Chapter 3

Estimation of p

3.1 Point and Interval Estimates ofp

Suppose that we have Bernoulli Trials (BT). So far, in evegreple | have told you the (numer-
ical) value ofp. In science, usually the value pfis unknown to the researcher. In such cases,
scientists and statisticians use data from the BE€dtimatethe value ofp. Note that the word
estimate is a technical term that has a precise definition in this caurglon’t particularly like the
choice of the woraestimate for what we do, but | am not the tsar of the Statistics world!

It will be very convenient for your learning if we distinglidetween two creatures. First, is
Nature, who knows everything and, in particular, knows the valug.o6econd is the researcher
who is ignorant of the value of.

Here is the idea. A researcher plans to obser&T, but does not know the value pf After
the BT have been observed the researcher will use the infmmabtained to make a statement
about whap might be.

After observing the BT, the researcher counts the numbeucfessesy, in then BT. We
definep = x/n, the proportion of successes in the sample, to be@det estimate of p.

For example, if | observe = 20 BT and count: = 13 successes, then my point estimate of
isp=13/20 = 0.65.

It is trivially easy to calculatey = z/n; thus, based on your experiences in previous math
courses, you might expect that we will move along to the napict But we won't.

What we do in a Statistics courseagaluate the behavior of our procedure. What does this
mean? Statisticians evaluate procedures by seeing hovp#r&yrmin the long run.

We say that the point estimateis correct if, and only if, p = p. Obviously, any honest
researcher wants the point estimate to be correct. Let'sagk to the example of a researcher who
observes 13 successes in 20 BT and calcujated 3/20 = 0.65.

The researcher schedules a press conference and the fajlexchange is recorded.

e Researcher: | know that all Americans are curious about #heevofp. | am here today to
announce that based on my incredible effort, wisdom antarde, | estimate to be 0.65.

e Reporter: Great, but what is the actual valug@®fAre you saying thagt = 0.65?
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e Researcher: Well, I don’t actually know whais, but | certainly hope that it equals 0.65.
As | have stated many times, nobody is better than | at obigicorrect point estimates.

e Reporter: Granted, but is anybody worse than you at obtgicamrect point estimates?

e Researcher: (Mumbling) Well, no. You see, the problem isahdy Nature knows the actual
value ofp. No mere researcher will ever know it.

e Reporter: Then why are we here?

Before we follow the reporter’s suggestion and give upsleée what we can learn.

Let's bring Nature into the analysis. Suppose that Natuenathatp = 0.75. Well, Nature
knows that the researcher in the above press conferencenhasaarect point estimate. But let’s
proceed beyond that one example.

Consider a researcher who decides to observe 20 BT and use them to estimate What
will happen?

Well, we don’t know what will happen. The researcheght observer = 15 successes, giving
p = 15/20 = 0.75 which would be a correct point estimate. Sadly, of courseréisearcher would
not know it is correct; only Nature would.

Given what we were doing in Chapters 1 and 2, it occurs to usltutate a probability. After
all, we use probabilities to quantify uncertainty.

So, before the researcher observes the 20 BT, Nature dacidadculate the probability that
the point estimate will be correct. This probability is, @iurse,

_ _ 20' 15 5
P(X =15)= 15!5!(0.75) (0.25)°,
which | find, with the help of the binomial website, to be 0.30Z here are two rather obvious

undesirable features to this answer.

1. Only Nature knows whether the point estimate is correudped, before the data are col-
lected, only Nature can calculate the probability the pesttmate will be correct.

2. The probability that the point estimate will be correcatlisappointingly small.

(And note that for most values of it is impossible for the point estimate to be correct. Fog oh
countless possible examples, supposeithat20 as in the current discussion apd= 0.43. It is
impossible to obtaip = 0.43.)

As we shall see repeatedly in this course, what often hapigahst by collecting more data
our procedure becomes ‘better’ in some way. Thus, supp@ddtlib researcher plans to observe
n = 100 BT, with p still equal to 0.75. The probability that the point estimai# be correct is,

100!
75125
which I find, with the help of the website, to be 0.0918. Thigesy upsetting! More data makes
the probability of a correct point estimate smaller, nogé&ar

The difficulty lies in our desire to hav@be exactly correct. Close is good too. In fact, statisti-
cians like to say,

P(X = T75) (0.75)7(0.25),
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Close counts in horse shoes, hand grenades and estimation.

But what do | mean by close? Well, for an example to move usgalsmppose we decide that
if p is within 0.05 ofp then it isclose enough for us to be happy. Revisiting the two computations
above, we see that far = 20 andp = 0.75, close enough meari$4 < X < 16). The probability
of this happening, again with the help of the website, is 0&6-orn = 100 close enough means
(70 < X < 80). The probability of this happening is 0.7967. As a final exémfor n = 1000,
close enough mean§00 < X < 800). The probability of this happening is 0.9998, a virtual
certainty to a statistician.

Here is another way to view my ‘close enough’ argument abmatead of estimating by the
single number (point) we use arinterval estimate, in this example the closed intervalis-0.05.

As you may have learned in a math class, a closed intervalirg@rval the includes its endpoints.
In this class, all interval estimates are closed intentsalogous to our earlier definition, we say
that the interval estimate is correct if, and only if, theemial containg. Thus, saying thag is
within 0.05 ofp (my working definition of close enough in the example abogegquivalent to
saying thap is in the interval estimate; i.e. the interval estimate isect.

Henceforth, I will not talk abouf being close enough g | will talk about whether an interval
estimate is correct. Let’s look at the example above again this new perspective.

For the valuep = 0.75 | studied the performance of the interval estimaté 0.05 for three
possible values of: 20, 100 and 1000. | found that asbecomes larger, the probability that the
researcher would obtain a correct interval estimate alsores larger.

My example above—the interval estimatet 0.05—is called a fixed-width interval estimate
because the researcher decides in advance to have an ligstivaate with a width (the distance
between the upper and lower boundaries of the estimate)l 6f(0r, as statisticians prefer to say, a
half-width of 0.05). Fixed-width interval estimates amat very popular because of the following
feature.

Let us return to the example ef= 100 BT with a fixed-width interval estimate @f+0.05. As
| stated above, ip = 0.75 then the probability that the interval estimate will be eatris 0.7967.
As we shall now see, this probability changes dhanges.

In particular, suppose that= 0.95. Then, the interval estimage+ 0.05 will be correct if, and
only if, (90 < X < 100). Using the website, the probability of this event is 0.98B5however,

p = 0.50, then the interval estimate will be correct, if, and only(if; < X < 55). The probability
of this event is 0.7288.
| will summarize these computations in the following table:

p:| 050 0.75 0.95
Prob. of being correct\: 0.7288 0.7967 0.9885

This is a very unsatisfactory result! With a sample of size- 100 the researcher has very little
idea as to the probability the interval will be correct bessmtie/she does not know the valuepof
There are some general properties (not quite theorems)exf-iddth interval estimates, some of
which are hinted at in our table above, namely:

1. The probability of being correct is symmetricgraround 0.50; i.e. the probability of being
correct is the same for success rate p as it is for success rate Thus, for example, if
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p = 0.05 then the probability the interval will be correct is 0.988be same as it is for
p = 0.95.

2. Viewed as a function qf, the probability of being correct is minimized at or near 0.50
and it generally grows larger as we move away from 0.50, tdwaither O or 1.

B/c statisticians are disappointed with fixed-width inedm@stimates, we will turn our attention
to the idea of ‘fixed probability of being correct.” The methis described below.

In Chapter 2, we saw pictures of probability histograms twuggest approximating binomial
probabilities by using a normal curve. | did examples and gimbhomework that revealed that
in many instances these approximate answers are quite gotatt, the method works very well
provided thatp is not too close to 0 and 1 and thats pretty large. At this time, we will use these
admittedly extremely vague expressions ‘not too close’‘pretty large.” We will eventually deal
with this issue, but not now.

First, it is bothersome to keep sayingis not too close to either 0 or 1. So we avoid this, as
follows.

| will assume that the researcher is a good enough scieatdistinguish between situations
in which p is very close to 0 (say 0.01 or smaller) and very close to 1 (s89 or larger). | really
cannot imagine that a researcher would be sufficiently ignibof the subject of study to not be
able to do this!

For dichotomous trials the labels of success and failuradograry. In my experience it seems
to be human nature to called the preferred outcome, if treeame, the success. For example, if
| am shooting free throws, | call a made shot a success andsaanfalure. We will follow this
practiceunless we believe that one of the outcomes is unlikely; that is,ezithor ¢ is close to O.
For reasons that will become apparent later, we greatlyeptefhavep near O than to have near
1. As a result, henceforth we will obey the following rule:

For BT, if one of the possible outcomes has probability of oaaring that is be-
lieved to be close to 0, we will designate that outcome as theczess.

| have talked about Nature knowing the valuepodnd the researcher not knowing it. As a
mathematician, | think abouyt having a continuum of possible values between 0 and 1. (Exclu
sive; remember we are not interested in BT that always giveesses or always give failures.)
But scientifically, unles® is very close to 0, | am happy with knowingto, say, three digits of
precision. | will give two examples.

Recall that one of the most important applications of BT i€wh researcher selects a random
sample, with replacement, from a finite population. Consitie 2008 presidential election in
Wisconsin. Barack Obama received 1,677,211 votes and Jal@aM received 1,262,393 votes.
In this example, | will ignore votes cast for any other camdés$. The population size I§ =
1,677,211+ 1,262,393= 2,939,604. | will designate a vote for Obama as a successggiv=
0.571 andq = 0.429.

Notice | say thap = 0.571. | conjecture that this imprecision did not bother you. Intjgalar,
you did not jump up (figuratively or literally) and say,
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No! The value ofp is the rational number 1,677,211 divided by 2,939,604, thic
as a decimal is 0.570556782. ... And | apologize for not wgitihis decimal until it
repeats, but this is the size of the display on my calculator lahave other work |
must do.

Personally, and this is clearly a value judgment that youtdered to agree with, 0.571 is precise
enough for me: Obama received 57.1% of the votes. If | amriggdarticularly casual, | would
be happy with 0.57. | would never be happy, in an electionptod to one digit, in this case 0.6,
because for so many elections rounding to one digit will @iefor each candidate, which is not
very helpful! (Of course, sometimes we must focus on totssonot proportions. For example, in
the 2008 Minnesota election for U.S. Senator, Franken beln@an by a small number of votes.
The last number | heard was that Franken had 312 more votex aatrly 3 million cast. So yes,
to three digits, each man received 50.0% of the votes.)

Forp close to 0 (remember, we don't let it be close to 1), usuallywaat much more precision
than simply the nearest 0.001. At the time of this writinggrehis a great deal of concern about the
severity with which the H1N1 virus will hit the world duringd®9-10. Let be the proportion of,
say, Americans who die from it. Now, if equals one in 3 million, about 100 Americans will die,
but if it equals one in 3,000, about 100,000 Americans wal. dio the nearest 0.001, both of these
p’'s is 0.000. Clearly, more precision than the nearest 0.80iteded ip is close to 0.

3.2 The Approximate 95% Confidence Interval forp

In this section we learn about a particular kind of intengtimate ofp which is called theconfi-
dence interval (Cl) estimate.

| will first give you the confidence interval formula and theeride it for you. Remember,
first and foremost, a confidence interval is a closgdrval. An interval is determined by its two
endpoints, which we will denote liyior lower (smaller) endpoint andfor upper (larger) endpoint.
Thus, | need to give you the formulas fband«. They are:

I = p— 1.96,/pG/n andu = p + 1.96/pjG/n.

If you note the similarity of these equations and recall trevplence of laziness in math, you won't
be surprised to learn that we usually combine these into &peession for the 95% confidence

interval forp:
P £ 1.964/pd/n.

pEh,

We often write this as
with
h =1.964/pg/n,

called the half-width of the 95% ClI far.
| will now provide a brief mathematical justification of ouwsrimula.
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As discussed in Chapter 2, ¥ ~ Bin(n, p) then probabilities fot7,

Z_X—np
N

can be well approximated by the standard normal curve (gmoyjdedn is reasonably large and

p is not too close to 0. It turns out that for the goal of intergatimation, the unknowp (and

g = 1 — p) in the denominator of creates a major difficulty. Thanks, however, to an important
result of Eugen Slutsky (1925) (call&ltsky’s Theorem) probabilities forZ’,

7' = (X —mp)/\[npi,

can be well approximated by the snc, provided reasonably largey is not too close to 0 and
0 < p < 1 (we don’'t want to divide by 0!). Note that’ is obtained by replacing the unknown
p andgq in the denominator o with the values andg which will be known once the data are
collected.

Here is the derivation. Suppose that we want to calculte1.96 < Z’ < 1.96). Because
of Slutsky’s result, we can approximate this by the area utite snc between-1.96 and 1.96.
Using the website, you can verify that this area equals 0M&xt, dividing the numerator and
denominator ofZ’ by n gives

Thus, .
p—p

\/Da/n

—1.96 < Z' < 1.96 becomes— 1.96 <

< 1.96;

rearranging terms, this last inequality becomes

p—1.96\/pg/n < p < p+ 1.96\/pid/n.
Examine this last expression. In terms of my definitions atitbginning of this section, it is
[ <p<u.

Thus, we have shown that, before we collect data, the prbtyathiat we will obtain a correct
confidence interval estimate is (approximately) 95% antltthia is true for all values of!

This is a great result. The only concern is whether the appratton is good. | will do a few
examples to investigate this question.

Suppose that a researcher decides to observe00 BT and plans to compute the above 95%
confidence interval fop. Is the approximation any good? Well, to answer this quastie must
bring Nature into the argument. To investigate the qualitthe approximation we need not only
to specifyn, which | have done, but alge So suppose that= 0.40.

We note that the interval will be correct, if, and only if, drtainsp = 0.40. That s,

P — 1.964/pG/200 < 0.40 < p + 1.964/pq/200.
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After some algebra, it follows that< 0.400 corresponds tp < 0.470 andu > 0.400 corresponds
top > 0.340. Remembering thgt = x/200, we conclude that the confidence interval will be
correct if, and only if,68 < X < 94, where probabilities forX are given by the Bin(200,0.40).
With the help of the binomial website, this probability isufad to be 0.9466. Not ideal—I would
prefer 0.9500—but a reasonably good approximation.

| will repeat the above example for the same= 200, but for ap that is closer to 0, say
p = 0.10. In this case, by algebra, the confidence interval is coifgahd only if, 15 < X < 30.
The probability of this event is 0.8976, which is not verysg#do the desired 95%.

For one last example, suppose that 200 andp = 0.01. The interval is correct if, and only
if, 1 < X < 8. The probability of this event is 0.8658, which is a reallydkapproximation to
0.9500.

We have seen that far = 200, if p is close to 0 the 95% in the 95% confidence intervalats
a very good approximation to the exact probability that titerival will be correct. We will deal
with that issue soon, but first | want to generalize the abesgelt from 95% to other confidence
levels.

3.2.1 Other Confidence Levels and One-sided Intervals

The 95% confidence level is very popular with statisticiand acientists, but it is not the only
possibility. You could choose any level you want, providedittit is above 0% and below 100%.
There are six levels that are most popular and we will resaitiention to those in this class. They
are: 80%, 90%, 95%, 98%, 99% and 99.73%. Consider again ouatien of the 95% confidence
interval. The choice of 95% for level led to 1.96 appearingha formula, but otherwise had
absolutely no impact on the algebra or probability theomrydus

Thus, for any other level, we just need to determine what ramuse in place of 1.96. For
example, for 90% we need to find a positive number, let’s ¢tal] 50 that the area under the snc
between—z and+z is 90%. It can be shown that= 1.645 is the answer. Thus, to summarize:

The 90% confidence interval foris
p+1.645. /29
n

Extending these ideas we get the following result. Tt®-sided) confidence interval forp
is given by:

A A

pEz Gy
n

In this formula, the number is determined by the desired confidence level, as given ifollav-
ing table.

Confidence Leve| 80% 90% 95% 98% 99% 99.73%
z:\1.282 1.645 1960 2.326 2.576 3.000

p+ 2576/ 24
n
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is the 99% two-sided confidence interval forAlso,

A A

3y
n
is the 99.73% CI fop. We also recognize this as theetty certain interval of Chapter 1. Thus, the
pretty certain interval of Chapter 1 was simply the 99.73%dCl-. (Remember, in Chapter 1 the
probability of interest was denoted bby)

You have no doubt noticed that | have added the modifiersided to the technical term
confidence interval. We call our answer the two-sided CI bseadt has both upper and lower
bounds. Sometimes in science we want a one-sided bound galtleeofp. This is especially true
whenp is close to 0.

Below are the two results.

The upper confidence bound fpis given by:

ZA) + <1 @7
\/ n
and the lower confidence bound fers given by:

X pq
P — 21\ —-
n

In these formulas, the numbey is determined by the desired confidence level, as given in the
following table.

Confidence Leve] 90% 95% 97.5% 99% 99.5% 99.86%
z1:\1.282 1.645 1960 2.326 2.576 3.000

For example, suppose that= 200 andp = 0.250. The 95% upper confidence bound fois
given by:

0.25(0.75)

2 1.64
0.250 + 1.645 500

= 0.250 + 1.645(0.0306) = 0.250 + 0.050 = 0.300.

In words, | am 95% confident thatis 0.300 or smaller.

3.3 Exact Confidence Intervals

In an earlier example we saw thatif= 200 andp is close to 0, our above method, based on the
snc approximation, is not very good. It is not very good beedhe actual true probability that the
95% confidence interval will be correct is substantially #erdahan 95%.

There is an exact method available for obtaining a confidarteeval forp. It can be obtained
by using the website:
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http://statpages.org/confint.html

There is a link to this website on our course webpage.

| will illustrate the use of this site.

Suppose that we have= 200 BT and we observe a total of onty= 10 successes. This gives
p = 0.05. We do not know the value gf (only Nature does) but such a small valuesafuggests
strongly thatp is close to 0, and, hence, that the approximate Cl might neebegood.

In fact, the 95%, two-sided snc Cl is:

0.05(0.95)

050 £ 1.
0.050 96 500

= 0.050 £ 0.030 = [0.020, 0.080].

Next, let's see what we get if we use the website. (It mighplyelu if you go to the website
and mimic what | am doing.)

In the section named ‘Binomial Confidence Intervals’ typ&r for Numerator ) and ‘200’
for Denominator (V). (Aside: | don’t know why they usé/; every sensible person uses-].) Hit
the compute button and the program produces the exact canédeterval, in this case:

0.0242 t0 0.0900.

The exact site can also be used for one-sided CI's. | wilkthate this technique for our data
above,n = 200 andx = 10, and the one-sided 95% upper confidence bound.

e Scroll down to the section titled ‘Setting Confidence Levels

¢ | want the 95% upper confidence bound forso | type 95 in the ‘Confidence Level’ box.
(Be careful not to type 0.95.)

e | type 5inthe ‘% Area in Upper Tail’ box and 0 in the ‘% Area inWwer Tail’ box.
e Scroll back up and type im andn as for the two-sided case.

e Remaining in the upper section, click ‘Compute.” The ansigst is
0.0000 to 0.0833.

Thus, | am 95% confident thatis 0.0833 or smaller.

| now turn to two technical questions.

First, why is this calledexact? Well, because there is no approximation involved. Let me
explain. Well, only a little bit. The website uses the binahdistribution, not the approximating
snc, to obtain its answers. Sadly, the technique is beyanddbpe of this course. (It really is quite
messy and no fun at all, not even for a statistician!) The kigaiis the following. For ease of
exposition, let’s focus on the two-sided 95% CI. The wehsitgghod has the following property.

For every value of between 0 and 1, the website answer has the property that the
probability that the CI will be a correct interval is 95% ordar.
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If you want, say, 90%, instead of 95%, the above is true wighrthmber 90%. It is also true for
any one-sided CI (upper bound or lower bound).
To make sure this is clear: If you want, say, 95% confidence:

You can use the website which guarantees we have a 95% chammeof getting a
correct interval regardless of the valueyof

OR

You can use the snc which guarantees nothing; it gives appeigly 95% and some-
times the approximation is bad.

The second question now is rather obvious: Why wouldesee use the snc approximation?

One advantage of the snc is that it actually makes sensetivéhean see how it relates to the
shape of the binomial distribution. By contrast, the webaitswer is totally mysterious.

Next, for really large studies the two methods give aboutdhme answer. For example, if
n = 2000 andx = 1000 it can be shown that the exact 95% CI is 0.4778 to 0.5222, vilvdesnc
answer is 0.4781 to 0.5219. If we round these answers to trtediyit after the decimal, we get
[0.478, 0.522] for both.

The exact answer involves some pretty serious computatimrighe snc approximate answer
can be obtained easily with a hand calculator.

Finally, as a statistician, | feel that | understand pretsllwhe strengths and weaknesses of
using the snc method. | don’t know who wrote the program ferwebsite that gives exact Cl's
and although it seems ok to me, | don't redtiyow that. | do not recommend you believe every-
thing you find on a website. (Nor should you automaticallyidad everything anyone tells you,
including me.)
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