
Chapter 13

The Poisson Distribution

Jeanne Antoinette Poisson (1721–1764), Marquise de Pompadour, was a member of the French

court and was the official chief mistress of Louis XV from 1745 until her death. The pompadour

hairstyle was named for her. In addition, poisson is French for fish. The Poisson distribution,

however, is named for Simeon-Denis Poisson (1781–1840), a French mathematician, geometer

and physicist.

13.1 Specification of the Poisson Distribution

In this chapter we will study a family of probability distributions for a countably infinite sample

space, each member of which is called a Poisson distribution. Recall that a binomial distribution

is characterized by the values of two parameters: n and p. A Poisson distribution is simpler in that

it has only one parameter, which we denote by θ, pronounced theta. (Many books and websites

use λ, pronounced lambda, instead of θ. We save λ for a related purpose.) The parameter θ must

be positive: θ > 0. Below is the formula for computing probabilities for the Poisson.

P (X = x) =
e−θθx

x!
, for x = 0, 1, 2, 3, . . . . (13.1)

In this equation, e is the famous number from calculus,

e = lim
n→∞

(1 + 1/n)n = 2.71828 . . . .

You might recall, from the study of infinite series in calculus, that

∞∑

x=0

bx/x! = eb,

for any real number b. Thus,

∞∑

x=0

P (X = x) = e−θ

∞∑

x=0

θx/x! = e−θeθ = 1.
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Table 13.1: A comparison of three probability distributions.

Distribution of X is:

Poisson(1) Bin(1000, 0.001) Bin(500, 0.002)
Mean : 1 1 1

Variance : 1 0.999 0.998
x P (X = x) P (X = x) P (X = x)
0 0.3679 0.3677 0.3675
1 0.3679 0.3681 0.3682
2 0.1839 0.1840 0.1841
3 0.0613 0.0613 0.0613
4 0.0153 0.0153 0.0153
5 0.0031 0.0030 0.0030
6 0.0005 0.0005 0.0005

≥ 7 0.0001 0.0001 0.0001
Total 1.0000 1.0000 1.0000

Thus, we see that Formula 13.1 is a mathematically valid way to assign probabilities to the non-

negative integers; i.e., all probabilities are nonnegative—indeed, they are positive—and they sum

to one.

The mean of the Poisson is its parameter θ; i.e., µ = θ. This can be proven using calculus and a
similar argument shows that the variance of a Poisson is also equal to θ; i.e., σ2 = θ and σ =

√
θ.

When I writeX ∼ Poisson(θ) I mean that X is a random variable with its probability distribu-

tion given by the Poisson distribution with parameter value θ.
I ask you for patience. I am going to delay my explanation of why the Poisson distribution is

important in science.

As we will see, the Poisson distribution is closely tied to the binomial. For example, let’s spend

a few minutes looking at the three probability distributions presented in Table 13.1.

There is a wealth of useful information in this table. In particular,

1. If you were distressed that a Poisson random variable has an infinite number of possible

values—namely, every nonnegative integer—agonize no longer! We see from the table that

for θ = 1, 99.99% of the Poisson probability is assigned to the event (X ≤ 6).

2. If you read down the three columns of probabilities, you will see that the entries are nearly

identical. Certainly, any one column of probabilities provides good approximations to the

entries in any other column. Thus, in some situations, a Poisson distribution can be used as

an approximation to a binomial distribution.

3. What do we need for the Poisson to be a good approximation to a binomial? First, we need

to have the means of the distributions match; i.e., we need to use the Poisson with θ = np,
as I did in Table 13.1. The variance of a binomial npq is necessarily smaller than the mean
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np because q < 1. Thus, the variance of a binomial cannot be made to match the variance of

the Poisson:

Variance of binomial = npq < np = θ = variance of Poisson.

If, however, p is very close to 0, then q is very close to one and the variances almost match

as illustrated in Table 13.1.

I will summarize the above observations in the following result.

Result 13.1 (The Poisson approximation to the binomial.) The Bin(n, p) distribution can be well-
approximated by the Poisson(θ) distribution if the following conditions are met:

1. The distributions have the same mean; i.e., θ = np;

2. The value of n is large and p is close to zero. In particular, the variance of the binomial npq
should be very close to the variance of the Poisson, θ = np.

As a practical matter, we mostly use this result if n > 1,000 because we can easily obtain exact

binomial probabilities from a website for n ≤ 1,000. Also, if np ≥ 25, our general guideline from
Chapter 11 states that we may use a Normal curve to obtain a good approximation to the binomial.

Thus, again as a practical matter, we mostly use this result if θ = np ≤ 25, allowing us some

indecision as to which approximation to use at np = 25, Normal or Poisson.

Poisson probabilities can be computed by hand with a scientific calculator. Alternatively, the

following website can be used:

http://stattrek.com/Tables/Poisson.aspx.

I will give an example to illustrate the use of this site.

Let X ∼ Poisson(θ). The website calculates five probabilities for you:

P (X = x);P (X < x);P (X ≤ x);P (X > x); and P (X ≥ x).

You must give as input your value of θ and a value of x. Suppose that I haveX ∼ Poisson(10) and

I am interested in P (X = 8). I go to the site and enter 8 in the box Poisson random variable, and I

enter 10 in the box Average rate of success. I click on the Calculate box and the site gives me the

following answers:

P (X = 8) = 0.1126;P (X < 8) = 0.2202;P (X ≤ 8) = 0.3328;P (X > 8) = 0.6672;

and P (X ≥ 8) = 0.7798.

As with our binomial calculator, there is a great deal of redundancy in these five answers.
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13.1.1 The Normal Approximation to the Poisson

Please look at the Poisson(1) probabilities in Table 13.1. We see that P (X = 0) = P (X = 1)
and as x increases beyond 1, P (X = x) decreases. Thus, without actually drawing the probability
histogram of the Poisson(1) we know that it is strongly skewed to the right; indeed, it has no left

tail! For θ < 1 the probability histogram is even more skewed than it is for our tabled θ = 1. As
the value of θ increases the amount of skewness in the probability histogram decreases, but the

Poisson is never perfectly symmetric.

In this course, I advocate the general guideline that if θ ≥ 25, then the Poisson’s probability

histogram is approximately symmetric and bell-shaped. (One can quibble about my choice of 25

and I wouldn’t argue about it much.) This last statement suggests that we might use a Normal

curve to compute approximate probabilities for the Poisson, provided θ is large.
For example, suppose that X ∼ Poisson(25) and I want to calculate P (X ≥ 30). We will use

a modification of the method we learned for the binomial.

First, we note that µ = 25 and σ =
√
25 = 5. Thus, our approximating curve will be the Nor-

mal curve with these values for its mean and standard deviation. Using the continuity correction,

we replace P (X ≥ 30) with P (X ≥ 29.5). Next, going to the Normal curve website, we find

that the area above (to the right of) 29.5 is 0.1841. From the Poisson website, I find that the exact

probability is 0.1821.

13.2 Inference for a Poisson distribution

If θ is unknown then its point estimator is X , with point estimate equal to x, the observed value

of X . We have two options for obtaining a confidence interval estimate of θ: an approximate

interval based on using a Normal curve approximation and an exact (conservative) confidence

interval using the Poisson equivalent of the work of Clopper and Pearson.

It is possible to perform a test of hypotheses on the value of θ. The test is not widely useful in

science; thus, I won’t present it.

13.2.1 Approximate Confidence Interval for θ

I will very briefly sketch the rational behind the Normal curve approximation. The main ideas are

pretty much exactly the ideas we had for the binomial in Chapter 12. We standardize our point

estimatorX to obtain

Z =
X − θ√

θ
.

Next, we replace the unknown parameter in the denominator by its point estimator, yielding

Z ′ =
X − θ√

X
.

Slutsky’s theorem applies; for θ sufficiently large, probabilities for Z ′ can be well-approximated

by using the N(0,1) curve. With the same algebra we used in Chapter 12, we obtain the following
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approximate confidence interval estimate of θ:

x± z∗
√
x, (13.2)

where the value of z∗ is determined by the choice of confidence level in exactly the same way as it

was for the binomial. Thus, you can find the z∗ you need in Table 12.1 on page 296.

I have investigated the performance of Formula 13.2 and I have concluded that the approxima-

tion is good for any θ ≥ 40; i.e., for any θ ≥ 40 the actual probability that this formula will give

a correct confidence interval is close to the target reflected by the choice of z∗. As always, one

can quibble with my choice of 40 as the magic threshold. It is larger than my choice, 25, for using

a Normal curve to approximate Poisson probabilities in part because the confidence interval also

relies on Slutsky’s approximation.

In practice, of course, we estimate θ because we don’t know its value. Thus, if you are con-

cerned with having a guideline based on the value of θ, an alternative guideline is to use the

approximate confidence interval if x ≥ 50.

13.2.2 The ‘Exact’ (Conservative) Confidence Interval for θ

Suppose that we plan to observe a random variable X and we are willing to assume that X ∼
Poisson(θ). We want to use the observed value of X to obtain a confidence interval for θ, but the
condition for using the approximate method of the previous subsection is not met. For example,

suppose that we observe X = 10; what should we do?
In Chapter 12, when you learned how to use the website:

http://statpages.org/confint.html

you probably noticed that the website also can be used for Poisson distribution. Click on this

website now and scroll down to the section Poisson Confidence Intervals. You will see that there

is one box for data entry, called Observed Events; this is where you place the observed value

of X . Note that the default value is 10, which, coincidentally, is the value I asked you to use!

Click on the Compute box and the site gives you the exact—which, as in Chapter 12, really means

conservative—two-sided 95% confidence interval for θ:

[4.7954, 18.3904].

If, instead, you want the two-sided 98% confidence interval for θ, then you proceed exactly as you
did in Chapter 12. Scroll down to Setting Confidence Levels, type 98 in Confidence Level and

click on Compute. Scroll back up to Poisson Confidence Intervals and make sure that 10 is still

in the Observed Events box. Click on the Compute box and the site gives the answer:

[4.1302, 20.1447].

Suppose that I want the one-sided 90% upper confidence bound for θ, still with x = 10. Scroll
down to Setting Confidence Levels, enter 10 in the Upper Tail, enter 0 in the Lower Tail and
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click on Compute. Scroll back up to Poisson Confidence Intervals and make sure that 10 is still

in the Observed Events box. Click on the Compute box and the site gives the answer:

[0.4749, 15.4066].

This answer is a bit strange; the lower bound in the interval should be 0, but it’s not. I played

around with this website a bit and here is what I learned. If x ≤ 2 then the site gives 0 as the

(correct) lower bound for the one-sided interval. If, however, x ≥ 3, it gives a positive lower

bound, which seems to be incorrect. This is not incorrect for two reasons:

1. We are free to replace the non-zero lower bound with 0 if we want; by making the interval

wider, the probability of a correct interval becomes a bit larger.

2. Without examining either the programmer’s code or performing a huge analysis—which I

have neither the time nor interest to do—I can’t be sure, but I believe that having a non-zero

lower bound is part of the conservative nature of the site’s intervals. Here is what I mean.

If θ actually equaled the lower bound I have above for x = 10, which is 0.4749, then the

probability of 10 or more successes is 10−10 (you can find this on our website for computing

Poisson probabilities). Thus, if x = 10, values of θ smaller than 0.4749 are pretty much

impossible anyways.

The next example shows why this material provides insight into some of our work in Chapter 12.

Example 13.1 (Don K. and high hopes) Don K. was a teammate on my high school basketball

team. Don wasn’t very tall, but he was very quick and had a very strong throwing arm. He started

his senior year as first or second player off the bench, but as the year progressed his playing time

diminished. A highlight of his year was when he sank a half-court shot at the end of a quarter in

a blow-out 93-40 victory. After his amazing shot, Don would spend most of his practice free time

attempting very long shots. I don’t remember him making many such shots, but everyone on the

team noted how our coach, Mr. Pasternak— whom we affectionately dubbed Boris either because

of his resemblance to the actor Boris Karloff or because Doctor Zhivago was the movie of 1965—

was doing a slow boil from frustration. Finally, one day at practice, Coach could contain himself

no longer and berated Don at length for not practicing a more useful basketball skill. Eight minutes

later during a scrimmage as the time clock was running down to zero, Don grabbed a defensive

rebound, pivoted and threw the ball 70 (?) feet, resulting in a perfect basket—swish through the

net. Don ran around the court yelling, “See, Boris, I have been practicing a useful shot,” while the

rest of us collapsed in laughter.

Perhaps because of my friend Don’s experience, I have always been interested in situations in

which successes are rare. Thus, let’s look at some examples. I used the site

http://statpages.org/confint.html

to obtain the exact (conservative) 95% upper bound for p in each of the situations below.

• A total of x = 0 successes are obtained in n = 10 Bernoulli trials; the exact (conservative)

95% upper bound for p is: p ≤ 0.2589.
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• A total of x = 0 successes are obtained in n = 100 Bernoulli trials; the exact (conservative)
95% upper bound for p is: p ≤ 0.0295.

• A total of x = 0 successes are obtained in n = 1,000 Bernoulli trials; the exact (conservative)

95% upper bound for p is: p ≤ 0.0030.

As I have mentioned a number of times in these notes, the weakness of exact answers is that they

are a black box; we can’t see a pattern in the answers. There is a pattern in the above answers, as

I will now demonstrate. (Indeed, you might see the pattern above, but you won’t know why until

you read on.)

Let’s suppose now that our random variableX has a Poisson distribution and we observe x = 0.
Using the same website, I can obtain an upper 95% confidence bound for θ; it is θ ≤ 2.9957,
which, when I am feeling especially daring, I round to θ ≤ 3.000. Now we are going to use the

fact that, under certain conditions, we can use the Poisson to approximate the binomial. Ignoring

the conditions for a moment, recall that the key part of the approximation is to set θ for the Poisson
equal to np from the binomial. Thus—and this is the key point—an exact confidence interval

for θ is an approximate confidence interval for np. Thus, the upper bound θ ≤ 3.000 becomes

np ≤ 3.000 which becomes the following result.

Result 13.2 (Approximate 95% Confidence Upper Bound for p When x = 0.) If n ≥ 100,

p ≤ 3/n, (13.3)

is a good approximation to the exact 95% confidence upper bound for p when x = 0. This result is
sometimes referred to as the rule of 3.

13.3 The Poisson Process

The binomial distribution is appropriate for counting successes in n i.i.d. trials. For p small and n
large, the binomial can be well approximated by the Poisson. Thus, it is not too surprising to learn

that the Poisson distribution is also a model for counting successes.

Consider a process evolving in time in which at random times successes occur. What does this

possibly mean? Perhaps the following picture will help.

0 1 2 3 4 5 6
O O O O O O O O

In this picture, observation begins at time t = 0 and the passage of time is denoted by moving

to the right on the number line. At various times successes will occur, with each success denoted

by the letter ‘O’ placed on the number line. Here are some examples of such processes.

1. A ‘target’ is placed near radioactive material and whenever a radioactive particle hits the

target we have a success.
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2. A road intersection is observed. A success is the occurrence of an accident.

3. A hockey (or soccer) game is watched. A success occurs whenever a goal is scored.

4. On a remote stretch of highway, a success occurs when a vehicle passes.

The idea is that the times of occurrences of successes cannot be predicted with certainty. We

would like, however, to be able to calculate probabilities. To do this, we need a mathematical

model, much like our mathematical model for Bernoulli trials.

Our model is called the Poisson Process. A careful mathematical presentation and derivation

is beyond the goals of this course. Here are the basic ideas:

1. Independence: The number of successes in disjoint intervals are independent of each other.

For example, in a Poisson Process, the number of successes in the interval [0, 3] is indepen-
dent of the number of successes in the interval [5, 6].

2. Identically distributed: The probability distribution of the number of successes counted in

any time interval depends only on the length of the interval.

For example, the probability of getting exactly five successes is the same for interval [0, 2.5]
as it is for interval [3.5, 6.0].

3. Successes cannot be simultaneous. (This assumption is needed for technical reasons that we

won’t discuss.)

With these assumptions, it turns out that the probability distribution of the number of successes

in any interval of time is the Poisson distribution with parameter θ, where θ = λ×w, where w > 0
is the length of the interval and λ > 0 is a feature of the process, often called its rate.

I have presented the Poisson Process as occurring in one dimension—time. It also can be

applied if the one dimension is, say, distance. For example, a researcher could be walking along a

path and occasionally finds successes. Also, the Poisson Process can be extended to two or three

dimensions. For example, in two dimensions a researcher could be searching a field for a certain

plant or animal that is deemed a success. In three dimensions a researcher could be searching a

volume of air, water or dirt looking for something of interest.

The modification needed for two or three dimensions is quite simple: the Poisson Process still

has a rate, again called λ, and now the number of successes in an area or volume has a Poisson

distribution with θ equal to the rate multiplied by the area or volume, whichever is appropriate.

Also, of course, to be a Poisson Process in two or three dimensions requires the assumptions of

independence and identically distributed to be met.

13.4 Independent Poisson Random Variables

Earlier we learned that ifX1, X2, . . . , Xn are i.i.d. dichotomous outcomes (success or failure), then

we can calculate probabilities for the sum of these guys X:

X = X1 +X2 + . . . Xn.
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Probabilities forX are given by the binomial distribution. There is a similar result for the Poisson,

but the conditions are actually weaker. The interested reader can think about how the following

result is implied by the Poisson Process.

Result 13.3 (The sum of independent Poisson random variables.) Suppose that for i = 1, 2, 3, . . . , n,
the random variable Xi ∼ Poisson(θi) and that the sequence of Xi’s are independent. Define

θ+ =
∑

n

i=1 θi. Then X ∼ Poisson(θ+).

Because of this result we will often (as I have done above), but not always, pretend that we have

one Poisson random variable, even if, in reality, we have a sum of independent Poisson random

variables. I will illustrate what I mean with an estimation example.

Suppose that Cathy observes 10 i.i.d. Poisson random variables, each with parameter θ. She

summarizes the ten values she obtains by computing their total, X , remembering that X ∼
Poisson(10θ). Cathy can then calculate a confidence interval for 10θ and convert it to a confi-

dence interval for θ.
For example, suppose that Cathy observes a total of 92 when she sums her 10 values. Because

92 is sufficiently large (it exceeds 50), I will use the formula for the approximate two-sided 95%

confidence interval for 10θ. It is:

92± 1.96
√
92 = 92± 18.800 = [73.200, 110.800].

The interpretation of this interval is, of course:

73.200 ≤ 10θ ≤ 110.800.

If we divide through by 10, we get

7.3200 ≤ θ ≤ 11.0800.

Thus, the two-sided approximate 95% confidence interval for θ is [7.320, 11.080]. By the way,

the exact confidence interval for 10θ is [74.165, 112.83]. This is typically what happens; the exact
confidence interval for a Poisson is shifted to the right of the approximate confidence interval

because the Poisson distribution is skewed to the right.

13.4.1 A Comment on the Assumption of a Poisson Process

Recall my four examples of possible Poisson Processes given on page 327. My first example,

radioactive decay, was, by far, the most popular example in textbooks on probability theory, circa

1970, when I was an undergraduate student. Literally, radioactive decay involves a source of ra-

dioactivematerial comprised of a huge number of atoms, each of which has a very small probability

of decaying in a short time period. Because atoms don’t talk to each other, “Hey, Adam, I am about

to decay, will you join me?” it seems extremely reasonable to believe we have a huge number of

Bernoulli trials with a very small value of p. Hence, assuming a Poisson Process is simply restat-

ing the idea that the Poisson distribution approximates the binomial. All models have an implicit
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expiration date; for example, if I am still shooting free throws at age 80, I definitely won’t have the

same p I had at age 17. For radioactive decay, if the length of observation approaches the half-life

of the element then the rate will definitely decrease because—by definition—half the atoms have

decayed at the half life. For example, uranium-232 has a half-life of 69 years and carbon-14, which

is used to date fossils, has a half-life of 5,730 years.

I hope that you will agree that radioactive decay is a pretty solid example of a Poisson Process.

My second and fourth examples—both involving traffic—appear, however, to be on shaky ground.

Let’s examine the fourth example, in which a success is the passage of a car on a remote stretch

of highway. When I think of a remote highway, it is hard for me to imagine that the rate of traffic

at, say, 3:00 AM is the same as it is at 3:00 PM. Thus, you might think that the assumption of a

Poisson Process is reasonable only for a very limited period of time, say, 9:00 AM to 4:00 PM. You

would be correct, except for what I am now going to tell you, which is the point of this subsection.

I want to make this argument very concrete. To that end, suppose that I am Nature and I know

that the rate is as given in the following picture.

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

3

6
Rate per hour

1

4

6
5

3

Let’s make sure that this picture is clear. From 12:00 AM (midnight) to 6:00 AM a car passing the

spot follows a Poisson Process with an average of one car per hour. From 6:00 AM to 9:00 AM

the rate of the Poisson Process quadruples to four cars per hour; and so on.

If we watch the road continuously, then we do not have a Poisson Process over the 24 hours of

a day because the rate is not constant. If I look at the process for certain limited periods of time,

then I will have a Poisson Process; for example, if I observe the process over the six hour time

period of 9:00 AM to 3:00 PM, I am observing a Poisson Process with rate equal to six cars per

hour.

Now let’s imagine, however, that we do not observe the process continuously at all. Instead,

every day at the same time, say midnight, we are told how many cars passed the spot in the day

just completed. Call this observed count x with corresponding random variable X . I will now

demonstrate that X has a Poisson distribution.

We can writeX as the sum of five random variables:

X = X1 +X2 +X3 +X4 +X5,

where

• X1 is the number of cars that pass the spot between midnight and 6:00 AM.

• X2 is the number of cars that pass the spot between 6:00 AM and 9:00 AM.
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Table 13.2: The number of homicides, by year, in Baltimore, Maryland.

Year: 2003 2004 2005 2006 2007

Number of homicide deaths: 270 276 269 276 282

• And so on, for X3, X4 X5, throughout the day.

From the above picture, being Nature I know that:

• X1 ∼ Poisson(6 × 1 = 6); X2 ∼ Poisson(4 × 3 = 12); X3 ∼ Poisson(6 × 6 = 36); X4 ∼
Poisson(5× 3 = 15); and X5 ∼ Poisson(3× 6 = 18).

• Also, the random variablesX1, X2 . . .X5 are statistically independent.

• From Result 13.3, we know that X has a Poisson distribution with parameter

θ+ = 6 + 12 + 36 + 15 + 18 = 87.

I might even abuse language a bit and say that the number of cars passing the spot is a Poisson

Process with a rate of 87 cars per day. I shouldn’t say this of course, but sometimes we get a bit

lazy in probability and statistics!

Of course, I am not Nature, so I would never know the exact rate. The following example with

real data is illustrative of the above method.

Example 13.2 (Homicides in Baltimore.) I recently discovered data on homicides, by year, in

Baltimore, Maryland. The data are presented in Table 13.2.

I am going to assume that the number of homicides per year is a Poisson Process with unknown

rate of λ homicides per year. I will revisit this example in Chapter 14. With my assumption, I have

observed the process for five units of time—five years—and counted a total of

270 + 276 + 269 + 276 + 282 = 1,373 successes.

(Remember that whatever we are counting, no matter how tragic it might be, is called a success.

Hence, a homicide death is a success.) We view 1,373 as the observed value of a random variable

X with Poisson(θ) distribution. Because my observed value of X is much larger than 50, I feel

comfortable using the approximate confidence interval for θ, given in Formula 13.2. For 95%

confidence, we get

1373± 1.96
√
1373 = 1373± 72.6 = [1300.4, 1445.6].

Because the process was observed for five time units, we have θ = 5λ. Thus, the above confidence
interval for θ becomes

1300.4 ≤ 5λ ≤ 1445.6;
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after dividing through by 5, we get

260.08 ≤ λ ≤ 289.12.

Thus, [260.08, 289.12] is my approximate 95% confidence interval for the rate of homicides per

year in Baltimore during the years 2003–2007.

13.5 Summary

The Poisson is a probability distribution—see Equation 13.1—concentrated on the nonnegative

integers. The Poisson distribution has a single parameter, θ, which can be any positive number.

The mean and variance of a Poisson distribution both equal θ and the standard deviation equals
√
θ.

Poisson probabilities can be calculated with the help of the website:

http://stattrek.com/Tables/Poisson.aspx.

If θ ≥ 25, then the Normal curve with µ = θ and σ =
√
θ will give good approximations to the

Poisson(θ) distribution.
The first use for the Poisson distribution is as an approximation to the binomial distribution. In

particular, suppose we have a Bin(n, p) distribution, with n large, p small and npq approximately

equal to np; i.e., q is very close to one. If we set θ = np, then the Poisson distribution is a good

approximation to the Binomial distribution.

If X ∼ Poisson(θ), then X is the point estimator of θ. The standardized version of the point

estimatorX is

Z =
X − θ√

θ
.

As implied above, if θ ≥ 25, then the N(0,1) curve provides good approximate probabilities for Z.
Combining the above with Slutsky’s theorem, we obtain the following approximate confidence

interval for θ:
x± z∗

√
x,

where the value of z∗ depends on the choice of confidence level and is given in Table 12.1 on

page 296. My advice is that this interval performs as advertised provided x ≥ 50. For smaller

values of x, see the next paragraph.
There is an exact—actually conservative—confidence interval for θ, available on the website:

http://statpages.org/confint.html

The Poisson distribution also arises from a mathematical model for successes occurring ran-

domly in time. In particular, the first two of the three assumptions of a Poisson Process are similar

to the assumptions of Bernoulli trials. If we have a Poisson Process then the number of successes

in any time interval of length w has a Poisson distribution with parameter θ = wλ, where λ > 0
is a parameter of the process, called its rate. (If w = 1, then θ = λ. Thus, the mean number of

successes in one unit of time is λ; hence, the name rate.)
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When I talk about a Poisson Process in general, I will speak of it evolving in time. It could,

alternatively, evolve in distance. Moreover, a Poisson Process can be used for counting successes

in two or three dimensions.

The Poisson distribution has the following very useful property. If the random variablesX1,X2,

. . . ,Xn, are independent withXi ∼ Poisson(θi)—i.e., theXi’s need not be identically distributed—

then the new random variable

X = X1 +X2 + . . .Xn =
∑

Xi,

has a Poisson distribution with parameter

θ+ = θ1 + θ2 + . . . θn =
∑

θi.

In words, the sum of independent Poisson random variables has a Poisson distribution; and the

parameter for the sum is the sum of the parameters. This property of Poisson distributions can be

very useful; I illustrate its use with data on the annual number of homicide deaths in Baltimore,

Maryland.

13.6 Practice Problems

1. Suppose that X ∼ Poisson(20). Use the website

http://stattrek.com/Tables/Poisson.aspx

to calculate the following probabilities.

(a) P (X = 20).

(b) P (X ≤ 20).

(c) P (X > 20).

(d) P (16 ≤ X ≤ 24).

2. Suppose that X ∼ Bin(2000,0.003). I want to know P (X ≤ 4). Help me by calculating an

approximate probability for this event.

3. Wayne Gretzky is perhaps the greatest hockey player ever. We have the following data from

his NHL (National Hockey League) career.

• During the 1981–82 season he played 80 games and scored 92 goals.

• During the 1982–83 season he played 80 games and scored 71 goals.

• During the 1983–84 season he played 74 games and scored 87 goals.

Assume that Gretzky’s goal scoring followed a Poisson Process with a rate of λ goals per

game. Use the three seasons of data given above to obtain an approximate 98% confidence

interval for λ.

4. LetX ∼ Poisson(θ). GivenX = 1, find the exact 95% upper confidence bound for θ. Apply
your finding to create the rule of 4.75 when X = 1.
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13.7 Solutions to Practice Problems

1. For parts (a)–(c), go to the website and enter 20 for both x and the Average rate of success.

You will obtain:

(a) P (X = 20) = 0.0888.

(b) P (X ≤ 20) = 0.5591.

(c) P (X > 20) = 0.4409.

(d) There are several ways to get the answer. I suggest:

P (16 ≤ X ≤ 24) = P (X ≤ 24)− P (X ≤ 15).

I enter the website twice and obtain:

P (16 ≤ X ≤ 24) = 0.8432− 0.1565 = 0.6867.

2. Our binomial calculator website does not work for n > 1,000; hence, I want an approximate

answer. For the binomial, the mean is np = 2000(0.003) = 6. This is much smaller than

25, so I will not use the Normal curve approximation. In addition, the binomial variance is

npq = 6(0.997) = 5.982 which is only a bit smaller than the mean. Thus, I will use the

Poisson approximation. I go to the website

http://stattrek.com/Tables/Poisson.aspx

and enter 4 for x and θ = np = 6 for Average rate of success. The website gives me 0.2851

as its approximation of P (X ≤ 4).

By the way, Minitab is able to calculate the exact probability; it is 0.2847. Thus, the Poisson

approximation is very good.

3. Combining the data, we find that Gretzky scored 250 goals in 234 games. We view x =
250 as the observed value of a random variable X which has a Poisson distribution with

parameter θ. Also, θ = 234λ. For 98% confidence, we see from Table 12.1 that z∗ = 2.326.
Thus, the approximate 98% confidence interval for θ is

250± 2.326
√
250 = 250± 36.78 = [213.22, 286.78].

Literally, we are asserting that

213.22 ≤ θ ≤ 286.78 or 213.22 ≤ 234λ ≤ 286.78.

Dividing through by 234, we get

213.22/234 ≤ λ ≤ 286.78/234 or 0.911 ≤ λ ≤ 1.226.
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4. Go to the website

http://statpages.org/confint.html.

Scroll down to Setting Confidence Levels. Enter 5 in the Upper box, 0 in the Lower box

and click on Compute. The site now knows that we want the 95% upper confidence bound.

Scroll up to Poisson Confidence Intervals, enter 1 in the Observed Events box and click

on Compute. The site gives us [0, 4.7439] as the upper 95% confidence bound for θ.

If X ∼ Bin(n, p) with n large and the observed value of X is 1, then 4.7439, rounded rather

clumsily to 4.75, is the approximate 95% upper confidence bound for np. Thus, for n large

and X = 1,

4.75/n is the approximate 95% upper confidence bound for p.

As a partial check, I scrolled up to Binomial Confidence Intervals, entered 1 for x, entered
100 for n, and clicked on Compute. The site gave me 0.0466 as the exact 95% upper

confidence bound for p, which is reasonably approximated by 4.75/n = 4.75/100 = 0.0475.
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Table 13.3: Traffic accident data in Madison, Wisconsin.

Year: 2005 2006 2007 2008 2009 Total

Average weekday

arterial volume 26,271 25,754 25,760 24,416 24,222 126,423

Total crashes 4,577 4,605 4,779 4,578 4,753 23,292

Bike crashes 97 95 118 95 115 520

Pedestrian crashes 84 87 80 76 77 404

Fatal crashes 9 12 13 6 14 54

13.8 Homework Problems

1. Suppose that X ∼ Poisson(10). Use the website

http://stattrek.com/Tables/Poisson.aspx

to calculate the following probabilities.

(a) P (X = 8).

(b) P (X ≤ 6).

(c) P (X ≤ 15).

(d) P (7 ≤ X ≤ 15).

2. Suppose that X ∼ Bin(5000,0.0001). According to Minitab, P (X ≤ 2) = 0.9856. Find the

Poisson approximation to this probability. Compare your approximate answer with the exact

answer and comment.

3. LetX ∼ Poisson(θ). GivenX = 2, find the exact 95% upper confidence bound for θ. Apply
your finding to create the rule of 6.30 when X = 2.

4. The data in Table 13.3 appeared in the Wisconsin State Journal on July 13, 2010, for acci-

dents involving autos in Madison, Wisconsin.

In parts (a)–(c), assume that the number of crashes of interest follows a Poisson Process with

unknown rate λ per year. Use the data in the Total column to obtain the approximate 95%

confidence interval estimate of λ.

(a) Bike crashes.

(b) Pedestrian crashes.

(c) Fatal crashes. Also obtain the exact confidence interval.
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