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Abstract

This thesis concerns non-parametric inference for density and rate
functions with censored serial data. The focus is upon "delta sequence”
curve estimators of the form an(x) = j‘Km(x,y)dAn(y) with K integrating
to 1 and concentrating mass near X as m->00. Typically, An is either
the Kaplan-Meier product-limit estimator of the cumulative distribution
or the Nelson-Aalen empirical cumulative rate. Bias, covariance,
expected mean square error convergence, and uniform consistency are
presented. Asymptotic normality and simultaneous confidence bands are
derived for Rosenblatt-Parzen estimators, with Km(x,f) = mw(m(x-y)),
m=o(n), &and w(.) a well-behaved density. This work generalizes global
deviation and mean square deviation results of Bickel and Rosenblatt.
and others to censored serial data. Simulations with exponential sur-
vival and censoring indicate the effect of censoring on bias, variance,
and maximal absolute deviation. Results extend to a multiple
decrement/competing risks model. Death rates and sacrifice frequencies

are analysed with data from a survival experiment with serial sacrifice.
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Non-parametric Inference for Rates

and Densities with Censored Serial Data

l. Introduction

This paper concerns non-parametric inference for density and rate
functions with censored serial data. In survival experiments, the form
of the rate function is of primary importance to wunderstanding the
underlying process. A sample of n individuals is observed from birth to
the time of death or censoring, with the censoring process independent
of the survival process. The problem is to estimate the death rate and
to infer certain properties of this rate. For instance, one may wish to
test whether the rate follows some parametric form, or whether it
differs substantially from that of another population. One may in addi-
tion want to estimate and graph the rate function without making assump-
tions about the unknown survival process, and to visually compare rate
functions from different samples. Efforts at non-parametric inference
for rates naturally lead to similar questions for densities. Here =a
broad class of smooth estimators is investigated, with more refined
results on simulataneous confidence bands for the special class of ker-

nel estimators introduced by Rosenblatt (1956) and Parzen (1962).

This problem arose in an effort to draw inference about pathology-
related death rates and prevalence of pathologies (diseases) in a sur-
vival experiment with serial sacrifice. This experiment was designed to
investigate the effect of a treatment, such as radiation or chemical

exposure, on animals in terms of the time course of pathological states

(Upton et al. 1969). Jerzy Neyman introduced me to this problem,



pointing out aspects of non-identifiability and statistical inference
that plague such experiments (Neyman 1980, 1982). We will return to
this later to examine the overall death rates and sacrifice frequencies

in treated and control groups for a particular experiment.

Inference about rates has been the subject of study in survival
analysis, demography, reliability, and other fields for a long time.
The first investigation of a death rate in the presence of competing
risks focused upon the merits of smallpox vaccination. Daniel
Bernoulli's mathematical treatment in 1760 inspired critical review by
D'Alembert, Laplace and others (see Chiang 1978; David and Moeschberger
1978). Many methods of inference about rates in competing risks or mul-
tiple decrement models have been developed since. For recent reviews
see David (1974), Hoem (1976), Prentice et al. (1978), and David and
Moeschberger (1978). Additional references appear in Wertz and

Schneider (1979).

Rate estimation is closely tied to density estimation through the
relation f(x)=h(x)(1-F(x)). Work on density estimation seems to have
begun with efforts of Karl Pearson around the turn of the century (see
Wegman 1972). Recent reviews of density estimation include Bean and
Tsokos (1980, Wertz and Schneider (1979), Tapia and Thompson (1978),
Wertz (1978) and Fryer (1977), Wegman (1972) and Rosenblatt (1971).
Density and rate estimates are special cases of non-parametric regres-

sion estimates (see Collomb 1981 for review).

This paper focuses upon non-parametric rate and density estimation

in the presence of competing risks, namely random right-censoring.

Non-parametric techniques are characterized by choosing an estimate from



a broad class which cannot be easily characterized by a finite-
dimensional parameter. For example, the non-parametric maximum 1likeli-
hood estimate of +the death rate among distributions with continuous
non-negative rates is a right-continuous step-function with step values
being the ratio of the number of deaths in an interval to the length of
life lived in that interval (cf. Barlow et al. 1972). This estimator
tends to be very rough. Grenander (1956) focused attention upon the
sub-class of all non-decreasing rates, obtaining a smooth estimator
which was later generalized to IFRA and star-shaped distributions; this
approach is intimately related to the total-time-on-test statistic (cf.
Barlow Eﬁuﬂl' 1972). Other efforts have constricted the class of rates
in a variety of ways, such as introducing penalty functions (e.g:
Scott, Tapia and Thompson 1980), assuming proportional hazard rates over
the observation span (Lehmann 1953; Cox 1959) or separately for each
age-specific interval (Chiang 1961; 1968); or incorporating concomitant

information about an individual (Cox 1972; Lagakos 1981).

Another approach to rate estimation, the one considered here, draws
upon ideas of the kernel density estimator introduced by Rosenblatt
(1956) and studied by Parzen (1962) and many others since. Watson and
Leadbetter (1964ab) proposed three rate estimators, based on the

Rosenblatt-Parzen kernel without censoring.

The Rosenblatt-Parzen kernel method and many other methods are spe-
cial cases of the “"delta sequence" approach recently studied in a gen-
eral form (Walter and Blum 1979; Susarla and Walter 1981; Lo 1980ab).

The estimators considered in this paper are of the form

an(x) = J K (x,3)dA (y)



in vhich A estimates a cumulative function and the sequence {Km],
m=m(n), converges to the Dirac delta function. The Rosenblatt-Parzen
kernel estimators satisfy the relations Km(x,y) = mw(m(x-y)), m=1/b,
b->0 and nb->oo, in which b is the "bandwidth" and w(.) is some nicely
behaved density. The density estimate, denoted by fn' arises when
1—An=Sn, the product-limit survival curve (Kaplan and Meier 1958). The
three rate estimators are denoted by hgi), i=1,2,3. h£1) is the ratio
fn/Sn; the other two arise when A is either the empirical cumulative

rate (Nelson 1972; Aalen 1976, 1978) or -1og(Sn). Details of notation

appear in section 2.

The problem of non-parametric estimation and inference for rates
and densities when the data are censored has received little attention.

Foldes, Rejto and Winter (1981) proved strong consistency for f_ and

n
(1)

4 with histogram type and Rosenblatt-Parzen type kernels. Guttorp

(1978) proved pointwise consistency and asymptotic normality for hg2)
with a Rosenblatt-Parzen kernel in a general random censorship model.
Lo (1980b) considered nonparametric inference for the rate function of a
multivariate counting process studied by Aalen (1978), a generalization
of hgz), in a Bayesian context. McNichols and Padget (1981) studied the
mean, variance and limiting behavior of fn with a Rosenblatt-Parzen ker-

nel and with the censoring rate proportional to the death rate.

The Rosenblatt-Parzen kernel estimators have been the subject of
some criticism, leading some authors to consider bandwidths depending on
location (Abramson 1981; Sacks and Ylvisaker 1981; Breiman, Meisel and
Purcell 1977). However, it is possible to arrive at some global meas-

ures of deviation for Rosenblatt-Parzen estimators which lead to simul-



taneous confidence bands and graphical tests.

Bickel and Rosenblatt (1973; 1975) introduced a global measure of
deviation 1leading to simultaneous confidence bands for fn in the non-
censored case. Let M = }l(nb/Vf(x))1/2(fn(x)—f(x))}!, with (nb)_1Vf
the variance process of 8, and ||.!] the sup over [O,T]. They showed
for suitable r,oand d, and under appropriate conditions, that for all
X,

Plr (M -d ) < x} -> exp(-2¢7).
Rosenblatt (1976) extended this result to multivariate densities, while
Johnston (1981) extended it to bivariate density estimators with normal-
ized weights (Nadaraya 1964; Watson 1964). Simul taneous confidence
bands for kernel estimtors of death rates in the absence of censoring
were derived by Rice and Rosenblatt (1976), Guttorp (1978), and Sethura-
man and Singpurwalla (1981). Major (1973) and Revesz (1977) obtained
maximal deviation results for the non-parametric regfession estimators
with histogram +type and Rosenblatt-Parzen type kernels, respectively.
Bounds on the rate of convergence of the distribution of maximal devia-
tion to the 1limiting distribution were given by Konakov and Piterbarg
(1979) for the univariate kernel density estimate. Under stronger con-

ditions on the kernel window and bandwidth, Konakov and Piterbarg (1979)

obtained a second order correction term for finite sample size.

In section 2, notation and the estimates are introduced. Section 3
details the assumptions used in later sections. In section 4 we derive
the mean and covariance structure of the estimates; section 5 concerns
strong consistency. The deviation of an estimate from its expectation,

suitably normalized by the variance, is strongly approximated by a Gaus-



sian process in section 6, allowing extension of maximal deviation
results to obtain simultaneous confidence bands in section 7. Section 8
turns these bands into graphical tests of goodness-of-fit when parame-
ters must be estimated, and tests of equality of rates in two popula-
tions. Section 9 addresses some questions of kernel choice. Monte
Carlo simulations in section 10 indicate the effect of censoring and
bandwidth, and the slow convergence to the limiting distribution for
maximal deviations. Section 11 analyses data from a survival experiment
with serial sacrifice, testing for constant death rate and the effect of
radiation treatment. This section also tests whether or not the censor-
ing rate is constant. Section 12 presents conclusion and remarks about
possible extensions to multiple decrement/competing risks models, fixed

censorship, and other issues.



Notation

Let (x1’D1)""’(Xn’Dn) be independent and identically distributed
random pairs, with X;>0 being the "lifetime" and D; the indicator of
death (D=1) or censoring (D=0) for the i-th individual. For convenience
let N(x) = #{X;<x | Dy=1}, i.e. the number of deaths in [0,x], and let
R(x) = #iXiZ;}, the number at risk of death or censoring at time x>0.
The process is observed over a finite interval [O,Tn], with Tn tending

in probability to some T<oo.

The death rate, denoted by h(x), x>0, has been variously called the
intensity, force of mortality, and instantaneous failure rate. One
assumes for infinitessimsl dx,

Pr!xi<x+dx, D;=1 | X;>x} = h(x)dx + o(dx), x>0.

X
Let H denote the cumulative death rate, that is H(x) = & h(t)dt. The
;@

survival curve is denoted by S(x)=exp(-H(x)), with cumulative distribu-
tion function F=1-S and survival density f=F'=hS. This paper concerns

inference about h and f in the presence of censoring.

Censoring may in practice be fixed or random. This paper concen-
trates on random right-censoring which is independent of the survival
process. Thus, letting C(.) denote the censoring curve and L(.) denote
the "life" curve, L(x)=Pr{xi>x}, one finds that L(x)=5(x)C(x). If the
censoring curve C is sufficiently smooth, as will be assumed later, one
can define the censoring rate g(x) such that

Pr{xi<x+dx. Di=0 ! Xile = g(x)dx + o(dx), x>0,

with cumulative censoring rate G=-1log(C). In addition, the sub-

distribution function F(x)=Pr{X,<x | D,=1} and the sub-demsity f=F' are



used in this paper.

All functions and stochastic processes are left-continuocus, unless
otherwise noted. For a stochastic process Y, let dY denote the jump
process and the differential for integration. Integrals are left-
continuous, with the 1limits of integration understood to be (-o0o0, o00)
unless otherwise mnoted. A subscript Yn denotes sample estimate.
1= op(n) means Pr{Yn/n->O as n->oo} = 1, and 1" Op(n) means Pr{lim
sup Y /ni<e} = 1 for some ¢>0. |]Y|! denotes the sup {lY(t)}; oct<rl,

unless otherwise noted.

The density estimator considered here is the following:

n
1 .
3 K (x,X,)D./C (X,); 0<x<T.

T
£.(x) = F K (x,y)4F (y) = n”
0 i=1

Here, S =1-F and C, are product-limit (PL) estimates (Kaplan and Keier
1958) of the survival and censoring distribution functions, respectively.

Namely, the PL estimate of S is

D
Sn(X) = Bﬂ(1-1/Ri) i if x ixn'
=0 it x > Xn.

in which Ri=R(Xi), the rank of Xi in decreasing order, and the product

is over {itxiix}. Cn is defined similarly, with Di replaced by (1'Di)'

The three kernel rate estimators considered here are

My »
h " (x) = £ (x)/S (%)
(2) : i
h </ (x) = 3 Kn(x,y)aH (y) = 121 m(X:X)D, /Ry
WD+ P Gonat-togs ) - 3
n 3 n(xoy)d(-1ogs (y)) = 151 K, (x,X,)D;log(1+1/R,)

12, whieh S; is 5 with R, replaced by R.+1, and Hn(x) = zDi/Ri’ with the

Bpu, ‘ovel !i}xi<x}, is the empirical cumulative rate introduced by Nelson



(1972; Aalen 1976, 1978). The form of h£1) and h£3) generalize those of

Rice and Rosenblatt (1976). Watson and Leadbetter (1964ab), and Foldes,

Rejto and Winter (1981) among others, investigated

00
hg4)(x) = $(2)/ i‘ £ (t)at.

Watson and Leadbetter (1964a) defined h£3) in an hueristic fashion, as
the "graphical derivative" of -log(Sn) without explicit representation.
Sethuraman and Singpurwalla (1981) studied h£3) and a kernel estimate
based on the maximum likelihood rate estimator mentioned in the intro-

duction. Only fn and hgi), i=1,2,3%, are studied in the present paper.
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3+ Assumptions

This section details the assumptions used in this paper. They are
referred to as KO-K6 and S1-5SB in the text. Kernel assumption KO was
formulated by Walter and coworkers (Walter and Blum 1979; Susarla and
Walter 1981) to assure consistency of a broad class of estimates. Ker-
nel assumptions K1-K2 are needed for consistency of the Rosenblatt-
Parzen estimates (Rosenblatt 1956; Parzen 1962). K3 is used in conjunc-
tion with the law of the iterated 1logarithm in approximation results
(Bickel and Rosenblatt 1973). K4 insures that the bias and MSE are
manageable (Rosenblatt 1971), while K5 implies uniform consistency (Col-
lomb 1978; Silverman 1978a). K6 is introduced in this paper to allow

approximation of the censoring distribution.

KOo. (a) {Km(x,y);Qix,yiﬁ} is a "delta sequence”. That is, for each

bounded function a with support in (0,T) and for.all x in (0,T),

T
g'Km(x'Y)a(y)dy -> a(x) as m->o0.

Typically m=m(n,x) or simply m=m(n).

(b) {K_} is of "positive type" if K >0 and for all x in (0,1),

T
(1] Tk (z.y)dy=1.
O m

(ii) sup 7. kAxy)dy = o(m™").
0 lx-yD>r

(i1i) LK (x,.) 01 = O(m).

(iv) for all r>0, sup{Km(x,y) s Ix-yI>r} => 0 as m -> oo.

K1. The weight function w has integral 1, and either (a) is absolutely
continuous with derivative w' on [—A,A] and vanishes off [-A,A], or
(b) is absolutely continuous with derivative w' on the real 1line

such that, for j=1,2,
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S 1 J
S (x)1“dx < oo.
K2. The bandwidth b=b(n) tends to O and nb->oo0 as n->oo0.

K3. The following integral over {|z| 2_3} is bounded:

F1213/2[10g 10gl2! ] 2[In' (2) 1+ 1w(z) ! Jaz.
K4. w is symmetric (about O) and zzw(z) is integrable.
K5. nb/log n -> oo as n->00.
K6, b log n -> O.
K7. nb> log b -> O.

The censored survival assumptions are a combination of +those for
product-limit estimators and those for kernel estimation. S1-53 are
needed for consistency of the PL estimates Sn and Cn'. 5S4 insures strong
uniform consistency (Foldes and Rejto 1981) of the PL estimates. S5 is
needed for existence and convergence of the kernel estimate (Parzen
1962; Rosenblatt 1956). S6 is used in approximations. S7 makes the
bias tend to O at an acceptable rate. OSB8 is used to extend - the Bickel

and Rosenblatt (1973) approximations.
S1. The survival distribution S is continuous and positive over [O,T].
S2. The censoring distribution C is continuous and positive over [O,T].

S53. Survival and censoring act independetly. Thus the 1life distribu-

tion is L=SC.

S4. L is bounded away from O on [0,T], in which T is finite. There is

a 850 such that 1-6 > L(T) > §.



S5.

S6.

S7.

S8.

12

The density f is continuous, positive, and bounded on [O,T].

1/2

The function f is absolutely continuous and has derivative of

bounded absolute value on [O,T].
The second derivative f" of f exists and is bounded on [0,T].

The censoring cumulative rate G=-logC is absolutely continuous and

has bounded derivative g over [O,T].
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4. Bias and Variance

In this section, exact expressions and approximations for bias and

variance are derived.

Let A be a bounded, positive continuous non-decreasing function on
(0,T) with continuous bounded derivative a. Let An be an estimate of A
of the form JYdN in which N is a counting process for the number of
"deaths" (uncensored events) and Y is a predictable process with respect
to the history of deaths and censoring. In particular we are interested
in the cumulative distribution F and the cumulative rate H, with respec-

tive estimators, 0<x<T,

S (R
Fx) =n 3 C, (y)an(y),

P ;
B (x) =n 3 L' (y)an(y),

in which Cn and L  are product limit estimators of the censoring and
life (death + censoring) distributions, respectively. Estimates con-

sidered in this paper are of the form

T

By = -g Km(XIY)dAn(y)! O<xLT,

in which {Km} is a delta sequence satisfying assumption KO. See Walter
and Blum (1979) for examples of delta sequences. Of particular interest
is the positive type Parzen (1962) kernel with b=m~1, Km(x,y) =

mw(m(x-y)), satisfying assumptions K1(a) and K2.

The stochastic integrals in this paper coincide with the Lebesgue-
Stieltjes integrals for almost every realization. The following result
on integration by parts is needed.

Theorem A. (cf. Liptser and Shiryayev, 1978, ch. 18) If X and Y are
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left continuous functions bounded variation, then the Lebesgue-Stieltjes

integration by parts is

X X
X(x)Y(x) = x(0)Y(0) + F X aY + | vdx.
0 0

where X =X+dX, the right-continuous version of X.

In order to specialize results to density and rate estimators, one
needs to know the covariance structure of Hn and Fn. These were deter-
mined, for random right-censoring, by Breslow and Crowley (1974), among
others:

Theorem B. For O<x{y<T, if 51-54 hold then
nCOV(Hn(x),Hn(y)) -> v(x),

nCov(Fn(x),Fn(y)) -> S8(x)s(y)v(x),

in which V(x) =‘§L'1(y)dH(y).

The following lemma is usefull here and for later approximations.
Lemma 4.1. If 51-54 hold, then

H-y 1} = o ((108 n/m)'/?),

HY ' = o (108 n/m)'/2),

in which Y is replaced by either S, C, or L.

Proof: The result for ::s-snll is Theorem 3.2 of Foldes and Rejto

(1981). The result for C follows by interchanging the roles of death
and censoring. L follows as the special case of no censoring (though a
stronger rate is possible, see Foldes and Rejto (1981)). Note that if
:{S-Sn}1<6/2 then Sn>5/2 by assumption S4. Thus for sufficiently 1large

1

-S"1I} is obtained. A similar argument yields the

n, the rate for ||S”
n

result for C and L.

The main result of this section concerns bias and covariance.
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Theorem 4.1. Let Km(x,y) be a delta sequence of positive type. Then
; ;

y _ o+ _

1) Blas(an(x)) = Ba(x) = 6 Km(x,Y)dA(Y) a(x) + 6 Km(X-Y)dBA(Y)

in which B, = EA_ - A = bias of A_.
A n n

T
2) nCov(a (x),a (%)) = I K (x,y)K_(t,y)[V,(dy,y) - V,(y,dy)]
0

T =z
¥ h.’:l; [Km(x1Y)Km(tvz) + Km(x,z)Km(t,y)]VA(dy,dz)
in which VA(y,z) =hCov (An(y),An(z)).
Proof. For fixed n, m, x and t let K(y) = Km(x,y) and J(z) = Km(t,z).

The mean of a is determined using integration by parts:

7
= m [
Ea_(x) = K(T)E{An(¢)} -3 iEAn}dK
. T
= K(TA(T) - F pak « K(T)B, (T) - & B, dK
0 A r
T i
= Kkda + © KdB,
0 0

The asymptotic covariance is found as follows:
T
nCov(a (x),a (t)) = K(T)I(T)V,(T,T) - g‘VA(y.T)[K(T)dJ(y)+J(T)dK(y)]

+

Vy(y,2)[aK(y)ad(z) + a3(y)dak(z)]

Oten

T
3
Integrate by parts once on the second term and twice on the third, with

a change of order of integration. Recombine terms and note a last

integration by parts which uses the relation

D T
K(T)V,(T,T) - g‘vA(y,y)d[K(y)] = g'K(y)[vA(dy.y) + v, (y,ay)],

to arrive at the covariance.

For density and rate estimators we obtain

Theorem 4.2. Let {Km} be a positive-type delta sequence. Let fn and

hgl), i=1,2,%3, be defined as in the introduction and let S1-S5 hold.
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Then

1) Expectations: For x in (0,T),

T
Ef (x) = g‘Km(x.y)[1-(1-L(y))n]dF

Eh£1)(x) 8-1(x)Efn(x) + 0((log n / n)1/2)

"

(2) & n
En 2/ (x) = P K (x,y)[1-(1-L(y))"]eH
0

{3 (x) = En{)(x) + 0(1/n)
Suppose K is a Parzen (1962) kernel, m=b-1. satisfying K1(a), K2 and
K4, and suppose ST holds. Then

Bf_(x) = £(x) + 0.50"(x)b° § w(y)yZdy + o(b) + 0((1-6)").

En{2)(x) = n(x) + 0.50"(0)b° J w(y)yPay + o(¥?) + 0((1-6)").
in which B = $(1-L)"dF is the bias of 5.

2) Covariances: For x,t in (0,T),

T
nCov(fn(x),fn(t)) = g‘Km(x,y)Km(t,y)C-1(y)dF(Y)

(K Goy)K (4,24 (x,2)K (£,5)](V(y)-L7' (3))aF(y)dF(2)

Olta3
otgn

->0 if x#t

L o -1 e
3 K (x,y)C7 (y)dF(y) if x=t

T
ncov(n{2)(x),n{2) () = £ K (3K, (6,3)av ()
0

m
-> 0 if x#t
Suppose K is a Parzen (1962) kernel, m=b_1, satisfying K1(a) and K2.
Then
N -1 ~_ 2
nbVarfn(x) -> Vf(x) = f(x)c” (x) J w5,

nbVarhgi)(x) => V(%) = h(x)L_1(x) j‘wz, i=1,2,3,

uniformly in x on (0,T).

Proof:
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X
BE_(x) = $Pr{R(y)0}aH(y) = H(x) - & (1-L(y)"a(y).
0 0

B (x) - ;r‘s(y)pr{my»om(y) - F(x) - & (1-L(y))aF(y).
0

(cf. Watson and Leadbetter 1964b; Aalen 1976). These together with
Theorem 4.1 yield Efn and Ehgz). f  is uniformly bounded by Ki(a), K2,
K5, and S5 (Collomb 1978; Silverman 1978a). Applying Lemma 4.1 for the
survival curve S, hg1)=fn/s + Op((log n/n)1/2). Since f and 1/5 are

uniformly bounded, the order of the approximation of h£1) extends to

Eh£1). One sees that

n
hg3)=h£2)+iz1Km(x,Xi)Di(log(1+1/Ri) - 1/31)-

Following Rice and Rosenblatt (1976), one notices that |x-log(1+x)| <
& =

x2/2, 0<x<1. Letting K(y)=w((x-y)/b)/b, for fixed x and n,

T n . :
B (0-n3 (01 ¢ & 3 1)L s k(ar(y).
0 i=1

In an analogous fashion to the argument following (2.17) in Rice and
Rosenblatt (1976), with L(.) replacing 1-F(.), one finds

Eth)(x) = Ehiz)(x) + 0(1/n)
Parzen kernel approximations for bias in the non-censored case vere
derived by Rosenblatt (1956; 1971), Watson and Leadbetter (1964ab) and
Rice and Rosenblatt (1976). The only difference here is the addition of
a last term due to the bias of Fn or Hn’ which are both bounded a.s. by
a term decreasing exponentially with n.

2) The covariances follow from Theorems 1 and B. The Rosenblatt-Parzen

(2)

.~ from Parzen (1962, Theorem

kernel convergence follows for fn and h
1A) and the fact that the partial derivatives of S(x)S(y)V(x) and V(x),
0<x<y<T, are uniformly bounded by 51-55. For hg1), use the approxima-

tion to fn/s and the relation Vh = S‘2vf_ The result for h(B) follows
n
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from its uniform closeness to hg2).
Remark. As noted by Rice and Rosenblatt (1976), f"/S = h"-3hh'+h3 and
n" = S~ (£"+3nf'+2h°f). Thus the bias of h£1)(x) is smaller than those

of hiz)(x) and hiB)(x) if f has a local minimum at x, and larger if h

has a local minimum at x.
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5. Consistency

In this section consistency is explored in two senses, expected
mean square error and maximum absolute deviation. These are extensions
of similar results in Susarla and Walter (1981).

Theorem 5.1. Let {Km] be a delta sequence of positive type with m =
o(n). Suppose the first and second order derivatives of VA are uni-
formly bounded and that BA tends to O uniformly in x. Then for each x
; 2

an. £0%T), E[(an(x) = al#8))*] =b O B.8.

Proof:

nvar(a (x)) < 11K (x,.) i1 J K (x,3)1V,(dy,y) - V,(y,dy)i + o(1)

=

Od-a3

0(m) + o(1) = o(n).
The definition of delta sequence insures that ijdA -> a. Since BA ->0
uniformly in x by assumption, the theorem obtains.

Theorem 5.2. Let {Km} be a delta sequence of positive type such that

T
j‘:Km(x,dy)l = ¢0(m), with the constant c possibly depending on x.
0

Then Ian(x) - a{x)} « E}An - A} j0(m) a.s.
If ¢ does no depend on x, then the bound is uniform a.s.

Proof. Similar to Theorem 4.4 of Susarla and Walter (1981).

Foldes, Rejto and Winter (1981) proved strong uniform consistency
for fn and h£4) with Rosenblatt-Parzen kernels under the stronger condi-

tion that the bandwidth b=o((log n/n)1/8). Guttorp (1978) proved strong
(2)

» with a Rosenblatt-Parzen kernel and certain

uniform consistency of h
side conditions, for the non-censored case. Here we show strong uniform

consistency for delta sequence estimators of density and rate with cen-

sored serial data.
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Corollary 2313 If S1-S4 and KO hold, and if the constant ¢ of Theorem

5.2 is independent of x, then

(1) ::fn-fI: = Op(m (1log n)1/2/n) a.s.
(ii) llhi1)-h:= = Op((log n/n)“/2 +m (log n)1/2/n) a.s.
{434 l:hiz)-hl. = Op(m (log n)1/2/n) i
(iv) ::hi3)-h}{ = Op(n_1 +m (log n)1/2/n) a.s.

Proof. (i) follows from Foldes and Rejto (1981, Theorem 3.2) and
Theorem 5.2. (ii) and (iv) follow from (i) and (iii), respectively, and
the approximation shown in the proof of Theorem 4.2. (iii) follows from

the next result, which was suggested by Peter M. Guttorp and does not

appear to be in the literature (Sethuraman and Singpurwalla (1981) prove
a similar result for -log(Sn) in the case of no censoring).

Theorem 5.3 (Guttorp and Yandell). Let S1-54 hold. Then

I . 1/2
DH - Hi Op((log a) " D)
Proof: We can write
* R (O
H (x) = Hn(x) + bf‘(Ln =L )an.
* % o=
in which H (x) = ;7 L 'dF . By Lemma 4.1 (for L), the second term is of
0

proper order. Foldes and Rejto (1981, Lemma 3.1) show for all u in
[o,T], wo,

PriIH:(u) - HWlah] 3 ¥ < 2exp(-2nv282).
The result follows by analogy to the proof of Theorems 3.1 and 3.2 of
Foldes and Rejto (1981), replacing the survival curve and its estimate

* *
(denoted by them as F_eand F, respectively) by H and H.
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6. Strong Approximation

Under suitable conditions on the censored survival process and the
Parzen (1962) kernel, the pivot process
1/2
Wo(x) = (av/v ()2 (g (x)-B (x)),  ogxen,
can be approximated by a Gaussian process

T
() = (apd)'/2 S wlGen/may),  owr,

in which Z is a version of Brownian motion. Similar approximations for
the rate estimators hﬁi),i=1,2,3, are indicated at the end of the sec-
tion. The series of approximations parallels the work of Bickel and
Rosenblatt (1973; 1975). Throughout this section, for fixed x and n let

K(y)=w(t/b)/b with assumptions K1(a) and K2 satisfied.

-~

The empirical sub-distribution function Fn agrees on the range
[O,T+A) with the empirical distribution function for the random variable
X =X if D=1,
= X+T+2A if D=0,

in which 2A is the window width of assumption K1(a). The function

-~ -~

fn = j‘Kan is a non-censored kernel estimator for the density of X on
[O.T]. One may therefore employ existing results for the non-censored

case; this is done without further comment below. Let

¥ (x) = (v/£(x)) 112 }xdz"(;‘).
0 n

Define OYn and 1Yn by replacing Zz by 7° and Z, respectively. Here 2°

is a version of the Brownian bridge and Z is a version of Brownian

motion. Let ,¥ = (b/f(x))'/? £ ki'/%az, and 1et S, = v /2faz. e

following theorem &and lemma are central to the next proposition. The

lemma is a restatement of Propositions 2.1 and 2.2 of Bickel and Rosen-
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blatt (1973), using the result of Komlos, Major and Tusnady (1975). See
Rosenblatt (1976).

Theorem C. (Komlos, Major and Tusnady 1975; Revesz 1976) Let K1(a) and
S1-53 hold. A sequence of Brownian bridges can be constructed so that

sup :ZE - 2 log n).

QS{S1

This refined earlier convergence rate results by Brillinger (1969) and

[eN] ) (n-1/2
p

Breiman (1968) in which they independently obtained the rate Op((log

n)1/2(1og log n/n)1/4).
Lemma Eﬂl‘ Suppose the Y processes are as defined above. Let S1-83
hold.
(1) If K1(a) and 55 hold, then 1lY - v I! = Op((nb)-1/2 i6g 6.
(11) If 54-S5 hold, then }lo¥ - .Y Ii = Op(b1/2).
(411) If 54-S6 and K3 hold, then {l,Y - .y !! Op(b1/2).

1

If 51-S3 hold, then f=f/C. 1In addition an=C; an. "Thus the density

estimator of interest, fn' may be written as
E T

f (e} = T %dp = " Koo
4 4

n 3 n oy o

The strategy below involves replacing 0;1 by 0—1 and proceeding by a

1dF .
n

series of approximations using Lemma 6.1. Let

n b, "
£ (x) = .g*x(wc"(y)dpn(y).

Proposition 6.1: Let Ki(a), K2, K5 and S1-S5 hold. Then
1/2 * Y42
H (nb/V) ’ (£, - £)11 = 0 ((b log n) e

Proof: Clearly, S4 implies

*
£ (x) = £ ()} < }K{C
0
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By Lemma 4.1, |}(C™ -C )1/2)

= Op((logn/n . Ki(a), K2, X5, and S5

%
imply that :}fn-f:l- 0 a.s. (Collomb 1978; Silverman 1978). Hence

'f1/2 - fn/f1/2l=->0 a.s. The proposition obtains by combining terms

o2

and noting that f is bounded.

The pivot process Hn, with Cn replaced by C, may be written as

T &
V(x) = (/v0)' 2§ k(y)eT (1)al(F ().
0

Define Own and 1Wn by replacing Zz by z° and Z, respectively. Denote by

1/2

K (x) = a2 3 e

- (b/vf(x))”2 k(1/¢)'/2az

O-r%OL -3

0]
in which Z is & version of Brownian motion on [0,1] for 1Wn and on

(-00,00) for oW, and gW . Consider the following

Proposition 6.2: Suppose the W processes are as sbove, and that Ki(a)

and S1-S5 hold. Then

(i) If S8 holds, then ,.w = Ownli = Op((nb)-1/2 log n).
. 1/2

(11) How, = W11 = 0 (b 72

(111) If K3, S6 and S8 hold, then |l W - W !l =0 (b’/z)

Proof: (i) By S3-S4, C>6. Thus
* <1 2\=1/2
W (0)-gW (0} <871y _(2)- (01 ()™
=111,0 00 -1/2 3 1 [
+ 6 RN (be(X)) J ie(y)w((x-y)/v)idy
0
The first term is of proper order by Lemma 6.1, part (i), and K1(a). S8

insures that g exists and is bounded. Vf is continuous and positive

since C and f are, by S2 and S5. Together with Theorem C, this gives
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the order for part (i).

/8 2)1/21

(ii) Note that W (x)-,W (x)i = (c(x)/)w Y (x)-,Y (x)i. Thus

'0°n

(ii) follows from Lemma 6.1, part (ii), and C<1.

(iii) In a fashion similar to (i),
" -l
| (0= (O < 871 Y (Go-,y (0 H (D)2

l
v (v/av(x)) /2§ 12(ybex) | e(ybex) ((ybex) /e(ybex)) 2 uCy) Ly
0

S3-54 and lLemma 6.1 maske the first term of the proper order. S1-55 and

1/2

S8 bound uniformly the term g(f/C) in the integral. K3 and the law

of the iterated logarithm for Brownian motion insure that the second

tern is Op(b1/2).

W_ and Wn are Gaussian processes with the same covariance struc-

1'n 2
ture and hence have the same law. Hence by Propositions 6.1 and 6.2,
1/2 -1/2
1!wn - 3wn:} = Op(b logn+ b /2, (nb) / log n).

One may then substitute Wn for Wn in a sequence of functionals, such as

3

maximal deviation or mean square deviation, provided b=b(n) converges to

O at the correct rate, as indicated below.

The strong approximation result for hﬁz) follows in an analogous

fashion. First one approximates h£2) by
* 5 -1 ~
h (x) = 7 K(y)L™ (y)dF (y).
0
Proceed by replacing C by L and Vf by Vh in subsequent formulae and pro-
positions. Similar results obtain for h£1) and hﬁ3) but the rate for
proposition 1 for hiB) must be replaced by Op((b/n)1/2) due to the

approximation indicated in the estimation section. Better rates may

well be attainable. To summarize,
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Proposition 6.3. Let Ki(a), K2, K5, S1-56 and S8 hold. Let

W (x) = (nb/va(x))‘/2 (a(x) - Ba (x)), O<x<t,

Then for a_=f , a =h(1), and a =h(2),
n' "n'n n n

n
[, - g0 1l = 0 (b log n + 172 o a2 a5
)

1/2 1/2 -1/2

W - 3wn}: = Op((b/n) 2 2 / log n).
If in addition K4 and S7 hold, Ean(.) may be replaced by a(.) in L
Let Mn be a sequence of functionals satisfying Lipschitz condition such
that, for J_ > O,

n

M (x) - M (P < T ix-yie

i1 ||= T . . 5

It RL Bwn;. op(1/Jn), then Mn(ha) converges in law if and only if

M _(,W ) does, and to the same limit.
n‘3n
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z: Simultaneous Confidence Bands

The strong approximation results of the previous section show that
we have the same approximating process for the censored case as for the
non-censored case. Therefore we obtain the same 1limiting double-
exponential probability as did Bickel and Rosenblatt (1973). This is
inverted to derive simultaneous confidence bands. We present extensions
of work due to Konakov and Piterbarg (1972) which allow refinement of
the asymptotic approximations, adding a second and third order term to

the limiting probability.

Let T =X ), the i-th ordered lifetime, with i=[n(1-8)]. Thus 7.~
>T=L_1(6)<oo, converging in probability. The following result of Bickel
and Rosenblatt (1973) is of central importance (see formulation in Rice
and Rosenblatt (1976)).

2 1/2 B , g ’
Theorem D. Let r = (210g(Tn/b)) ; and a4 =zp ¥ (log w )/rn, in

which
v o= rn[wz(A)+w2(-A)](8wJ'1/2(jw2}‘1 if w(A) > 0
= [:h'2[Ih2]1/2/2w' if w(A) = 0.
Let M_ = ::3wn1:, in which the sup is of x over [O,Tn]. Let K1-K2 hold.

Then, for -oo<x<oo,

Prir (M - d) < x} -> exp(-2¢7%).

The next result for censored densities and rates follows directly:

Theorem 7.1. Suppose K1(a), K2-K6, and S1-S8 hold. Let hn represent

any one of h£1), hgz), hiB). Let

M, = H(nb/vf)”2

M, = Ny 2m - mil,

(fn - f)”v

B GHELoly hiz g s 10MEK [O’Tn]‘ Let T, and dn be defined as in Theorem
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D. Then, for -oco<x<oo,
-X
Pr{rn(Mf - dn) < x} => exp(-2¢” %),

Pr{rn(Mh - dn) < x} -> exp(-2¢7%).

From these probability statements one may derive bands in at least
two ways using Slutsky's Theorem. If C is known, one can use it
directly. For the following let C be estimated by Cn. For the density,

if one replaces f by fn in V then the band is of the symmetric form

f!

1/2
£ EKL /o)

in which k = (dn + x/rn)(jh'z/nb)1/2 and x = log(-2/log(1-«)). Inverting

the probability statement without substituting in V_ yields the asym-

£
metric band
2 f 2
g 4. . k(—£)1/2[1 ok ]1/2-

n 2C_ —"'C 4f C
n n nn

The latter band is wider for all x, reflecting the more conservative
substitution. Empirical evidence from simulations presented below indi-

cates that this may be the appropriate band. Writing this band as

) 2
k k= \2 1/2
e 2cn) & 0, 2cn) = frzl]

shows that this band remains above O unless fn(x)=0. At this point, the
band becomes [O,kg/cn(x)]. Note that the symmetric band may have a

negative lower bound, which in practice is usually truncated to O.

Similarly for the rate one may replace L by Ln and may or may not

replace h by hn=h(1) i=1,2,3, obtaining the two band forms

n ?
1/2
h *+ k(h /L)
2 h
ho+ X4 g ny1/2 k?
n " 7o 2 k() el . 1/2
N ks

Konakov and Piterbarg (1979, Theorems 3 and 4) improved upon
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Theorem D. They obtained a second order term which depends on sample
size through the standardizing term T In order to use these results
one needs additional assumptions on the smoothness of the kernel window
w(.), and the bandwidth must be of the form b=kn ¥, 1/3<p<1/2.  The
strong approximation argument presented in Section 6 extends their
result to the censored estimators considered here. However, as stated
by them, the normalizing terms are different. We state their theorem
and then modify it as a corollary.
Theorem E. (Konakov and Piterbarg 1979) Let Ki(a), K2-K6 and S1-S8
hold, with no censoring. Let b=n"F, 1/3<p<1/2. Let r and w* be as in
~_n 2 5
Theorem D. Suppose w(A)=w(-A)=0, and [(w")“<oo. Let Mg be defined as
in Theorem 7.1, but with the sup over [0,1]. Then there are constants
0<u<oo, v>0 such that, for any x in (-oo0, oo0),
_ Doyl 2

Pr{ln(Mf-ln)<xE = exp(-2exp(-x-x /21n)) - L1(n,x),
with 1= (2 + 210g w12 15 x>1 (1-1 ) and n > (6/m*)®, then

IL1(n,x)f T ol
Theorem 7.2. Let the assumptions of Theorem 7.1 hold. Let b=kn ?,
1/3<p<1/2, and let w(A)=w(-A)=0 and ij")2<oo. Then for -oo<y<oo,

Prir_(M -d )<y} = exp(-2exp(-y-(y+log w*)2/2r2)) + L _(n,y).

n'"a n > n 2

If y>r_(1-d ) and b/T < (6Atw*)P | then

Lz(nJ) = 0(L1 (nIY))i
in which L1 is the same function as in Theorem E.
Proof: The proof rests on the substitution, for fixed n,

dn + y/rn o x/ln.
The following need to be justified:

(i) e~y? o O(e-zyy Yo

(ii) x + x2/21i =y + (y + log w*)2/2ri.
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To prove (1) note that y=xrn/1n+rn(1n-dn). As n->o0,
r ->o0 and r_/1 ->1. Also,
n n’ n
2 2
rn(ln-dn) = (log w*) (ln+dn)/rn -> 2(log w*)“.
Thus y-x -> 2(log w*)2 as n -> oo, with log w* < oo, implying (i). The
second equality follows from the expansion

2 2 2
I + x /21n = O.S(ln + x/ln) - 0051

o

- log w*

= I AV

2
= 0.5(dn + y/rn) - 0.57

=y + (y + log w*)2/21'31

Unfortunately the paper of Konakov and Piterbarg (1979) contains
several typographical errors and no proofs, being the summary of a sym-
posium talk. The necessary tools for proof are indicated as references.
The second-order approximation may be obtained directly from Berman
(1971) where it is shown that if X is a stationary Gaussian process with

O mean and covariance r(t)=1-t2/2+o(t), then

Priiixil < u} -> exp(-26,),
in which u=(2log(T/2ﬂU&))2 and the sup is over [0,T]. Berman (1971)
suggested setting O}=exp(-x) and approximating u by the first two terms
of a binomial expansion, a course apparently followed by Bickel and
Rosenblatt (1973, Theorem A.1). Konakov and Piterbarg (1979) appear to
1/2

set 0H=exp(-x-x2/21;), in which 1T=(210g(T/2ﬂ)) - Then wu=lj + x/lT.

A similar argument leads to the expansion in Theorem 7.2.

A further refinement is possible, due to the Edgeworth expansion of
the maximal deviation in the mneighborhood of O by Piterbarg (1978,
Theorems 3 and 4). This result supercedes Lemma 2.2 of Berman (1971)
and leads to a third order expansion of the maximal deviation distribu-

tion, if one can obtain an 8-degree polynomial approximation of r(t), by
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modifying the proof to Theorem 7.1 of Berman (1971). The expansion of
the limiting probability becomes

exp(-dﬁ[1-q(d}/T)p u-s])
in which q and p are positive constants depending on polynomial coeffi-
cients of the approximation to r(.), and u and o, are as above. The
point is that the sign is negative, indicating that this correction
places the probability between the first- and second- order expansions.
See Appendix for details. This is explored empirically in the simula-
tion section.
Remarks: (1) Pointwise asymptotic confidence bands arise in similar form
to the above, with k=z(jh2/nb)1/2, in which z is the upper (1-%{/2) point
of the normal distribution. However, see Sacks and Ylvisaker (1981) and
Abramson (1981) regarding optimal kernels for a point.

(2) One can approximate the variance Va(.) by

1 T

V. (x) = b gv:?((x-y)/b)avm(y).

a;

in which vA;n is an estimate of V,. This may more accurately depict the
variance for moderate sample sizes, particularly in regard to the edge
effect of the kernel estimate. This is compared with the estimate of
the asymptotic variance process in the simulation section, and is used
for data analysis. Though the asymmetric band can be formulated with

this variance estimate, it is not clear how to interpret it.

(3) In order to get x for a particular significance level , one chooses

x = log(-2/10g(1-))
for Theorem D and Theorem 7.1, or
x = -(rn2 + log w*) + rn[rnz + 2log w* + 210g(-2/10g(1—00)]1/2

for Theorem 7.2.
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8. Testing

This section concerns goodness-of-fit tests for +the composite
hypothesis H: f=f°(.,0) or H: h=ho(.,9), in which @ is an unknown real-
valued parameter, and two-sample tests of the form H: f1=f2 and H:
h1=h2. Bickel and Rosenblatt (1973) derived goodness-of-fit tests based
on maximal absolute deviation and mean square deviation. Sections 3 and
4 of their paper apply in the current situation for testing a composite

hypothesis about a density or a rate with censored serial data.

~

One may substitute an estimate © for © in the maximal statistic Ma

(a=h or f) provided the following assumptions are met for every 0:

() U F w (o) S i e an R & o fes BV
a) 11 'E|) Hn X-y dAo(.,O) - B‘Hn X-y AR 11 Op n (log .
(0) Ha (-,0) - ay(-,0)} = o (108 »)7").

These conditions are satisfied if |6 - @] = Op(n

derivatives of the density (rate) are bounded in a neighborhood of 6.

-1/2) and the partial
One can then graphically test the hypothesis by drawing the estimate fn

with confidence bands and seeing if fo(..O) lies within the bands.

As pointed out by Bickel and Rosenblatt (1973), the maiimal devia-
tion test is asymptotically inadmissable relative to the mean square
deviation test. For the latter one needs the second partials bounded in
a neighborhood of €, and Ié = fd - op((nb)-1/2). The mean square
statistic does not readily translate into a graphical tool. They show
that this test may be better than the classical chi-square test, at

least asymptotically. See their paper for details.

Bickel and Rosenblatt (1973) did not treat the two-sample +testing

problem. One may wuse their maximal deviation results, with the
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approximations of the current paper, to derive the asymptotic distribu-
tion of the maximal deviation of rate (or density) estimates from two
populations. This suggests a convenient graphical test, which is
employed in the data analysis section.

Theorem 8.1. Let K1(a), K2-K6 hold, and let S1-S8 hold for survival
processes with censoring in two independent populations. Let a8y i=1.2,
represent the death rate functions (a=h) or survgval densities (a=f) for
the two populations. Let V_ be the variance process for a(.), the com-
mon (unknown) function under the null hypotheses H: a,=a_,. For & sam-

152

ples of size n

and n2, n=n1+n2,

nel estimate of 8 i=1,2, using a common bandwidth b and kernel window

let ai " be the Rosenblatt-Parzen ker-

1

w(.). Let

< T 1/2 '

M ||(ﬂ1n2b/(nva)) (&1;n = az;n)ll

in which the sup is over {O,Tn], with Tn<Tn s 1=1,2, 1If ni/n -> )\, for
i

some 0 < \ < 1, then under the null hypothesis,

Prir (M - d_) < x} -> exp(-2e~%).
n n
in which r and dn are defined as in Theorem D, functions of b, w and

T
n

Proof: Let Yi(x) = (nib/Va(x))1/2 (ai n(x)-ai(x)), i=1,2. Y, and Y. can

1 2

be strongly approximated by independent Gaussian processes, say W1 and

W2, which have the same distribution as defined in the strong

¥’
; ; : " 1/2 1/2
approximation section. Let W = (1=)\) W1 - A Wz. W has the same

distribution as 3Wn, as can be seen by computing its covariance. Hence

one can apply Theorem D to W, and to the process Y = (1-,\)1/2Y.|

A1/2Y2, by way of the strong approximation results. Rewriting M and

substituting n1/n for )\ shows the correspondence.

Corollary 8.1. The expansion in Theorem 7.2. is valid for M under
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the same conditions as in Theorem 7.2.
Remarks. (1) One might not wish to assume equal variance. One can

instead consider the maximal deviation of the process

(n1n2b/(n v +n1v2))1/2 (

2% - a2;n)’

a
1:n

in which Vi is the variance process for as i=1,2.

. : . RS ox n D
(2) A possible choice choice for b is b (n1b1+n2b2)/n. ir bi kini ;

i=1,2, 1/3<p<1/2, then b=kn P, with k=k1A1'P + k2(1-A)1-p. Note that k

may be greater than k1 and k2.

(3) Following a suggestion of Al Wiggins (pers. comm.), one can plot the

two curves a,, and &,  and place a simultaneous confidence band about
¥ 1]

them. Ideally the band should appear as an adjustment of the individual

confidence bands, with the relative widths remaining proportional to

(\d’i(:u:)/ni)1/2 or to n;1/2. The test rejects if any gap appears in the
band between the two curves. Alternatively one could plot the differ-
ence a1;n*82;n and place a simultaneous confidence band about this
curve.

(4) If one is interested primarily in testing it may bel adviseable to
concentrate upon the cumulative distribution or cumulative rate func-
tion. See Nair (1981) for recent developments with maximal and mean

square deviations.
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9. Choicalgi Kernel

The optimal choice of kernel window and bandwidth presents
interesting challenges. See Rosenblatt (1956, 1971), and references in
Rudemo (1981) for a theoretical treatment. Rudemo (1981), Davis (1981),
Silverman (1978b), and Tapia and Thompson (1978) suggested empirical
methods. Schuster and Gregory (1981) showed that the cross-validation
empirical approach to bandwidth selection is not 'consistent for

Rosenblatt-Parzen kernel estimates of long-tailed distributions.

We use the criterion of minimizing the mean square error (MSE) or
mean integrated square error (MISE) suggested by Epanechnikov (1969;
Rosenblatt 1971). From the estimation section, the MSE for density
estimation is
B[f_(0)-1(x)1% = V() /mb + 0.25 [£(x) 1%} fu(y)yau)?

« o((ab) " 14p2) + 0((1-6)").
=-0.2

This is minimized by choosing b=kf(x)n ; with
" -2 2, =2
[ke(0)]? = v (x) (£ [$w(y)yay] 2

The MISE is minimized by choosing b=k n*0'2, with

f

T
[kf]5 = g‘Vf(y)dy] (e () 2ay])™ [w(y)y®ay) 2.

Similar formulae obtain for rate estimation, with f replaced ty h at
every occurrence. In order to evaluate the constant ka(x) or ka’ a=f,h,
one needs to know the form of the kernel window w(.), the derivative a",
and the variance process V.. We take w(.) to be the "optimal" quadratic
window, w(x) = 1.5-6x°, -0.5¢x<0.5, with w(x) = O outside this interval.
Thus fiz(y)dy = 1.2, fw(y)y2dy = 0.05. For comparison purposes below,
the uniform kernel, w(x)=1, -0.5<x<0.5, is also used. For the remainder

of this discussion, suppose L(T)=6 and S(T) = Y > 6 > o.
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Censoring enters the formulae for ka through the variance. If one
makes the proportionality assumption (ef. Chiang 1968) g(x)=g0h(x) for

some gOZQ, then

?_. - 2 - (80‘1) .

: Voo R HE0 " LY -1)  if g A,
= (w2)(-108()) if g =1.

1 -(g +1)

SV GAeg )™t (r 0 )

If g =0, then both integrals coincide with (4""2)()/'1-1). Thus [ V,
increases as g, goes from O to 1+), and then decreases; j‘Vh decreases
monotonically as g, increases. The effect of non-proportional censoring

will depend on the form of g(.) and h(.) and is not investigated further

here.

Classically, people have investigated the normal case, in which
£(x) = 672 (x2-0%)(2w) " Pexp(-x2/26?), o<x<T,
yielding pointwise constant k.(0)=3.247¢ in the case of a uniform window
(compare with Bickel and Doksum 1977, p. 385). For the MISE, one needs
N2 = 0375w 12675,
yielding kf=3.6866 for the uniform kernel and kf=4.4836 for the optimal
kernel with no censoring. 62 is usually estimated from the data as the
sample variance of the mean survival time. Simulations and data
analysis presented in later sections use the optimal window and the MISE

bandwidth computed from normal theory.

The normal model does not lend itself readily to survival analysis.
Alternatively, we investigate a model with exponential survival and cen-
soring distributions. In other words, for this discussion, h and g are

time-homogeneous. Thus S(x) = exp(-\x) and C(x) = exp(-gokx). For the
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density, this yields I(£")° = 0.50°(1-)°). Thus,
k? = 960\ (1-8)" (-0.5108(8)) if g =1,
= 960\ (1-Y)7" (1-g )7 (1-P/6)  if g_ # 1.

which reduces to BOOA_B in the case of no censoring when Yéo.e. In this

case the bandwidth becomes b = 3.807Ah1n-0'2, with )\ estimated from the
iy

data by the exponential case MLE (cf. Aalen 1978) An = N(T)/ I R(y)dy.
0

The following table indicates how k changes with amount of censoring:
g, 0 o1 .2 &5 .8 1.0
k) 3.807 3.854 3.902 4.062 4.244 4.379
Allowing 8-)0, )2/8->0, T->o0, one finds that the optimal bandwidth

tends to 4.569A-1n°0'2, rather close to that found with normal theory.

The choice of bandwidth for rate estimation appears to be an open
question. Note that one cannot simply use the earlier approach with
constant rate! We decided to simply use the optimal 'density bandwidth
for rate and density estimation. Another approach would be to determine
the bandwidth with Parzen's (1979) "weighted spacings." The advantage of
this would be +that the weighted spacings are constant at 1 under the
null hypothesis H: f=f° for any fo. One could also optimize with

respect to some parametric family of rate functions, such as Weibull.
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lgf Monte Carlo Simulation

Monte Carlo simulation studies are presented for samples from an
exponential survival distribution with exponential censoring. Numbers
came from a log transformation of pseudo-random numbers generated by
ranm, &a function developed &and implemented on the MathStat UNIX (a
trademark of Bell Laboratories) computer system. All computing was done
on their PDP 11/45. The exponential parameters were 1 for survival and
several values between O and 2 for censoring. The effects of censoring
on bias, variance, and the form of the confidence bands are investigated
for individual trials of sample size 200. Empirical distributions with
100 Monte Carlo trials of the maximal deviation statistic rn(Ma—dn) are
investigated at length, with sample sizes ranging from 50 to 500. Ker-

-0'2) are scaled down

nel bandwidths derived from normal theory (4.4836n
by factors of .5, .25 and .125 to compare empirical distributions of the
maximal deviation with the first and second-order fheoretical curves.
Selected results are transformed to plots of theoretical vs. empirical
significance 1level. Empirical 80% pointwise confidence intervals with

100 Monte Carlo trials and sample size 200 are compared +to theoretical

pointwise confidence intervals.

Figure 1(a-b) show the bias of the density estimator fn and of the

(2)

n

rate estimator h for a random sample of size 200 with censor exponen-
tial parameter ranging over 0, .5, 1, and 2. Figure 1(c) shows the rate
estimate bias for the 3 estimators at 50% censor (g=1). Note that h£2)

and hg3) are very similar, and hg1) has bias properties like fn, as

Theorem 4.2 suggests. The remainder of simulations focus upon fn and

n(2),
n
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Figures 2(a-b) show the difference between the theoretical asymp-

totic variance (TAV), its estimate (EAV), and the estimated sample vari-

(2)

i respectively, with a random sample of size

ance (ESV) for fn and h
200. The variances are transformed to log (Va[sz) in order that the

TAV becomes a straight line through O. The formuale for these variances

are
-1 o2
TAV = £f(x)C" (x) [ w
-1 L
EAV = £ (x)C_"(x) [ w
=S -
ESV = b v ((x-y)/b)C_" (y)dF (y)
0

for £ and
n

AV = h(x)L7' (x) I w?
EAV = hr(lz)(x)L;1(x) T W
Sl R 2 -1
ESV = v [ w ((x-y)/b)L_"(y)aH (y)
0

for hgz). Note that the ESV is much larger than .the TAV near O,
reflecting the edge effect of the kernel estimate. That is, the vari-
ance near 0 is much larger than asymptotics suggests. EAV underesti-
mates TAV near O for f due to the bias of fn. The ESV remgins higher
than the TAV and the EAV over much of the range, regardless of the
amount of censoring, as seen in Figure 2(c) for exponential censoring
parameter values 0, 0.5, 1, and 2. (The veariance in Figure 2(c) is
transformed as 1og(ESV/TAV).) The remainder of the simulations use the

ESV to estimate the variance.

Simultaneous confidence bands are shown in Figure 3(a-d) for den-
sity and rate with symmetric and asymmetric form. Note the increased
dispersion implied with increased censoring, reflecting the earlier

results about the variance. The constant rate estimates are drawn for
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comparison, indicating that the goodness-of-fit test (Section 8) would

not reject a constant death rate.

Empirical distribution functions (EDFs) of the maximal deviation
statistic were computed from 100 Monte Carlo trials. These were random
samples of non-censored data, except in the case of Figure 7 below. The
EDF for the rate deviation is compared with the theoretical curve
exp(-2e-x) in Figure 4(a) for sample sizes 50, 200, and 500. Note the
slow convergence. Figure 4(b) shows these‘same curves transformed to
significance level; the theoretical curve is the diagonal. The lower
triangular area corresponds to ‘'conservative" theory, that is theory
which yield a larger significance level than reality. Thus one supposes
that the confidence bands of Figure 3 are wider than necessary, although
the effect of +the deviation depends on the relative magnitude of
dn and x/rn (see Section 8). Now dn=rn+log w*/rn, with log w* = -.6866.
The following table shows that T does not change mucﬁ over a wide range
of n:

n 200 500 1000 10000 10°
T, .2655 .6611 .B452 1.2788 4.158
Figure 4(c) shows the EDF of times of maximal deviation, indicating a

slight buildup near O, but fairly even distribution elsewhere.

Figures 5(a-f) investigate the rate of convergence of f and hﬁz)
as a function of bandwidth, reducing the bandwidth by a factor of 2 for
each new curve with the sample size remaining at 200. Note that the
convergence to exp(-2e_x) is fairly rapid compared to the convergence in
n. It should be noted that the normal theory bandwidth b=4.4830n'o'2

with n=200 1is ©practically as large as the interval [O,Tn], with
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T=L-1(O.2)=1.6. This is reflected in the EDF of times of maximal devia-
tion, particularly for the density (Figure 5(f)). However, Figure
6(a-b) show what happens to the bias as the bandwidth is reduced--the
compromise of greater agreement with the asymptotic distribution for

greater bias is probably not a desireable one.

Figures 7(a-b) investigate the effect of censoring on the distribu-
tion of maximal deviation. These Monte Carlo simulations were performed
with sample sizes of 200 and bandwidths 1/4 normal theory, that is
b=1.1210n""'2, Note that the curves for 50% censoring (h=g=1, long dash
lines) are slightly above those for the non-censored data. They may be
significantly different with a Kolmogorov-Smirnov test; however, a

detailed analysis of any such difference awaits more in-depth Monte

Carlo studies with several sample sizes.

Figures 8(a-b) show the shape of the Konakov-Piterbarg (1979)
second-order expansion of the limiting probability and its relation to
the double exponential. The curves depend only on bandwidth and window
parameters. A comparison of Figure 8(a) or 8(b) with those of Figure 6
suggests that the expansion may overcorrect, at least for exponentially
distributed data. Figures 8(c-d) show the relative difference between
the Konakov-Piterbarg theoretical significance level and the empirical
significance level for density and rate, respectively. Thus in practice
one should have the second-order correction, and maybe even a third-
order one to insure some semblance of the correct significance probabil-

ity for a simultaneous confidence band.

Empirical 80% pointwise confidence bands were derived by dividing

the +time axis into 32 equal probability intervals, 0.025 to each using
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upper cutoff point T=-log(0.2). Compare the empirical bands in Figure 9
with the symmetric and asymmetric normal theory pointwise 80% confidence
intervals indicated by the dashed lines on the figure. The "liberal"
nature of the theoretical bands may reflect two things: (1) the TAV was
used, thus underestimating the variance; (2) the empirical bands are not
precisely pointwise, as they represent maxima over small intervals.
Note the slight asymmetry of the empirical bands, suggesting that the

asymmetrical bands might in fact be preferred.
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1. Data Analysis

This section addresses certain inference questions regarding the
survival of mice exposed to radiation. The data come from a survival
experiment with serial sacrifice, designed to investigate the effect of
a treatment, in this case 300 rads of gamma irradiation, on animals in
terms of the time course of pathological states (Upton et al. 1969).
Animals in two groups, treated and control, died naturally or were
sacrificed. The data consist of time and mode of death, and the pres-
ence or absence of a finite number of pathologies. There were 1080 con-
trol mice and 1454 treated mice, in which 361 control and 343 treated
mice were sacrificed. The pathological states are not used in the

present study. We investigate the following questions:

(1) By treatment group, is the death rate constant over the experiment?

What do the death rates look like?
(2) Do death rates differ between treated and control groups?
(3) 1Is the frequency of sacrifices constant over the experiment?

The last question arises because in some experiments the frequency of
sacrifices in the future may depend on the history of deaths up to the
present. Although this is not indicated in the current experiment, the
methodology of choosing mice for sacrifice is not explicitly stated in
the documents at our disposal. Some people have suggested that the
sacrifice times appear nearly gamma distributed (J. Neyman and Estie Sid

Hudes, pers. comm.).

The estimates used are Rosenblatt-Parzen kernel estimates, either
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(2)

f orh
n n

defined earlier, with the quadratic window and bandwidth com-
puted by normal theory. Simultaneous 80% confidence bands were derived
using the estimated sample variance (ESV) and the results of Theorem

T7.1. Estimates are plotted as dashed lines, with solid line confidence

bands. Constant rate estimates, if present, are long-dashed lines.

Kernel estimates of control and treated group survival rates are
plotted in Figure 10(a-b). One sees that the control death rate is
definitely increasing with age, as compared iith the estimated constant
rate of .945x10_3. One could perhaps fit a Gompertz-Makeham rate
(n(t)=a+d") or a Weibull rate (h(t)=pat® '), but the general shape of
the curve is fairly well determined, without parametric assumptions.
The kernel bandwidth for the control group is 153%.6 days. The treated
group death rate also increases, clearly rejecting the hypothesis of
constant rate (estimated at 2.33x10-3). The treated kernel bandwidth is
181.2 days. One sees that it would be difficult to fit any of the stan-
dard parametric models because of the constant, or possibly decreasing,
section of the treated death rate between 250 and 400 days. One might
postulate an early death rate increase due to radiation, leveling off in
middle age, and picking up again as the mice get old and susceptible to
a variety of pathologies. These fine points might be missed if one only
studied the survival curve (see Figure 10(c)), for the changes in slope

of the rate function appear as only slight bends in these curves, except

for the sudden decrease in treated survival.

Treated and control group rate estimates are shown together in Fig-

ure 11, computed for common bandwidth 169.4 days and Tn=544. with a
1/2

simultaneous confidence band weighted proportional to n; about each
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curve. Clearly they are different. One would undoubtedly find a
difference with any test, but non-parametric tests such as this have the
advantage that the difference detected is tied to much weaker assump-
tions about the unknown survival curve. One sees that the net additive
effect of gamma dirradiation to the death rate increases except during

the middle age range.

Some question arises as to whether serial sacrifices can be con-
sidered as random right-censoring. As the author understands, sacri-
fices for this experiment were scheduled to occur with a roughly uniform
distribution over +the entire course of the experiment. The data indi-
cate that sacrifices occurred every few days, with usually 1 and at most
9 sacrifices on any given day. My understanding is that on a sacrifice
day a mouse was chosen at random from among those living and sacrificed.
However, 1if one views sacrifice as fixed censoring, see the concluding

remarks of this paper.

Figure 12(a-b) investigate the frequency of sacrifices (i.e. cen-
soring densities) of control and treated groups. The frequency of
sacrifices in the control group is not significantly different from a
constant frequency. However, it does &appear to dip down and then
increase in the last 150 days. For the treated group, the frequency of
sacrifices appears constant for 3-400 days, after which it increases
significantly. Thus it appears possible that the frequency of sacri-
fices increases in the last 150 days or so, perhaps a clean-up effort by
the experimenters to examine the long-lived mice before they died of
some complication of pathologies. However, only 145 control and 13

treated mice lived beyond 700 days. Similar results obtain by examining
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the censoring rates.

Many questions of inference remain unanswered with this analysis.
Although one cannot identify the transition probabilities between patho-
logical states (Clifford 1977, 1982) or the léthality of pathologies
(Neyman 1982; Yandell 1981), it is possible to measure the prevalence of
pathologies, Pi’ and the pathology-related mortality rates . However,
these do not exactly look like densities or rates, and require a more
sophisticated approach than is possible in this paper. The author

intends to pursue this problem further in the near future.
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12. Conclusion

We have presented a class of "delta sequence", or "kernel", estima-
tors of the density and rate functions of a survival process in the
presence of censoring. These generalize estimators proposed by Rosen-
blatt (1956) and Watson and Leadbetter (1964ab) and are seen to be
asymptotically unbiased, strongly consistent, and asymptotically normal.
Through a series of strong approximations, the asymptotic distribution
of the maximal deviation of an estimate from its true value was derived,
leading to simultaneous confidence bands and graphical tests. Theory
and simulations indicate the desireability of second- and perhaps
third-order expansions of +the 1limiting distribution, due to the slow
convergence rate of these maximal deviations. Data from a survival
experiment with serial sacrifice was briefly analysed, indicating a
large treatment effect without making unrealistic assumptions about the
form of the survival distributions. These tests éemonstrate that for
moderate sample sizes (say 1000 or more) one can do rather well with
inference about rates or densities with right censoring. We conclude

with a few remarks about extensions and further work.

1. In a multiple decrement or competing risks model, one wishes to draw

inference about the rates hi' i=1,¢..,1. A natural estimate would be

the generalization of h(2),
n
%
hl;n(X) =E|) Km(X,Y)dHl;n(y), 1=1’...’:[

in which Hi'n is the empirical cumulative rate for event 1i. Aalen
?
(1976, 1978) showed that IHi_n, i=1,...,I} are asymptotically indepen-
L
dent under assumptions that hi are continuous and that the events

i=1,...,1 are mutually exclusive. Thus, since h, depends only on H,
i5n 1gn
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and the sure function Km’ one has asymptotic independence of {h ,

isn
(2)
n

i=1,...,I!. The properties of h extend to these estimators in a

natural manner.

2. Censoring has been assumed tc be random right-censoring for this
work. The results of Meier (1975) and the comments of Breslow and Crow-
ley (1974) and Aalen (1978) indicate how one could proceed in the case
of fixed right-censoring. The main point where this presents a problem
is estimating C consistently by Cn in Proposition 6.1 (Foldes and Rejto
1981 assume continuous C). However, if one knows the censor form, then
it may be incorporated directly. The assumption S8 that G=-logC has a

continuous derivative may be replaced by

S8'. The jumps in G are uniformly bounded over [0,T]. That

is, |4G|<M for some M<oo.

Then one needs to replace jg(y)idy by |dG(y)| at every occurrence in the

proof of Proposition 6.2.

3. The case of rate inference for a multivariate counting process with
arbitrary censoring deserves some attention. Guttorp (1978) began work
on this problem, and joint efforts continue with this author to general-
ize results presented here. Lo (1980b) investigated the problem from a
Bayesian standpoint with gamma priors. Comparison of the classical and

Bayesian approach seems in order.

4. The stages of disease model presented by Chiang (1979) appears to be
a useful and identifiable model for biological applications. Here the
risk set for stage i+1 consists of those survivors in stage 1i. This

model begs generalization from proportional transition rates to the case
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of arbitrary (continuous) transition rates. The work of Fleming
(1978ab) is relevant to this problem. The author plans to investigate
this in the context of a "stages of herbivory" model of damage to leaves

by insects, joint work with Suzanne Koptur.
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A. Apgendix

A theorem of Piterbarg (1978) on the asymptotic expansion of maxi-
mal deviations is used in conjunction with the proof of a theorem of
Berman (1971) to derive a third-order correction to the distribution of

large excursions of stationary Gaussian processes.

Let X(t), O<t<T, be a stationary Gaussian process with zero mean

end unit variance. Let jﬁx‘}2<oo, j1x":2

<po. Define the covariance
function r(t)=EX(s)X(s+t), with r(0)=1. Let N(.) be the standard normal
distribution and n(.) the standard normal density.

Theorem F (Piterbarg 1978). Let X be defined as above, with the follow-

ing conditions satisfied:

(1) The determinant of the covariance matrix of {X(t),X'(t),Xx"(t)} is

uniformly bounded away from O.

(2) For =all t1¥t2, the distribution of the six-dimensional vector

{X(ti), X' (1), X"(t,), i=1,2} has a density.
(3) There exist ¢>0 such that for all t, |t{<c implies r(t)>cos(t).

Suppose r(.) has the form

6 5 utPren 4 6le®), 30,

r(t) = 1 - t2/2 + ct?/41 - Dt
Then there exists To>0 such that for all ?5?0,
Px(u,T) = N(u) - T(2 )_1/2n(u) + k(C,D)Tu_Sn(u(1-1/C)'1/2)(1+o(1))
as u -> 00, in which k(C,D) = [27(c-1)%/32421"/2 (0-c®)™" > 0, and

PX(U,T) = Pr{ max X(t) < u}.
0<t<T -

Note that Theorem F is only valid for T<<u. To extend to large T

one needs an argument such as that given in Berman (1971). We adapt his



B9

results in the following

-1/2

Theorem A.1. Let X be as in Theorem F. Let GH=Tn(u)(2Tﬂ for fixed

u. Then

Px(u,T) -> expi—ca[1-(d1/T)1/(C_1) m"5 kz(C,D)]} as T -> 00
in which kz(C,D) is a constant times k(C,D).
Proof: (sketch)
The proof follows along the lines of that of Theorem 7.1 in Berman
(1971). One divides [O,T] into disjoint intervals of length t, 0<t<1.
Each of these intervals is subdivided into two intervals of lengths +tb
and t(1-b), O<b<1. It 4is shown (Berman 1971, equation 7.4) that the
maximum over half of these intervals, those of the form

I, = (3t (a0t),  g=t,.. T0/t],
is close to the desired maximum over TO,T]. Berman shows that one may
effectively treat the variables

Mj = max {X(s) ; jt < s < (§+b)t}, j=1,.‘..,[T/t:|,
as independent. They are identicelly distributed by stationarity of X,
and have distribution given by Theorem F (which supercedes Lemma 2.2 of
Berman 1971). Thus,

Px(u,T) = {Px(u,tb)}[T/t] (approximately)

= {N(u) - (t/T)b0‘1[1-(T/o'1)1/C Tu™? k2(C,D)(1+o(1))]}[T/ﬂ
= exp{-bd}[1—(T/0})1/c T kE(C,D)]] as T -> oo.

Now as b is arbitrary, let b->1. One finds that

k(D) = k(c,p)(2m'*>""/C,

-1/2

which can be seen by equating k(C,D)n(u(1-1/C) ) and

k,(C,D)(o, /myt=1/¢,
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Figure 3(b)
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Figure 3(c)
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