a function ofp, the probability of being correct is minimized at or nearp = 0.50
and it generally grows larger as we move away from 0.50, towards either 0 or 1.

B/c statisticians are disappointed with fixed-width interval estimates, we will turn our attention
to the idea of ‘fixed probability of being correct.’ The method is described below.

In Chapter 2, we saw pictures of probability histograms thatsuggest approximating binomial
probabilities by using a normal curve. I did examples and youdid homework that revealed that
in many instances these approximate answers are quite good.In fact, the method works very well
provided thatp is not too close to 0 and 1 and thatn is pretty large. At this time, we will use these
admittedly extremely vague expressions ‘not too close’ and‘pretty large.’ We will eventually deal
with this issue, but not now.

First, it is bothersome to keep saying ‘p is not too close to either 0 or 1.’ So we avoid this, as
follows.

I will assume that the researcher is a good enough scientist to distinguish between situations
in whichp is very close to 0 (say 0.01 or smaller) and very close to 1 (say0.99 or larger). I really
cannot imagine that a researcher would be sufficiently ignorant of the subject of study to not be
able to do this!

For dichotomous trials the labels of success and failure arearbitrary. In my experience it seems
to be human nature to called the preferred outcome, if there is one, the success. For example, if
I am shooting free throws, I call a made shot a success and a miss a failure. We will follow this
practiceunless we believe that one of the outcomes is unlikely; that is, either p or q is close to 0.
For reasons that will become apparent later, we greatly prefer to havep near 0 than to havep near
1. As a result, henceforth we will obey the following rule:

For BT, if one of the possible outcomes has probability of occurring that is be-
lieved to be close to 0, we will designate that outcome as the success.

I have talked about Nature knowing the value ofp and the researcher not knowing it. As a
mathematician, I think aboutp having a continuum of possible values between 0 and 1. (Exclu-
sive; remember we are not interested in BT that always give successes or always give failures.)
But scientifically, unlessp is very close to 0, I am happy with knowingp to, say, three digits of
precision. I will give two examples.

Recall that one of the most important applications of BT is when a researcher selects a random
sample, with replacement, from a finite population. Consider the 2008 presidential election in
Wisconsin. Barack Obama received 1,677,211 votes and John McCain received 1,262,393 votes.
In this example, I will ignore votes cast for any other candidates. The population size isN =
1,677,211+ 1,262,393= 2,939,604. I will designate a vote for Obama as a success, giving p =
0.571 andq = 0.429.

Notice I say thatp = 0.571. I conjecture that this imprecision did not bother you. In particular,
you did not jump up (figuratively or literally) and say,
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No! The value ofp is the rational number 1,677,211 divided by 2,939,604, which
as a decimal is 0.570556782. . . . And I apologize for not writing this decimal until it
repeats, but this is the size of the display on my calculator and I have other work I
must do.

Personally, and this is clearly a value judgment that you don’t need to agree with, 0.571 is precise
enough for me: Obama received 57.1% of the votes. If I am feeling particularly casual, I would
be happy with 0.57. I would never be happy, in an election, to round to one digit, in this case 0.6,
because for so many elections rounding to one digit will give0.5 for each candidate, which is not
very helpful! (Of course, sometimes we must focus on total votes, not proportions. For example, in
the 2008 Minnesota election for U.S. Senator, Franken beat Coleman by a small number of votes.
The last number I heard was that Franken had 312 more votes outof nearly 3 million cast. So yes,
to three digits, each man received 50.0% of the votes.)

Forp close to 0 (remember, we don’t let it be close to 1), usually wewant much more precision
than simply the nearest 0.001. At the time of this writing, there is a great deal of concern about the
severity with which the H1N1 virus will hit the world during 2009–10. Letp be the proportion of,
say, Americans who die from it. Now, ifp equals one in 3 million, about 100 Americans will die,
but if it equals one in 3,000, about 100,000 Americans will die. To the nearest 0.001, both of these
p’s is 0.000. Clearly, more precision than the nearest 0.001 is needed ifp is close to 0.

3.2 The Approximate 95% Confidence Interval forp

In this section we learn about a particular kind of interval estimate ofp which is called theconfi-
dence interval(CI) estimate.

I will first give you the confidence interval formula and then derive it for you. Remember,
first and foremost, a confidence interval is a closedinterval. An interval is determined by its two
endpoints, which we will denote byl for lower (smaller) endpoint andu for upper (larger) endpoint.
Thus, I need to give you the formulas forl andu. They are:

l = p̂ − 1.96
√

p̂q̂/n andu = p̂ + 1.96
√

p̂q̂/n.

If you note the similarity of these equations and recall the prevalence of laziness in math, you won’t
be surprised to learn that we usually combine these into one expression for the 95% confidence
interval forp:

p̂ ± 1.96
√

p̂q̂/n.

We often write this as
p̂ ± h,

with
h = 1.96

√

p̂q̂/n,

called the half-width of the 95% CI forp.
I will now provide a brief mathematical justification of our formula.
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As discussed in Chapter 2, ifX ∼ Bin(n, p) then probabilities forZ,

Z =
X − np
√

npq
,

can be well approximated by the standard normal curve (snc),providedn is reasonably large and
p is not too close to 0. It turns out that for the goal of intervalestimation, the unknownp (and
q = 1 − p) in the denominator ofZ creates a major difficulty. Thanks, however, to an important
result of Eugen Slutsky (1925) (calledSlutsky’s Theorem) probabilities forZ ′,

Z ′ = (X − np)/
√

np̂q̂,

can be well approximated by the snc, providedn is reasonably large,p is not too close to 0 and
0 < p̂ < 1 (we don’t want to divide by 0!). Note thatZ ′ is obtained by replacing the unknown
p andq in the denominator ofZ with the valueŝp and q̂ which will be known once the data are
collected.

Here is the derivation. Suppose that we want to calculateP (−1.96 ≤ Z ′ ≤ 1.96). Because
of Slutsky’s result, we can approximate this by the area under the snc between−1.96 and 1.96.
Using the website, you can verify that this area equals 0.95.Next, dividing the numerator and
denominator ofZ ′ by n gives

Z ′ =
p̂ − p

√

p̂q̂/n
.

Thus,

−1.96 ≤ Z ′ ≤ 1.96 becomes− 1.96 ≤
p̂ − p

√

p̂q̂/n
≤ 1.96;

rearranging terms, this last inequality becomes

p̂ − 1.96
√

p̂q̂/n ≤ p ≤ p̂ + 1.96
√

p̂q̂/n.

Examine this last expression. In terms of my definitions at the beginning of this section, it is

l ≤ p ≤ u.

Thus, we have shown that, before we collect data, the probability that we will obtain a correct
confidence interval estimate is (approximately) 95% and that this is true for all values ofp!

This is a great result. The only concern is whether the approximation is good. I will do a few
examples to investigate this question.

Suppose that a researcher decides to observen = 200 BT and plans to compute the above 95%
confidence interval forp. Is the approximation any good? Well, to answer this question we must
bring Nature into the argument. To investigate the quality of the approximation we need not only
to specifyn, which I have done, but alsop. So suppose thatp = 0.40.

We note that the interval will be correct, if, and only if, it containsp = 0.40. That is,

p̂ − 1.96
√

p̂q̂/200 ≤ 0.40 ≤ p̂ + 1.96
√

p̂q̂/200.
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After some algebra, it follows thatl ≤ 0.400 corresponds tôp ≤ 0.470 andu ≥ 0.400 corresponds
to p̂ ≥ 0.340. Remembering that̂p = x/200, we conclude that the confidence interval will be
correct if, and only if,68 ≤ X ≤ 94, where probabilities forX are given by the Bin(200,0.40).
With the help of the binomial website, this probability is found to be 0.9466. Not ideal—I would
prefer 0.9500—but a reasonably good approximation.

I will repeat the above example for the samen = 200, but for ap that is closer to 0, say
p = 0.10. In this case, by algebra, the confidence interval is correctif, and only if, 15 ≤ X ≤ 30.
The probability of this event is 0.8976, which is not very close to the desired 95%.

For one last example, suppose thatn = 200 andp = 0.01. The interval is correct if, and only
if, 1 ≤ X ≤ 8. The probability of this event is 0.8658, which is a really bad approximation to
0.9500.

We have seen that forn = 200, if p is close to 0 the 95% in the 95% confidence interval isnot
a very good approximation to the exact probability that the interval will be correct. We will deal
with that issue soon, but first I want to generalize the above result from 95% to other confidence
levels.

3.2.1 Other Confidence Levels and One-sided Intervals

The 95% confidence level is very popular with statisticians and scientists, but it is not the only
possibility. You could choose any level you want, provided that it is above 0% and below 100%.
There are six levels that are most popular and we will restrict attention to those in this class. They
are: 80%, 90%, 95%, 98%, 99% and 99.73%. Consider again our derivation of the 95% confidence
interval. The choice of 95% for level led to 1.96 appearing inthe formula, but otherwise had
absolutely no impact on the algebra or probability theory used.

Thus, for any other level, we just need to determine what number to use in place of 1.96. For
example, for 90% we need to find a positive number, let’s call it z, so that the area under the snc
between−z and+z is 90%. It can be shown thatz = 1.645 is the answer. Thus, to summarize:
The 90% confidence interval forp is

p̂ ± 1.645

√

p̂q̂

n
.

Extending these ideas we get the following result. The(two-sided) confidence interval forp
is given by:

p̂ ± z

√

p̂q̂

n
.

In this formula, the numberz is determined by the desired confidence level, as given in thefollow-
ing table.

Confidence Level 80% 90% 95% 98% 99% 99.73%
z: 1.282 1.645 1.960 2.326 2.576 3.000

Thus, for example,

p̂ ± 2.576

√

p̂q̂

n
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is the 99% two-sided confidence interval forp. Also,

p̂ ± 3

√

p̂q̂

n

is the 99.73% CI forp. We also recognize this as thepretty certain interval of Chapter 1. Thus, the
pretty certain interval of Chapter 1 was simply the 99.73% CIfor r. (Remember, in Chapter 1 the
probability of interest was denoted byr.)

You have no doubt noticed that I have added the modifiertwo-sided to the technical term
confidence interval. We call our answer the two-sided CI because it has both upper and lower
bounds. Sometimes in science we want a one-sided bound on thevalue ofp. This is especially true
whenp is close to 0.

Below are the two results.
The upper confidence bound forp is given by:

p̂ + z1

√

p̂q̂

n
,

and the lower confidence bound forp is given by:

p̂ − z1

√

p̂q̂

n
.

In these formulas, the numberz1 is determined by the desired confidence level, as given in the
following table.

Confidence Level 90% 95% 97.5% 99% 99.5% 99.86%
z1: 1.282 1.645 1.960 2.326 2.576 3.000

For example, suppose thatn = 200 andp̂ = 0.250. The 95% upper confidence bound forp is
given by:

0.250 + 1.645

√

0.25(0.75)

200
= 0.250 + 1.645(0.0306) = 0.250 + 0.050 = 0.300.

In words, I am 95% confident thatp is 0.300 or smaller.

3.3 Exact Confidence Intervals

In an earlier example we saw that ifn = 200 andp is close to 0, our above method, based on the
snc approximation, is not very good. It is not very good because the actual true probability that the
95% confidence interval will be correct is substantially smaller than 95%.

There is an exact method available for obtaining a confidenceinterval forp. It can be obtained
by using the website:
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http://statpages.org/confint.html

There is a link to this website on our course webpage.
I will illustrate the use of this site.
Suppose that we haven = 200 BT and we observe a total of onlyx = 10 successes. This gives

p̂ = 0.05. We do not know the value ofp (only Nature does) but such a small value ofp̂ suggests
strongly thatp is close to 0, and, hence, that the approximate CI might not bevery good.

In fact, the 95%, two-sided snc CI is:

0.050 ± 1.96

√

0.05(0.95)

200
= 0.050 ± 0.030 = [0.020, 0.080].

Next, let’s see what we get if we use the website. (It might help you if you go to the website
and mimic what I am doing.)

In the section named ‘Binomial Confidence Intervals’ type in‘10’ for Numerator (x) and ‘200’
for Denominator (N). (Aside: I don’t know why they useN ; every sensible person usesn :-].) Hit
the compute button and the program produces the exact confidence interval, in this case:

0.0242 to 0.0900.

The exact site can also be used for one-sided CI’s. I will illustrate this technique for our data
above,n = 200 andx = 10, and the one-sided 95% upper confidence bound.

• Scroll down to the section titled ‘Setting Confidence Levels.’

• I want the 95% upper confidence bound forp, so I type 95 in the ‘Confidence Level’ box.
(Be careful not to type 0.95.)

• I type 5 in the ‘% Area in Upper Tail’ box and 0 in the ‘% Area in Lower Tail’ box.

• Scroll back up and type inx andn as for the two-sided case.

• Remaining in the upper section, click ‘Compute.’ The answerI get is

0.0000 to 0.0833.

Thus, I am 95% confident thatp is 0.0833 or smaller.

I now turn to two technical questions.
First, why is this calledexact? Well, because there is no approximation involved. Let me

explain. Well, only a little bit. The website uses the binomial distribution, not the approximating
snc, to obtain its answers. Sadly, the technique is beyond the scope of this course. (It really is quite
messy and no fun at all, not even for a statistician!) The key idea is the following. For ease of
exposition, let’s focus on the two-sided 95% CI. The websitemethod has the following property.

For every value ofp between 0 and 1, the website answer has the property that the
probability that the CI will be a correct interval is 95% or larger.
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If you want, say, 90%, instead of 95%, the above is true with the number 90%. It is also true for
any one-sided CI (upper bound or lower bound).

To make sure this is clear: If you want, say, 95% confidence:

You can use the website which guarantees we have a 95% chance or more of getting a
correct interval regardless of the value ofp

OR

You can use the snc which guarantees nothing; it gives approximately 95% and some-
times the approximation is bad.

The second question now is rather obvious: Why would oneever use the snc approximation?
One advantage of the snc is that it actually makes sense in that we can see how it relates to the

shape of the binomial distribution. By contrast, the website answer is totally mysterious.
Next, for really large studies the two methods give about thesame answer. For example, if

n = 2000 andx = 1000 it can be shown that the exact 95% CI is 0.4778 to 0.5222, whilethe snc
answer is 0.4781 to 0.5219. If we round these answers to the third digit after the decimal, we get
[0.478, 0.522] for both.

The exact answer involves some pretty serious computations, but the snc approximate answer
can be obtained easily with a hand calculator.

Finally, as a statistician, I feel that I understand pretty well the strengths and weaknesses of
using the snc method. I don’t know who wrote the program for the website that gives exact CI’s
and although it seems ok to me, I don’t reallyknow that. I do not recommend you believe every-
thing you find on a website. (Nor should you automatically believe everything anyone tells you,
including me.)
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