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ABSTRACT

This paper gives consistency results, asymptotic distributions,
and confidence bands for nonparametric regression curves based on
data subject to random right censoring. Two of the nonparametric
estimates, Beran's running product limit median and a running
product limit mean, are compared with the Cox regression estimate
and a least squares type estimate using the Stanford heart

transplant data.

. INTRODUCTION

We consider experiments in which a response variable T, such as
survival time or failure time, is subject to random right censoring
l""’zp’ such as
age, sex, and so on. The object is to investigate how the

and has a distribution depending on covariates Z

Z
70 er08ye
Cox (1972, 1975) did this by letting the power parameter A in
Lehmann's (1953) model 1 - (1 - F)A be a ¥nown function of

P
b3 sz" where Bl""’Bp are regression parameters. Miller

J=1
(1976); Buckley and James (1979); and Koul, Susarla, and van Ryzin

(1981) used a log-linear model involving p+l linear regression

distribution of T is influenced by the covariates 2
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- %—e_z mx sin mx, 0<x <2
gia) = 5
xe (2 - x), x2>2.
Therefore,
(=] oo 2
J lg'(y)/vyldy = J e V(2 - y)y = -e
2 2
and
2 2
1 - . -
J g'(y)/yldy = -5e 2 J sin my dy = e 5
1 1

Since g'(x) <0 for O < x <1, it follows that g satisfies

(3.10).
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type parameters to model the dependence between T and Z 9 Z_

preeealy

Recently, Beran (1981) introduced and proved strong consistency
of nonparametric estimates of the conditional survival distribution
S(t|z) = P{T > t|Z = z} and of the median m(z) of this

distribution, where Z = (Z .,Zp) is the vector of covariates.

pana
In this paper, we cons%der estimates of the nonparametric
regression surface u(z) = E(T|Z = z) under conditions where this
function is identifiable. We give conditions under which the
estimates are consistent and, in the case of one covariate =z and
censcring independent of that covariate, derive the asymptotic

distribution of sup [ﬁ(z) - ﬁ(z)l appropriately standardized and
z

give simultaneous confidence bands for u(z). These bands are
especially useful since they give an indication of how reliable
the estimates of u(z) are as well as make it possible to test
whether a log-linear model or Cox-type model is correct.

The conditional probabilities we deal with are determined up
to a null set of zs. In order to avoid writing "almost all =z"

throughout, we assume that the zs we consider are in the

complement of this null set.

24 CONSISTENT ESTIMATES

2.1 The General Case

We suppose that we have available a random sample of n subjects
with the dith subject having failure time Ti and covariates
Zil""’zip' In experiments with censoring, not all the Ti are
cbserved. Instead we observe Yi = min(Ti,Gi) and

100
I is the indicator funetion. It is assumed that {(Yi,Ji,Zi),

Ji = I[Ti_i Ci]’ where C .,Cn are censoring variables, and
i=1,...,n} are i.i.d. with the same distribution as (Y,J,Z),
where Y = min(T,C), J = I[T < C], and Z; = (Zil""’zip)'
Moreover, it is assumed that T and C are conditionally

independent given Z.
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Beran's (1981) running product limit estimate (the BRPLE) of

the conditional survival function S(t|z) is

s (t]z)= T [1-X, (2),
theit {le <t} Ik
J
where tl € e S tr, r < n, are the ordered distinct observed

failure times,

#[ti:tj, iEg Ik(z)]

A, (z) = - s

Jok

and Ik(z) zre the indices of the k nearest neighbors of z.
More generally, suppose Un(t|z) and Vn(t|z) are strongly

uniformly consistent estimators of
U(t|z) = P{Y>t|z=2} and V(t|z) = P{¥>t, J-1|z=z} .

Beran shows that estimates of the form

S(tlz) = T [1-2x.(z)1,
= {j[tj<t} J

with
ij(z) = [ﬁh(tj|z) - vh(tg|zi] /Un(tj|z)

are strongly uniformly consistent over [0,1(z)) for any
(z) < T(z), where T(z) = sup{t : U(t|z) > 0}. In particular,
this uniform consistency holds for the BRPLE Sn,k provided that
kx +o and (k/n) >0 as n =+ o,

One regression type function that measures the influence of
the covariates on survival is the median m(z) of the survival

function 8(t|z). Let

noj=
—~

m(z) = inf{t:5(t]z) <

(2T )

o=
—t

sup{t:58(t|z) >

m (z)
be the upper and lower medians of S(t|z), respectively. Then the

conditional median survival is defined by
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m(z) = 3[m'(z) + m(2)]. (@.2)
Beran shows that if m (z) is the estimate obtained by
replacing S(t|z) by Sn tlz in (2.1) and (2.2), then

mn(z) ARy m(z)

provided S(t|z) has a unique median m(z)
satisfying m(z) € [0,T(z)).

We next consider estimates of the regression funection

w(z) = E(T|2z=2) = = f tds(t]z) = f S(t]z)dt
0 0

where we assume that the integrals exist, and, in order to ensure
that wp(e+) is identifiable, we assume that

sup{t:S(t|z)>0} < sup{t:G(t|z)>0} (2.3)

where G(t|z) = P(C > t|z) is the conditional survival function
of C. Note that under this assumption, sup{t:S(t]|z) > 0} = T(z).
A natural estimate of u(+) is defined by

b (z) = f 5 (¢]2)at.
0
Theorem 1. Suppose that T(z) < =, and that the preceding

assumptions of this section hold; then pn(z) ~ulz) a.s. as

n -+ o,

Proof. ILet € >0. Note that

lu (z)-u(z)| < sup |s (t]z)-S(t]z)| [T(2)-3€]
0<t<T(z )-3€
T(z)
+ |S (t]z) - S(t]|z)|at.
T(z)-2¢ =

From Beran (1981), we can choose N such that the first term on
the right is a.s. bounded by 2 € for n > N. The second term

¢ for all n and thus the result follows.

Nl

is bounded by
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2.2 Independent Censoring Variables

Next we turn to the case where the censoring variable C is
independent of the covariates Z. We let G denote the survival
funetion G(t) = P(C > t). The comstruction of our estimate is

based on the following.

Lemma. If C is independent of (T,Z), if (2.3) holds, and
if ulz) exists, then E[JY/G(Y)]|Z = 2] = w(z).

Proof. Using our independenée assumption, we find

E [E(J% |Z=z:{ = E {E [%7 |E, z=z:l lZ=z}

Next, note that

JY " 9
E (C’('Y—T | T=t, z—z>

1]

It < CHt A C)|m _
E{ o) | 7=+, Z—z}

gy LE=CIL %t pi1rs<o]) = ¢
G(t) Gl(t) —
The lemma follows from this.
Let Gn denote the Kaplan-Meier (1958) product limit estimate
of G; +the lemma suggests the following estimate of n(z):
J.Y,
174

(z) Eh:Yi:.

W=

u(z) =
1€ T,

To show the consistency of u(z), we write

divd
171

Mz)-uwz) =5 Y |gpy - M)
; i€ I,(z) =

L 1 1 _
E ) JiYi[m"m]“H
. n 1 1
1€Ik(z)
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Using the arguments of Beran, we can show that for any (z)

satisfying 1(z) < T(z),

sup |G (t) - a(t)] + 0 a.s.
Ojﬁij(z) =
Since
L, ) - e )

G (t) T T) - C_(DE)

then it follows that

e ‘“T"T 'T"T 5o

o<t<t(z)

provided only that G(t(z)) > 0. Since, by ordinary nearest
neighbor regression theory (for example, Collomb (1979)) and the

Lemma,

%. E: —T——Tl*u(z 8.8, (2.4)
ig I (z)

we find that II - 0 a.s. uniformly under conditions where (2.4)
holds.

Note that I can be rewritten as

Ai = U(Z) 3

i€ Ik(z)

==

where A, = JiYi/G(Yi) and E(Ai) = u(z). Thus the convergence
of 1 can be handled by the theory of ordinary (uncensored)
nonparametric regression [for example, Stone (1977) and Collomb
(1979)1.

Theorem 2. Suppose that C is independent of (T,2), that
a{t(z)) > 0, that the conditions 02 of Collomb holds for
(Al,Zl),...,(An,Zn) and that k/n + 0, k/(log n) + =. Then,
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sup |u(z) - w(z)| ~ 0 a.s.
0<t<t(z)
Note that by using Stone (1977), we can obtain L3

convergence, 1 < g <, under much weaker distributional

assumptions.

B WEAK CONVERGENCE

We assume throughout this section that p(z) exists, (2.3) holds,
p =1, and that C 1s independent of (T,Z).
In order +o establish the asymptotic distribution of ﬁ(z),

consider the decomposition

i ol
1 4

Z[U(Zi) - u(z)] + % E cemi M(Zi)

~

u(z) -u(z) -

w1

=i

1 1 -
R AA [?;(?;7-- GTY;f] I+ IT+ I

in which the sums are over the set Ik(z). Part I converges to
i
sero a.s. at the rate (k log n) > [Révész (1979, Lemma 2315
F&ldes and Rejtd (1981) showed that
x
sup |Gn(t) - &(t)| = 0((log n/n)*) ,
0<t<a &
provided S(+) and G(+) are continuous and bounded away from
0 on a finite interval [0,a], where 5(t) = P(T>t). One can
readily show that sup[G;1 = Gw1| is of the same order. Now, by
ordinary nearest neighbor theory, for example Collomb (1979), under

ap DI OpI 1a te COIldl thl’lS )
]: 5 Xt-J:-/G(Y-) p‘(z) d.5.

1
It follows that III = Op((log n/n)?).

For 1T we need to examine the distribution of W = YJI/G(Y)
- u(Z). Let H(w) = P(W>w|Z=z), where it is assumed that
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P(W3w|Z:z) does not depend on =z. (3.1)

We now have the necessary approximations to prove by analogy

the central result of Révész (1979),

Theorem 3. Assume that (Yi,Ji,Zi) are 1.1.d. as above, with

0<2<1, and the density of Z bounded away from 0. Assume
1

also that |u | <s uniformly bounded, that (3.1) holds and that

oo
J Xt an(x) <= for |t] <t, <=, some t, > 0.
0 0 0

2/3

Let k> ags n~+® in such a way that ¥n ~/“log n + O,

(log n)B/k + 0. Then

Plk’o™ sup |i(z) - u(z)| < B(n/k,y)} > Ay)
O0<z<1
“'y/2)

3

where Aly) = exp(-2e

o=

B(u,v) = (2log u + log log u - log m + Vv)®, u>e,

and 02 18 the variance of W.

A natural estimate of 02 is

n
2 _1 P o 2
of == T (W, -uz))
i=1
A 2 ~2
where W, = J.Y./G (Y.). Note that ¢~ =0~ + R where
i i1 n' 71 n n n
n
~2 1 ~ 2
oL== ) D = WE ]
i=1
~ ik

T
€ Ik(z)

and the remainder term is of order at most the order of ||G_ - G||
n

provided

1 2 2
-lz Z Wi -+ a a.8.,

i€ Ik(z)
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which can be obtained from Collomb (1979). By Fdldes and Rejto
(1981

), R = Op((log n/n)*). Thus there exists N > 1 such that
for n > N,

n
'\f 1~o—g—n [RI][ i K a.8., K < oo,

So, for n > N,
2
n
P(’ = - 5
a
by Révész (1979), Lemma 6.
Finally, it should be noted that Révész uses a slightly

> (4log n/vn) + KVML_) < "%
n

vn -

different nearest neighbor estimate, where Ik(z) is replaced by
Ik(z), which is the set of indices giving the /2 nearest
neighbors on the left and the /2 nearest neighbors on the
right, k even.

With this modification we find

Theorem 4. If the conditions of Theorem 3 hold, 1f 0 and o,

is defined using I, (z) instead of I,(z), then the conclusion

k
of Theorem 3 holds if o 1is replaced by 0 e

4. APPLICATIONS

Nearest neighbor estimators are compared with the proportional
hazards (Cox, 1972) and the least squares (Buckley and James, 1979)
estimators using data from the Stanford heart transplant program.

We examine average (mean or median) survival time after transplant
given the covariate of age at transplant. Patients alive beyond

the span of available observations, October 1967 to February 1980,
were considered as censored. For purposes of compariscon with Miller
and Halpern (1981), we restrict our attention to the 157 out of 184
cases who had complete tissue typing. The data are displayed in

Table A of Miller and Halpern (1981).
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During the Stanford heart transplant program it was found that
younger patients had better survival after transplant. This in
turn may have affected screening of patients in the later years
of the study (R. Miller, personal communication). A drop in
median age at entry can be seen in Figure 1 as the patient number
increases. Thus it appears that censoring time depends on age.

The estimators Un and m used below were derived under this

assumption.

78

Sa

48

38

Age at Entry (in years)

28 *o

B 28 40 6a 80 iee 128 148 168

Patient Number (chren.)

Figure 1. Regression of age at entry on patient number (n = 157).
Patients are numbered chronologically from October 1967 to Febru-
ary 1980. x = dead by 2/80; 0 = alive at 2/80. Line is running
median (k = 20) regression of patient number on age at entry.
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The nearest neighbor regression estimators first considered
are the running censored mean un(z) and the running censored
median mn(z) of Section 2.1. In this section, we used the
modified product limit estimate, where the last observed time,
whether it is a survival time or censoring time, is treated as '
a survival time (Efron, 1967). Several choices of k were tried,
with Xk = 40 being a happy, but heuristic, medium between a very
rough and a very smooth curve. Tied entry ages were included in
nearest neighborhoods, bringing the number of neighbors above 40
for many points. This ad hoe solution seemed preferable to
selecting a subset of ties, and it washes out in the asymptotics.

The Buckley-James (1979) estimator is drawn directly from
Miller and Halpern (1981, Table 1). That is,

E(log TiIZi) =a+Zb

with a = 3.16 and b = -0.013. The median survival time under
the Cox (1972) model is found by solving (Miller and Halpern, 1981)

non exp(zé) i
SO(mC(Z)) = =
for ﬁc(z). Here R = 0.028 and

t,.
-log So(t) = J Ao(u)du ,
0
with

A(u) = d | (b - ts ) (z,8) |t
0 v i [: i i-1 0 R(ti)}exp J .]

for ti- <u < ti, in which t. < t, < ... < tr are the ordered

distinctluncensored observationsland Zdi is the number of deaths
at 1. R(t) = {j[Yj >t} is the risk set at time t, and zj
is the covariate for the patient with survival time tj.

Figure 2 presents the Buckley-James, Cox, and running median

(k = 40) regression estimates relating survival time to age on log
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seale. Note that by design the linear Buckley-James estimator must
either increase, decrease, or remaln constant with age. Similar
constraints hold for the Cox model, though it is modulated by the
survival time-dependent intensity Xo(t). The nonparametric
running median has no such constraints. In fact, one sees that
this estimator is relatively constant up until age 40, Part of
the roughness may be due to the large number of censored
observations nearby. At 50 years the estimated survival time
drops by an order of magnitude.

Miller and Halpern (1981) considered quadratic curves in

addition to the linear curves, restricting attention to the 152

4
3
o
£
o
4
—
o
5
-g 2
&
3
@
o
—
g
i % = x
=
x
2 1% ] 1% ] x |
10 20 38 42 58 60 7e

Age at Entry (in years)

Figure 2. Regression of survival time on age in log 1 scale
(n = 157). x = dead by 2/80; 0 = alive at 2/80. Solid line =
running median (k = 40). Short dash = Cox with linear term.
Long dash = Buckley-James with linear term.



152 Properties of Regression Estimates
cases who survived at least 10 days. The Buckley-James curve

~ 2]
E(log T,|2;) - 1.21 + 0.113 2, - 0.0017 2§

and the estimated median survival time from the Cox model, with

1
B = -0.149 7, *+ 0.0024 zf ,

sre presented in Figure 3 along with the running median (BRPLE)
(k = 40). The initial lower survival for the Cox and Buckley-James
is an artifact of the quadratic fit. However, the nearest nelghbor

curve does not extend below age 26 because of the edge effect.

4
o 3
o~
42
—
o
-
o
=
=
=
w
\_/D
—
e
g 2
*
| x | il L 1 x|
10 20 30 48 50 60 78

Age at Entry (in years)

Figure 3. Regression of survival time on age in log g scale
(n = 152). See Figure 2 for symbols. Cox and Buckley-James
have quadratic terms.
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The running mean regression (k = 40) 1is presented in
Figure 4 along with the running median (BRPLE). It is higher than
the running median because at each 2 the conditional survival
distribution is skewed to the right. Note that the running mean
does not display as great a drop in the higher age category. This
is probzbly due to the few large uncensored observations, which
outweigh  the many small survival times. The third curve is the

running mean of log, (survival time).

4
(=]
s | o 8
o0

o
E
o
+ x
—
g
.1; 2 _“
H >
& . >
(@]
=
[o0]
Q
- x

i — X =t x

>
x
) I | 1x | oo |
i@ 28 30 49 50 68 78

Age at Entry (in years)

Figure 4. Regression of survivel time on age in log,, scale

(n = 157). Running median (solid line), running mean ( dot-
dashed line), and running mean of log , (survival time) (dashed
line) with k = 40.
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Although the censoring distribution seems to depend on age,
one might hope that this effect is minimal. Figure 5 presents the
40 nearest neighbor running mean, i(z), and median curves under

the assumption that censcoring does not depend on the covariate

age.

4

o
3 | © 5
©o
o
=
o
e
x
1
[2]
[
g2
] »
vo ke x
—
3
x
I — X * »
>
E
) I3 | 1 | x |
i@ 20 38 40 58 60 70

Age at Entry (in years)

Figure 5. Regression of survival time on age in log ., scale
(n = 157). Censoring assumed independent of covariates.
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Here the median is the median of the "empirical" distribution giving

weight

J. E dJd.
i 1
Gn Yi Gn Yi

ie Ik(z)

to the points Yi, ie Ik(z}. The median is so high because of

the large censored survival times,

Note added in proof: We recently learned that there were
two transcription errors in the Stanford heart transplant data
used by Miller and Halpern in their April 81 Stanford Technical
Report No. 66 and by us in this paper. The corrected values (for
patients 66 and 127) are given by Miller and Halpern (1982). The
changes in the data produce only minor changes in the estimates,
and all the estimates given in this paper are computed for the

same data set.
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