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ABSTRACT 

This paper refers to the methodology of the survival experiment with serial sacrifice. In 

a finite-state, continuous-time model of this experiment, transitions between “illness states” 

are nonidentifiable. Tumbull and Mitchell proposed a methodology based on the “ap- 

proximating assumption” Al that changes in illness state can only occur at discrete times, 

This assumption identified lethality, i.e. the conditional probability of death in an interval 

of time, given that the experimental animal is alive in a specified illness state at the 

beginning of this interval. However, the TM-BT method of evaluating lethalities can lead to 

conclusions deviating substantially from reality when an animal has a high enough 

probability of contracting an illness and dying in an interval of time. 

1. INTRODUCTION 

The survival experiment with serial sacrifice was designed to investigate 
the effect of a treatment, such as radiation or chemical exposure, on animals 
in terms of the time course of pathological states [IO]. Typically two groups, 
control and treated, are maintained under similar laboratory conditions and 
observed daily. Animals die naturally or are withdrawn, i.e., sacrificed or 
killed accidentally, and are examined at death (autopsied) according to a 
presumably fixed protocol [2]. The data are age at death, mode of death, and 
illness state, i.e. presence or absence of a finite number of elementary 
pathological states. 

Analysis of the survival experiment with serial sacrifice requires assump- 
tions to reduce the dimensionality of a statistical model. Peter Clifford [l] 
shows that, within the context of a Markov illness-death model, transition 
intensities between illness states and to death are nonidentifiable. Thus in a 
more general model in which transitions may depend arbitrarily on past 
events, they remain nonidentifiable. Toby J. Mitchell and Bruce W. Turnbull 
[4, 91 introduce the “approximating assumption” Al, stated in Section 2 
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below, forcing all live transitions to occur only at endpoints of age intervals. 
Lagakos and Mosteller [3], in a similar vein, suggest that the interval between 
withdrawals should be short enough that an animal without a tumor is not 
likely to develop one and die during the interval. 

The subject of this paper is lethality, i.e. the conditional probability of 
death in an age interval, given that the experimental animal is alive in a 
specified illness state at the beginning of this interval. Jerzy Neyman [6] 
suggested that the serial-sacrifice methodology does not provide sufficient 
data to answer the question: how frequently do animals, for instance mice, 
suffering from leukemia at age 400 days die before 450 days; that is, how 
lethal is leukemia to 400-day-old mice? During a SO-day interval, as in the 
example of TM-BT [4], an animal may contract an illness, have complica- 
tions, and recover or die [5]. Thus assumption Al, which identifies lethality, 
is unrealistic for this experiment. 

My own purpose is to show that lethality is nonidentifiable in the survival 
experiment with serial sacrifice under a model which weakens Al. I demon- 
strate with numerical examples that the methodology of Mitchell and 
Turnbull [4] may yield misleading results in some realistic situations in which 
their assumption does not hold. 

2. MODEL AND IDENTIFIABILITY 

This section presents a model of illness and death which has a Markov 
chain imbedded at age epochs t,, . . , t,,,+ , . The process during an interval 
between epochs may depend arbitrarily on earlier events in that interval, and 
hence may be non-Markovian. This model generalizes those of Clifford [I] 
and Mitchell and Tumbull [4]. I define lethality and other model parameters 
and show that lethality is nonidentifiable. 

Let age and time be synonymous. Partition age into M intervals by 

t,,...,t,+,. Let illness states k = 0, 1, . . . , K - 1 represent the K = 2’ combi- 

nations of f elementary pathological states. I assume 

AOChanges in illness state and death transitions during an interval 

(t,, fm+l Idepend on the past, i.e.( t,, t,], only through the illness state (k) 

and the last age epoch t,. 

A1’(i) Ch an g es in illness state can occur at any age. 
(ii) Withdrawals are made only at t, + , t,+ , . . . , t,+. 
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A0 is implicit in the TM-BT methodology, while Al’ is weaker than the 

assumption [4] 

Al(i) Illness-state changes are made only at t,,t,,...,t,. 
(ii) Withdrawals can occur only at t, + , t,+ , . . . , t,,,,+ , i.e., immediately after 

the illness state changes. 

Now focus upon one group (treated or control) and one age interval 
(t,,,, t,,,]. I reparametrize and follow TM-BT [4] in definingpreuafence pk, 

lethality qk, and mortality r,, k = 0,. . K - 1, as 

pk = Pr{in state klalive at t,,,+}, 

q,=Pr{diein(t,,t,+,]laliveatt,+instatek}, 

rk =Pr{diein (tm,tm+,] instate k)alive at t,+}. 

One sees that 

pkqk=Pr(diein(t,,t,+,], instatekatt,+]aliveatt,+}, 

and hence pkqk = r, under Al, but not in general. 
The data consist of “natural” deaths ( dk) and withdrawals ( wk) for the 

i th treatment group during the m th age interval in illness state k. Survivors 
(s) cannot be categorized by illness state. 

With arbitrarily large sample sizes, one can determine the survival proba- 
bility and the mortalities r, from deaths and survivors, and prevalence pk 

from withdrawals, The log-likelihood, under Al’, for the response variables 

(d, w, s) is 

slog(l-r)+z[d,logr,+w,logp,] 
k 

up to an additive constant, with r = 2, r,. Now focusing upon the case k = 2, 
one sees that 

Thus although rk and pk are identifiable, qk is not in general under Al’. One 
needs to know the transition probabilities 

Q,,=Pr(diein(t m,tm+i ] in statej(aIive at t,+ in state k} , 
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k, j = 0,l. These imply the following relations: 

ro = ~040 + P,Q,o - POQO, 3 

r~ ‘PI41 +POQOI -PIQIO. 

Clifford [I] showed in a Markov illness-death model that live transition 
probabilities are nonidentifiable. In a similar manner one sees that Qk, and 
qk are not identifiable under the model specified by A0 and Al’. Thus in this 
model the lethalities are nonidentifiable. 

3. EXAMPLE 

This example uses data and estimates from Table 2 in BT-TM [9] for the 
400-day-old mice during the succeeding 50-day interval. For the purpose of 
discussion, I assume the true pk and qk coincide with their estimates and 
ignore questions of estimation. Table 1 presents the model parameters 
collapsed to presence/absence of endocrine tumors, using the relation r = pq 

under assumption Al. Note that lethality is highest in the treated group with 
endocrine tumors (q = 0.2991) and lowest in control, no tumors (q = 0.0436). 

Now consider a progressive model with K = 2 live states, that is, a model 
in which an animal cannot recover from an endocrine tumor. Suppose Al 
holds for the controls but not for the treated animals. For the treated group 
one has (Qlo = 0) 

ro=Pdq0-Qo,), rl = ~~~~~ + plql 

The ratios rk/pk take the form 

;=qo-Qo,. z=q,+Qo,f. 

This is quite different from the Al relations, in which Q,, = 0 and qk = r, /pk 

TABLE I 

Endocrine-Tumor Estimates under Al” 

Tumor Prevalence p Mortality r Lethality q 

state c t c t c t 

0 (no tumor) 0.9936 0.9348 .0433 .I663 .0436 .I779 

I (tumor) 0.0064 0.0652 0015 .0195 .2344 .2991 

Total 1.0 1.0 .0448 .1858 - 

“Derived from Table 2 of [9] by summing over prevalence and mortality 

(calculated as r = pq). Lethality was then calculated as q = r/p. 
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for k = 0,l. Note that in this example Al would force us to overestimate the 
lethality among tumor cases 4, and underestimate it among nontumor cases 
q. in the treatment group. Thus one sees that if the probability of getting 
leukemia and dying in an interval, Q,,, is large, or if it is small and the 
prevalence p , is small, then serious discrepancies between qk and r, /pk may 
occur. 

Table 2 presents what the results would be over a range of Q,, values for 
treated and for control animals. Note that tumor lethality drops below 
nontumor lethality as Q,, increases. If Q,, is 0.02 for treated and 0 for 
control animals, then the smallest lethality would be among treated animals 
with tumors, indicating that treatment (300 rad of gamma irradiation) may 

be good for the mice. If instead Q,, is near 0.01 for treated and 0.001 for 
controls, then endocrine tumors appear nonlethal, whereas they would seem 
comparatively lethal under assumption Al (see Table 1). 

4. CONCLUSION 

One can see from the example that inference based on the TM-BT 
methodology may yield misleading results when assumption Al is not valid. 
A test of the hypothesis that lethalities do not depend on treatment [4] is not 
sensitive to illness transitions which may occur before death during an 
observation interval. The same problem arises for a test of nonlethality or 
“rapid lethality” [3]. One could construct the intervals between withdrawals 
to be small relative to changes in illness state, in order for Al to be 
approximately valid. The reader must consider the ultimate use of the model 
parameters. If one is interested in testing rapid lethality, then this approach 
may prove useful [3]. However, one needs sufficient knowledge of the 
pathologies, often unavailable in such a study, to determine the appropriate 
interval spacing. If one wishes to draw inferences about long-term lethality 
over intervals which violate Al, then another approach is merited, such as an 
extended serial-sacrifice, or serial-monitoring, methodology in which individ- 
uals are monitored several times while alive [5, 61. The question remains: how 
should one monitor the health of mice, or humans, and how can one properly 
analyse such data? 

TABLE 2 

Endocrine Tumor Lethalities under Al’ 

State/Q,, 

Treated Control 

.01 .02 .ooo5 ,001 .0015 

0 (no tumor) .I879 .1979 .044 I .0446 .045 I 
I (tumor) .I557 .0124 .I568 ,079 I .0015 
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