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Chapter 13: The Correlation Coefficient

and the Regression Line

We begin with a some useful facts about straight

lines.

Recall the x, y coordinate system, as pictured

below.
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We say that y is a linear function of x if

y = a + bx, for some numbers a and b.

If y = a + bx then the graph of the function

is a straight line with y-intercept equal to a

and slope equal to b. The line is horizontal if,

and only if, b = 0; o.w. it ‘slopes up’ if b > 0

and slopes down if b < 0. The only lines not

covered by the above are the vertical lines,

e.g. x = 6. Vertical lines are not interesting

in Statistics.

In math class we learn that lines extend for-

ever. In statistical applications, as we will see,

they never extend forever. This distinction is

very important.

In fact, it would be more accurate to say that

statisticians study line segments, not lines,

but everybody says lines.

It will be very important for you to under-

stand lines in two ways, what I call visually

and analytically.
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Here is what I mean. Consider the line

y = 5+2x. We will want to substitute (plug-

in) values for x to learn what we get for y.

For example, x = 3. We do this analytically

by substituting in the equation:

y = 5 + 2(3) = 11.

But we can also do this visually, by graphing

the function. Walk along the x axis until we

get to x = 3 and then climb up a rope (slide

down a pole) until we hit the line. Our height

when we hit the line is y = 11. (Draw picture

on board.)

The Scatterplot

We are interested in situations in which we

obtain two numbers per subject. For exam-

ple, if the subjects are college students, the

numbers could be:

X = height and Y = weight.

X = score on ACT and Y = first year GPA.
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X = number of AP credits and Y = first year

GPA.

Law schools are interested in:

X = LSAT score and Y = first year law school

GPA.

and so on. In each of these examples, the Y is

considered more important by the researcher

and is called the response. The X is impor-

tant b/c its value might help us understand

Y better and it is called the predictor.

For some studies, reasonable people can dis-

agree on which variable to call Y . Here are

two examples:

–The subjects are married couples and the

variables are: wife’s IQ and husband’s IQ.

–The subjects are identical twins and the vari-

ables are: first born’s IQ and second born’s

IQ.

We study two big topics in Chapter 13. For

the first of these, the correlation coefficient,

it does not matter which variable is called Y .
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For the second of these, the regression line,

changing the assignment of Y and X will change

the answer. Thus, if you are uncertain on

the assignment, you might choose to do the

regression line analysis twice, once for each

assignment.

The material in Chapter 13 differs substan-

tially from what we have done in this class.

In Chapter 13, we impose fairly strict struc-

ture on how we view the data. This structure

allows researchers to obtain very elaborate an-

swers from a small amount of data. Perhaps

surprisingly, these answers have a history of

working very well in science.

But it will be important to have a healthy

skepticism about the answers we get and to

examine the data carefully to decide whether

the imposed structure seems reasonable.

We begin with an example with n = 124 sub-

jects, a very large number of subjects for these

problems. As we will see, often n is 10 or

smaller.
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The subjects are 124 men who played ma-

jor league baseball in both 1985 and 1986.

This set contains every man who had at least

200 official at-bats in the American League in

both years. The variables are:

Y = 1986 Batting Average (BA) and

X = 1985 BA.

The idea is that, as a baseball executive, you

might be interested in learning how effectively

offensive performance one year (1985) can

predict offensive performance the next year

(1986).

In case you are not a baseball fan, here is all

you need to know about this example.

–BA is a measure of offensive performance,

with larger values better.

–BA is not really an average; it is a proportion:

BA equals number of hits divided by number

of official at-bats.

–BA is always reported to three digits of pre-

cision and a BA of, say, 0.300 is referred to

as ‘hitting 300.’ BTW, 300 is the threshold

for good hitting and 200 is the threshold for

really bad hitting.
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The names and data for the 124 men are on

pp. 442–3. Behaving like the MITK, we first

study the variables individually, following the

ideas of Chapter 12.

X

0.180 0.240 0.300 0.360

Y

0.180 0.240 0.300 0.360

These histograms suggest small and large out-

liers both years. In addition, both histograms

are close to symmetry and bell-shape. Also,

the means and sd’s changed little from X to

Y .

Year Mean St.Dev.

1985 0.2664 0.0280
1986 0.2636 0.0320
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Below is the scatterplot of these BA data.

The first thing we look for are isolated cases

(IC). I see two, possibly three, IC identified

by initials below: WB, DM and FR.
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1985 Batting Ave.
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Now, ignore the outliers and look for a ‘pat-

tern’ in the remaining data. For the BA data,

the data describe an ellipse that is tilted up-

wards (lower to the left, higher to the right).

This is an example of a linear relationship be-

tween X and Y ; i.e. as X grows larger (sweep

your eyes from left to right in the picture), the

Y values tend to increase (become higher).

In Chapter 13, we limit attention to data sets

that reveal a linear relationship between X and

Y . If your data do not follow a linear rela-

tionship, you should not use the methods of

Chapter 13. Thus, your analysis should al-

ways begin with a scatterplot to investigate

whether a linear relationship is reasonable.

Page 447 of the text presents five hypotheti-

cal scatterplots: one reveals an increasing lin-

ear pattern; one reveals a decreasing linear

pattern; and the remaining three show various

curved relationships between X and Y . Thus,

to reiterate; if your scatterplot is curved, do

not use the methods of Chapter 13.
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Page 448 of the text presents four scatter-

plots for data sets for small values of n (the

n’s are 9, 6, 12 and 13, typical sizes in prac-

tice). The subjects are spiders and the four

scatterplots correspond to four categories of

spiders. For each spider, Y is heart rate and

X is weight.

Above each scatterplot is the numerical value

of r, the correlation coefficient of the data.

At this time, it suffices to note that r > 0

indicates (reflects?) an increasing linear re-

lationship and r < 0 indicates a decreasing

linear relationship between Y and X.

There are two important ideas revealed by

these scatterplots. First, for small n it can

be difficult to decide whether a case is iso-

lated; whenever possible, use your scientific

knowledge to help with this decision.

Second, especially for a small n, the presence

of one or two isolated cases can drastically

change our view of the data. For example,

consider the n = 9 small hunters.
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The two spiders in the lower left of the scat-

terplot might be labeled isolated. Including

these cases, the text states that r > 0, but

if they are deleted from the data set (which

could be a deliberate action by the researcher,

or perhaps these guys were stepped on during

their commute to the lab) then r < 0. Scien-

tists typically get very excited about whether

r is positive or negative, so it is noteworthy

that its sign can change so easily.

Thus far, we have been quite casual about

looking at scatterplots. We say, “The pat-

tern is linear and looks increasing (decreas-

ing, flat).” It will remain (in this course) the

job of our eyes and brain to decide on linear-

ity, but the matter of increasing or decreasing

will be usurped by the statisticians. Further-

more, using my eyes and brain, I can say that

the pattern is decreasing for tarantulas and

for web weavers (r agrees with me), and I

can say that the linear pattern is stronger for

the tarantulas.

+ 347



+ +

The correlation coefficient agrees with me on

the issue of strength and has the further ben-

efit of quantifying the notion of stronger in a

manner that is useful to scientists.

I am not very good at motivating the formula

for the correlation coefficient. In addition, the

end of the semester is near, so time is limited.

The interested student is referred to pp. 450–

3 of the text for a (partial) explanation of the

formula.

Here is the briefest of presentations of the

formula. Each subject has an x and a y. We

standardize these values into x′ and y′:

x′ = (x − x̄)/sX; y′ = (y − ȳ)/sY .

We then form the product z′ = x′y′.

The idea is that z′ > 0 provides evidence of

an increasing relationship and z′ < 0 provides

evidence of a decreasing relationship.
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(The product is positive if both terms are

positive or both are negative. Both positive

means a large x is matched with a large y;

both negative means a small x is matched

with a small y.)

The correlation coefficient, r, combines the

z′’s by almost computing their mean:

r =

∑
z′

n − 1
.

The next slide presents 12 prototypes of the

correspondence between a scatterplot and its

correlation coefficient.

These 12 scatterplots illustrate six important

facts about correlation coefficients. These six

facts appear on pages 454 and 456 of the text

and will not be reprinted here.
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13.3: The regression line.
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ẏ = 37.5 + 0.25x

Chirps per Minute

O

O
O

O

O
OO

O OO

O

...........................................
...........................................

...........................................
............................................

...........................................
...........................................

.................

100 150 200
60

70

80

90

Air Temp.
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x y ẏ y − ẏ (y − ẏ)2

145.0 62.6 73.75 −11.15 124.32
172.0 81.5 80.50 1.00 1.00
155.0 77.9 76.25 1.65 2.72
137.0 84.2 71.75 12.45 155.00
179.5 92.8 82.37 10.43 108.68
192.0 86.9 85.50 1.40 1.96
207.0 87.8 89.25 −1.45 2.10
165.5 69.8 78.87 −9.07 82.36
193.0 71.6 85.75 −14.15 200.22
100.0 71.6 62.50 9.10 82.81
189.0 80.4 84.75 −4.35 18.92

SSE(ẏ) = 780.10
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x y ŷ y − ŷ (y − ŷ)2

145.0 62.6 75.92 −13.32 177.42
172.0 81.5 79.59 1.91 3.64
155.0 77.9 77.28 0.62 0.38
137.0 84.2 74.83 9.37 87.76
179.5 92.8 80.61 12.19 148.55
192.0 86.9 82.31 4.59 21.05
207.0 87.8 84.35 3.45 11.89
165.5 69.8 78.71 −8.91 79.35
193.0 71.6 82.45 −10.85 117.68
100.0 71.6 69.80 1.80 3.24
189.0 80.4 81.90 −1.50 2.26

SSE(ŷ) = 653.23

On n = 11 occasions, Susan Robords deter-

mined two values for different crickets: Y is

the air temperature and X is the cricket’s

chirp rate in chirps per minute. In her cam-

pcraft class, she was told that one can ‘cal-

culate’ the air temperature with the following

equation:

ẏ = 37.5 + 0.25x.

Above, we have a scatterplot of Susan’s data

with this line. The most obvious fact is that

‘calculate’ was way too optimistic!
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As Yogi Berra once said, “You can observe a

lot by just watching.” Let’s follow his advice

and examine the scatterplot and table above.

We see that on some occasions, ẏ provides

an accurate prediction of y. Visually, this is

represented by circles that are on, touching, or

nearly touching the line. But on many other

occasions, the predictions are poor: the line is

either far lower than the circle (the prediction

is too small) or the line is far higher than the

circle (the prediction is too large).

Next, we do something very strange. We

change perspective and instead of saying that

the prediction is too small (large) we say that

the observation is too large (small). Egocen-

tric? Yes, but there are two reasons.

First, look at the scatterplot and line again.

It is easier to focus on the line and see how

the points deviate from it, than it is to focus

on all the points (n could be large) and see

how the line deviates.
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Second, we plan to compare ẏ and y by sub-

traction. We could use ẏ − y or y − ẏ. The

former takes y as the ‘standard’ and the latter

reverses the roles. For circles below the line,

I want this ‘error’ to be a negative number;

to get that I must subtract in the order y − ẏ;

that is, I take the prediction as the standard

and the observation ‘errs’ by not agreeing.

Look at the table again. The ideal for the

error y− ẏ is 0. As the error moves away from

0, in either direction, the inadequacy of the

prediction becomes more and more serious.

For math reasons (and often it makes sense

scientifically; at least approximately) we con-

sider an error of, say, −5 to be exactly as

serious as an error of +5. As in Chapter 12,

we might be tempted to achieve this by taking

the absolute value of each error, but, again,

we get much better math results by squaring

the errors.

Finally, we sum all of the squared errors to

obtain: SSE(ẏ) = 780.10.
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Ideally, SSE = 0 and the larger it is, the worse

the prediction.

You are probably thinking that we need to

adjust SSE to account for sample size, but

we won’t bother with that.

Instead, we pose the following question: Can

we improve on Susan’s line? Or: Can we find

another prediction line which has an SSE that

is smaller than Susan’s 780.10?

I suggest the line ŷ = 56.2+0.136x. From the

table, we see that SSE(ŷ) = 653.23. Thus,

according to The Principle of Least Squares

ŷ is superior to ẏ.

Can we do better than my ŷ? No.

Major Result: There is always a unique line

that minimizes SSE over all possible lines.

The equation of the line is given as

ŷ = b0 + b1x,

where b1 = r(sY /sX) and b0 = ȳ − b1x̄.
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For the cricket data, for example, it can be

shown that x̄ = 166.8, sX = 31.0, ȳ = 78.83,

sY = 9.11, and r = 0.461. Substituting these

values into the above yields

b1 = 0.461(9.11/31.0) = 0.1355, and

b0 = 78.83 − 0.1355(166.8) = 56.23.

Thus, the equation of the best prediction line

is

ŷ = 56.23 + 0.1355x,

which I rounded in my earlier presentation of

it.

The means and sd’s of the BA data were given

on slide 343 and it has r = 0.554. Thus,

b1 = 0.554(0.032/0.028) = 0.633, and

b0 = 0.2636 − 0.633(0.2664) = 0.095.

Thus, the equation of the regression line is

ŷ = 0.095 + 0.633x.

This line appears on page 471 of the text.
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We have seen that it is easy to calculate ŷ

and it is the best line possible (based on the

principle of least squares), but is it any good?

(Is Sylvester Stallone’s best performance any

good? Is there a reason he has never done

Shakespeare?)

First, note that we can see why r is so im-

portant. We need five numbers to calculate

ŷ: two numbers that tell us about x only; two

numbers that tell us about y only; and one

number (r) that tells us how x and y relate to

each other. In other words, r tells us all we

need to know about the association between

x and y.

We obtain the regression line by calculating

two numbers: b0 and b1. Thus, obviously,

this pair of numbers is important. Also, b1,

the slope, is important by itself; it tells us how

a change in x affects our prediction ŷ.
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Unlike mathematics, however, the intercept,

b0, alone usually is not of interest. Now in

math, the intercept is interpreted as the value

of y when x = 0. Consider our examples. For

the Cricket study, x = 0 gives us ŷ = 56.2.

But we have no data at or near x = 0; thus,

we really don’t know what it means for x to

equal 0. (Discuss.)

Similarly, for the BA study, x = 0 predicts a

1986 BA of 0.095. But nobody batted at or

near 0.000 in 1985. In fact, I conjecture that

in the history of baseball there has never been

a position player with at least 200 at-bats who

batted 0.000.

Consider the following scatterplot of fish ac-

tivity versus water temperature for fish in an

aquarium. (Should we use these data to pre-

dict fish activity for x = 32? For x = 212?)

+ 358



+ +

707274767880

300

350

400

450

500

Fish Activity

Water Temp. (F)

O

O

O

OO

O

O
O

O

The above considerations has resulted in some

statisticians advocating a second way to write

the equation for ŷ:

ŷ = ȳ + b1(x − x̄).

For the cricket study:

ŷ = 78.83 + 0.461(
9.11

31.0
)(x − 166.8) =

78.83 + 0.1355(x − 166.8).
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This second formula contains three numbers

and they all have meaning: the mean of the

predictor; the mean of the response and the

slope. For better or worse, this formulation

has not become popular and you are not re-

sponsible for it on the final.

It does, however, give us an easy proof of one

of the most important features of the regres-

sion line, something I like to call: The law of

preservation of mediocrity!

Suppose that a subject is mediocre on x; that

is, the subject’s x = x̄. What is the predicted

response for this subject? Plugging x = x̄ into

ŷ = ȳ + b1(x − x̄)

we get

ŷ = ȳ + b1(x̄ − x̄) =

ŷ = ȳ + b1(0) = ȳ.
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Visually, the law of preservation of mediocrity

means that the regression line passes thru the

point (x̄, ȳ).

Let us return to the BA study. Recall that the

regression line is: ŷ = 0.095 + 0.633x. Recall

that x̄ = 0.266 and ȳ = 0.264 are close and

the two sd’s are similar. Thus, for the entire

sample there was not much change in center

or spread from 1985 to 1986.

If you want, you can verify the numbers in the

following table.

x ŷ
x̄ − 2sX = 0.210 0.229
x̄ − sX = 0.238 0.246

x̄ = 0.266 0.264
x̄ + sX = 0.294 0.282
x̄ + 2sX = 0.322 0.299

In my experience, many people find this table

surprising, if not wrong.
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In particular, for small values of x the predic-

tions seem (intuitively) to be too large, while

for large values of x the predictions seem to

be too small.

So, where is the error, in the regression line

or in these people’s intuition? Well, the quick

answer is that the intuition is wrong. If you

look at the data on page 443 of the text, you

can verify the following facts:

–Of the 19 players with x ≥ 0.294, 15 had

their BA decline in 1986.

–Of the 18 players with x ≤ 0.238, 11 had

their BA increase in 1986.

This is not a quirk of the BA study. It always

happens when we do regression. It is easiest

to see when, as above, X and Y have similar

means and similar sd’s, as in the BA study.

This phenomenon is called the regression ef-

fect. (Discuss history.)

+ 362



+ +

We can see the regression effect by rewriting

the second version of the regression line as

follows:
ŷ − ȳ

sY
= r(

x − x̄

sX
).

Ignore the r for a moment. Then the RHS

of this equation is the standardized value of

x, call it x′. The LHS is the value of ŷ ‘stan-

dardized’ using the mean and sd of the y’s;

call it ŷ′. Thus, this equation becomes:

ŷ′ = rx′.

For ease of exposition, suppose that larger

values of x and y are preferred to smaller val-

ues and that r > 0.

Consider a subject who has x′ = 1. This is

a talented subject; she is one sd better than

the mean. Thus, we should predict that she

will also be talented on y. The intuitive pre-

diction is to ignore r and predict that ŷ′ = 1.
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But as we saw in the BA study, this intuitive

prediction is too large. We need to include r.

Now, if r = 1, then there is a perfect linear

relationship between x and y and x′ = 1 will

yield ŷ′ = 1. (I conjecture that the reason

people make intuitive predictions is that they

tacitly assume r = 1; or, more likely, they

don’t have any feel for relationships that are

not perfect.)

So, what does the regression line tell us? It

tells us that we must pay attention to the r.

Look again at the equation:

ŷ′ = rx′.

To make this argument precise, let’s consider

the BA study for which, recall, r = 0.554,

which I will read as 55.4%.

We see that for a talented player, say x′ = 1,

the predicted value is ŷ′ = 0.554(1) = 0.554.
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In words, for a player who is one sd above the

mean on x, we predict that he will be 0.554

sd’s above the mean on y. Thus, part of what

we took for talent in x is transitory; dare I call

it luck? And only part of the talent (r to be

exact) is passed on to the ŷ. I really like this

interpretation of r; it is the proportion of the

advantage in x that is transmitted to ŷ.

A similar argument applies for x′ < 0, the poor

players. Only part (r again) of the poor per-

formance in 1985 is predicted to carry over to

1986.

Example: Brett Favre isn’t so great!

My subjects are the 32 NFL teams. X = the

number of victories in 2005 and Y = the num-

ber of victories in 2006. Below are summary

statistics:

x̄ = ȳ = 8; sX = 3.389; sY = 2.896; r = 0.286.

The regression line is:

ŷ = 8 + 0.244(x − 8).
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Thus, for x = 13, ŷ = 9.22 and for x = 4,

ŷ = 7.02. Thus, using this equation, we would

predict that the 2008 Jets would win 7.02

games and the 2008 Packers would win 9.22

games.

And the regression line does not take into ac-

count the incredibly easy schedule the Jets

play (8 games against the pathetic western

conferences) and the difficult schedule for the

Packers. Moreover, if Crosby makes the last

second field goal against the Vikings, the Pack-

ers are tied for first and would be the team in

the playoffs. And this is not even allowing for

the fact that the Packers lost to Tennessee

b/c of a coin toss!

Finally, for x = 16, ŷ = 9.95; so, even if Brady

is not injured, the Patriots would be predicted

to win about 10 games.

For the remainder of the course, we ponder

one last question:

The regression line is the best line, but is

it any good?
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I will provide two answers to this question:

one objective and one subjective. Not surpris-

ingly, I greatly prefer the subjective answer.

The coefficient of determination

Recall that SSE measures how badly the re-

gression line ‘fits’ the data, with SSE = 0 a

perfect fit and larger values of SSE represent-

ing worse fits.

SSE =
∑

(y − ŷ)2.

Think of SSE as the best we can do using X

to predict Y . (Implicit in this sentence is that

we are predicting with a straight line.) It is

natural to wonder: How well can we predict

Y w/o using X? Let’s think about this. All

we know for each subject is its x and y values.

It seems unfair to predict y by y (always have

the carnival-guy guess your weight before you

get on the scale), and if we cannot use X,

then all the subjects look the same to us;
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that is, if we cannot use X then we must make

the same prediction, call it c, for each subject.

Using c for each subject, the squared error for

a subject is (y − c)2 and the total of these is:

∑
(y − c)2.

By using algebra or calculus, we can prove

that this total is minimized by taking c = ȳ.

Thus, the best prediction of Y w/o using X is

ȳ for every subject and the total of the squared

errors is:

SSTO =
∑

(y − ȳ)2.

Next, we note that for any set of data,

SSE ≤ SSTO. Discuss.

On page 476 of the text I have the values

of SSE and SSTO for several studies. With

real data, these numbers tend to be ‘messy;’

thus, I will introduce my ideas with nice fake

numbers.
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Suppose that for a set of data SSTO = 100

and SSE = 30. This means that w/o using

X our total squared error is 100, but by using

X we can reduce it to 30. It seems obvious

that we want to compare these numbers:

SSTO − SSE = 100 − 30 = 70.

The difficulty is: 70 what? So, we do one

more comparison:

SSTO − SSE

SSTO
=

100 − 30

100
= 70/100 = 0.70,

or 70%. We call this ratio the coefficient of

determination and denote it by R2. An R2

of 70% tells us that by using X to predict Y

70% of the squared error in Y disappears or

is accounted for (choose your favorite expres-

sion).

Note that R2 is a perfectly objective measure:

it tells us how much better we do using X than

we do not using X. For example, using X is

70% better than not using X and if we get

real happy about this we might overlook the

fact that our predictions might still be bad.
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(I have no doubt that Sylvester Stallone is a

99%–or more–better actor than I.)

Finally, it can be shown algebraically that

R2 = r2. This equation has a good and a

bad consequence. First, the good. This re-

inforces the fact that a relationship with, say,

r = −0.60 is exactly as strong as a relationship

with r = 0.60 b/c they both have R2 = 0.36.

Second, the bad. This equation has inspired

many people to wonder which is better, R2

or r, which I find annoying. Worse yet, most

seem to reach the wrong conclusion: that R2

is better. (Discuss.)

Section 13.4: The last section (time for

massive rejoicing)

Each subject has an x and a y. Once we de-

termine the regression line, each subject has a

ŷ and thus an error e = y − ŷ. Now things get

‘funny.’ Statisticians got tired of explaining to

clients that we are not being judgmental when

we talk about each of their cases having an

‘error.’
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So, we decided to start calling e the residual,

not the error. But we cannot call these r b/c

the letter r is ingrained as representing the

correlation coefficient.

Thus, just remember e stands for residual!

If you study regression in the future, you will

learn that the collection of residuals for a data

set can be very useful. Here we will consider

a few minor properties of them.

We have n numbers: e1, e2, . . . , en; a residual

for each subject. The MITK thinks, “This

reminds me of Chapter 12.” So, we draw a

picture (dot plot or histogram) of the resid-

uals. Below is a frequency histogram of the

residuals for the BA study.

−0.120 −0.060 0.000 0.060

10

20

+ 371



+ +

What do we see? Well, there is one small

outlier (guess who?). Note that outlier, as in

Chapter 12, is a term for one set of numbers,

while isolated case is a term for two dimen-

sional data. Also, we can see that every out-

lier is isolated, but a case can be isolated w/o

having its residual be an outlier.

Next, we calculate the mean and sd of the

residuals. Fact: For any set of data
∑

e = 0. (Discuss.) Thus, ē = 0. The sd

of the residuals is denoted by s. Note that

there is no subscript on this s. In Chapter

13 we have three sd’s of interest: sX, sY and

s. Statisticians think that the most important

of these is the sd of the residuals; thus, it is

unencumbered by a subscript.

For the BA data, s = 0.027, 27 points. B/c

the distribution of the residuals is bell-shaped

(curiously, it usually is for regression data),

we can use the Empirical Rule of Chapter 12

to interpret s = 0.027.
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In particular, approximately 68% of the resid-

uals are between −0.027 and +0.027. In words,

for approximately 68% of the players, ŷ is

within 27 points of y. (And for the other

32% of the data ŷ and y differ by more than

27 points.)

Here is the subjective part. As a baseball fan,

I opine that these are not very good predic-

tions. To err by 27 points is a lot in baseball.

BTW, if FR is dropped from the data set, s

is reduced to 0.025, which is better, but I still

believe that the predictions are not very good.
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As another example, for the ‘Favre data,’ s =

2.821 which means that for approximately 32%

of the teams ŷ misses y by 3 or more games.

(By actual count, the number is 11 of 32, or

34%.) In my opinion this is a very bad pre-

diction rule.

I will note that there is another restriction on

the residuals (other than that they sum to 0).

It is:
∑

(xe) = 0.

The interested reader can refer to the book to

see one reason this is useful. (This fact is used

a great deal in advanced work on regression.)

Finally, page 487 shows the (sometimes huge)

effect a single isolated case can have on the

value of r and, hence, the regression line.

Page 487 and its consequences will not be

on the final.
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