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Tests for Exponentiality

Kjell A. Doksum and Brian S. Yandell

1. Introduction

The exponential hypothesis is important because of its implications concern-
ing the random mechanism operating in the experiment being considered. In
reliability, the exponential assumption may apply when one is dealing with
failure times of items or equipment without any moving parts, such as for
instance transistors, fuses, air monitors, car fenders, etc. In these examples,
failure is not brought about by wear, but by a random shock, and the
exponential assumption corresponds to assuming that this shock follows a
Poisson process distribution. Thus testing the exponential assumption about the
failure time distribution is equivalent to testing the Poisson assumption about
the process producing the shock that causes failure.

Tests for exponentiality are subject to the usual dilemma concerning good-
ness of fit tests, namely, only when the hypothesis is rejected do we have a
significant result. Thus, if the significance level of a test of exponentiality is
a = 0.05 and the true underlying model is Weibull and not exponential, the
probability of falsely accepting H, can be nearly 1 — a = 0.95.

On the other hand, when a test rejects exponentiality it justifies the use of
other more complicated models and the probabilistic and statistical methods
that go along with these models. Such models and methods can be found in the
books by Barlow and Proschan (1975) and Kalbfleisch and Prentice (1980).

In this paper we present some of the tests available for testing exponen-
tiality. It is not a complete treatment of the topic and reflects the author’s
interests and biases.

In Section 2, we introduce some of the common parametric and non-
parametric alternatives to exponentiality. The next section discusses tests
designed for parametric models and it is shown that one of these tests is
appropriate in a nonparametric setting. Spacings tests are discussed in Section
4, and their isotonic properties for increasing failure rate alternatives are
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developed. In Section 5, tests based on the total time on test transform are
considered, while in Section 6 the nonparametric optimality of the total time on
test statistic is developed.

Some of the common distance type statistics are discussed in Section 7 and
graphical methods based on Q-Q plots and the total time on test transforms
are given in Section 8. Section 9 gives some tests designed to detect ‘New
Better than Used’ alternatives.

The rest of the paper concerns testing for exponentiality in the presence of
right censoring. Censoring arises in many practical problems when individuals
under study cannot be observed until failure. Section 10 presents several
common types of censoring and details the notation used for this part.
Estimates and their properties are reviewed in Section 11. Very few small-
sample results exist for censored data problems (Chen, Hollander and Lang-
berg, 1980). We therefore briefly review in Section 12 the weak convergence of
the survival curve and of the cumulative failure rate, or hazard function, to a
Gaussian process. This is used in later sections to examine asymptotic proper-
ties of several generalizations of tests without censoring. These include maxi-
mal deviation (Kolmogorov-Smirnov) tests which can be inverted to yield
simultaneous confidence bands (Section 13); tests based on spacings and the
total time on test (14); and others including average deviation, or Cramér—von
Mises tests, and linear rank tests (15); Monte Carlo simulation results are
summarized in Section 16. The question of exponentiality is explored using
several tests on data from a prostate cancer study in Section 17.

2. Some alternatives to exponentiality

2a. Parametric models

It is often useful to study properties of nonparametric methods at certain
important parametric models. Two such alternatives to the exponential model
are the gamma and Weibull models whose probability densities are respectively

fo(t; 8, A)= A(At)* e MI(0), t>0,

; (2.1)
fwlt; 0, A)=A20(At)" ' e ™, >0,
where 6, A >0. Their properties are discussed in Barlow and Proschan (1975)
and Kalbfleisch and Prentice (1980). When 6 = 1 both reduce to the exponen-
tial density so the exponential hypothesis can be written Hy: 6 = 1.
Properties of alternatives to exponentiality are most conveniently expressed
through the failure (or hazard) rate function defined by

AN =fONL-F@)], t>0,

where F is the failure distribution defined by F(¢f)= P(T <t) and f(¢) is its
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density. The failure times of equipment or components with moving parts are
modelled to have an increasing failure rate distribution since wear would
increase the rate of failure.

In the case of gamma and Weibull distributions, we find that the failure rate
is monotone increasing if # >1 and monotone decreasing if § < 1. In fact, for
the Weibull density, we have

Aw(t)= 6A%%1 1>0.
Two other interesting, but less familiar parametric models are

fult; 6, M) = A(1+ 6At) exp{— (A1 + 36A21%)} , )
2.2
fult; 8, A) = A[1+ 6K (A1))] exp{—[Ar + 8(At — K(A1)]}

where 6 =0, t>0, and K(x)=1--exp(—x), x >0. We refer to these as the
linear failure rate density and Makeham (type) density, respectively. They were
introduced by Bickel and Doksum (1969). Their failure rates are

AL(t) = A(1+ 0Ar), ()= A[1+ 0(1—e ™).

These densities reduce to the exponential density when @ = 0, the failure rates
are increasing when 6 > 0.

2b. Nonparametric models

It is usually hard to determine exactly which parametric family of densities is
appropriate in a given experiment. Thus it is useful to turn to nonparametric
classes of distributions that arise naturally from physical considerations of aging
and wear. Three such natural classes of nonparametric models are listed below.

(1) The class of all IFR (Increasing Failure Rate) distributions. This is the
class of distribution functions F that have failure rate A(t) nondecreasing for
t>0.

(2) The class of IFRA (IFR Average) distributions which is the class of F
where the failure rate average

a(®)=11 Lr Alx)dx =—-r1log[1- F(1)] (2.3)

1s nondecreasing. This class has nice closure properties: It is the smallest class
of F’s which includes the exponential distribution and is closed under the
formation of coherent systems (Birnbaum, Esary and Marshall, 1966) and it is
closed under convolution (Block and Savits, 1976).

(3) The class of NBU (New Better than Used) distributions F is the class
with
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S(s+t)<S(s)S(t), =0, 1=0, (2.4)

where S(t)=1— F(t) is the survival function. Note that (2.4) is equivalent to
stating that the conditional survival probability S(s + 1)/S(s) of a unit of age s is
less than the corresponding survival probability of a new unit.

The three above classes satisfy

IFR CIFRA CNBU.

Thus the gamma and Weibull distributions with # > 1 are examples of F’s for
all three classes as are the F; and Fy distributions when 6 >0,

For further results on these nonparametric classes, see Barlow and Proschan
(1975), and Hollander and Proschan (1984, this volume).

3. Parametric tests

In this section we consider tests that are asymptotically (approximately, for
large sample size) optimal for parametric alternatives in the sense that in the
class of all level a tests (assuming scale A unknown) they maximize the
asymptotic power. We will find that one of these tests is consistent for the
nonparametric class of all IFRA alternatives.

Let Ty, ..., T, denote n survival or failure times assumed to be independent
and to follow a continuous distribution F satisfying F(0)= 0. The exponential
hypothesis H, is that F(t) = K,(t), some A, where

Kit)=1-e%, t>0, A>0,

Suppose we have a parametric alternative with density f(¢; 6, A) in mind, where
0 is a real shape parameter, A is a real scale parameter, and 6 = 6, corresponds
to the exponential hypothesis.

With this setup, it is natural to apply the likelihood ratio test which is based
on the likelihood ratio statistic

— SuEﬂf\L(t; 61 )l)
R(®) supy L(t; 6, A)

where t=(1;, ..., ,) is the observed sample vector, L(t; 6, A) =117, f(1,; 6, A)
is the likelihood function, and the sup is over A >0 and € € @, where 0 is the
parameter set for 6. In the examples of Section 2, © = [0, =].

Note that since the maximum likelihood estimate of A in the exponential
model is X = 1/1, then

sHpL(I; Og, A) = L(r; fy, l,) =—e".
t
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For smooth models, as in Section 2(a), the value of R(f) can be computed on a
computer. The test rule based on R(f) is to reject exponentiality when
R(f) = k,, where k, is the (1—a)-th quartile of a y? distribution with one
degree of freedom (e.g., Bickel and Doksum, 1977, p. 229).

Another test suitable for a parametric alternative f(f; 6, A) is Neyman’s
(1959) asymptotically most powerful C(a) test. This test is asymptotically most
powerful in the class of all similar tests, that is, in the class of all tests that have

level a no matter what the value of the unknown parameter A is.
Let

d
h(t)= v log f(¢; 6,1) { Lo
)

then it can be easily shown that in our setup the C(a) test reduces to a test
which rejects exponentiality for large values of the test statistic

T(h)= (1/V'n) 2 h(t/1)/7(h) (3.1)
where i

e HJult

t= ; ,:21 L
and

2(h) = f: h2(1) e di — [ fn " th(t) e dt]z . (32)

The test rule is to reject Hy when T'(h)= c,, where c, is the upper a critical
value from a standard normal distribution, i.e. coos = 1.645. For the four
parametric models fg, fw, fu and fy of the previous section, we find, after some
simplification,

Ta== llog (/1) + BV 1,
i=1

| -

Tw =

<

=3 {1+ 1 - (/)] log(w DYV

N B P = Ly S i
T \/HE“ L Tw== 3 [2K6/D- 1V

n=1

respectively, where E = Euler’s constant=0.5772 and K is the standard
exponential distribution function 1—e™.

Next, we consider the question of whether any of these four test statistics will
have desirable properties not only for the parametric alternative they were
derived for but also for nonparametric classes of failure distributions. We find
that
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Tueorem 3.1. The test that rejects H, when Ty =c¢, is consistent for any
alternative F in the class of IFRA distributions.

Proor. Rewrite Ty as
S g2
T]_: EVH[I—T] ;
[2

where ¢2=n"'Z%,( — t)°. Under Hy, Ti converges (in law) to a standard
normal random variable. For IFRA alternatives, o= Var(T) exists, thus
(64 1Y) = o?*/u? as. as n—oo, where w = E(T). If F is an IFRA distribution
different from K, (¢), then from Barlow and Proschan (1975, p. 118), (o/p) < 1;
thus Ty — o (a.s.). Thus the power of the test converges to one as n — .

Note that this test is equivalent to rejecting H, for large values of the sample
coefficient of variation t/¢ and that it can be carried out on any calculator that
computes ¢ and ¢2.

ExampLe 3.1. In Table 3.1 we give 107 failure times for right rear breaks on
D9G-66A Caterpillar tractors. These numbers are reproduced from Barlow
and Campo (1975). We find ¢ =2024.26 and & = 1404.35, thus T = 2.68 and
the level @ =0.01 test based on T rejects the hypothesis. The p-value is
p=0.0037. By comparison we find Ty = 4.20, so the test based on this statistic
rejects Hy with negligible p-value.

Shorack (1972) derived the uniformly most powerful invariant test for gamma
alternatives. It is equivalent to the C(a) test based on T. Spiegelhalter (1983)

Table 3.1
Failure data for right rear brake on
D9G-66A caterpillar tractor

56 806 1253 1927 2325 3185

83 834 1313 1957 2337 3191
104 838 1329 2005 2351 3439
116 862 1347 2010 2437 3617
244 897 1454 2016 2454 3685
305 904 1464 2022 2546 3756
429 981 1490 2037 2565 3826
452 1007 1491 2065 2584 3995
453 1008 1532 2096 2624 4007
503 1049 1549 2139 2675 4159
552 1069 1568 2150 2701 4300
614 1107 1574 2156 2755 4487
661 1125 1586 2160 2877 5074
673 1141 1599 2190 2879 5579
683 1153 1608 2210 2922 5623
685 1154 1723 2220 2986 6869
753 1193 1769 2248 3092 7739
763 1201 1795 2285 3160
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derived the locally most powerful test for Weibull alternatives and obtained the
C(a) test based on Ty.

4. Tests based on spacings

Let T\, ..., T, denote n survival or failure times assumed to be independent
and to follow a continuous distribution F satisfying F (0) = 0. The exponential
hypothesis is that

Fx)=1-e™, x>0, A=0. (4.1)

We look for a simple transformation of T, .. ., T, that will yiel'd new variables
D,, ..., D, with a distribution which is sensitive to IFR deviations from the
exponential assumption. Such a transformation is defined by

D, = (” +1- i)(T(,-)— (T(f—l)), i=1oo g s (4-2)

where T =0 and T,)<---<T, are the ordered T’s. Using the Jacobian
result on transformations of random variables, (e.g., Bickel and Doksum, 1977,
p. 46), we find that under the exponential hypothesis, D,,..., D, are in-
dependent and each has the exponential distribution (4.1).

The D’s are called the normalized sample spacings, or just spacings for short.
They are useful since for the important class of IFR alternatives, there will be a
stochastic downward trend in the spacings and tests that are good for trend will
be good for IFR alternatives. To make this claim precise, we define a
distribution F to be more IFR than G, written F <. G, if G™'F is convex, where
G7'F is defined by Pe(T'F(T)<1t)= G(t), t =0 (Van Zwet, 1964; Bickel and
Doksum, 1969). With this definition, ‘F is IFR’ is equivalent to ‘F <, K’, where
K(x) denotes the standard exponential distribution 1—e™*. Moreover, for the
gamma and Weibull families F;, and Fy, of Section 2; FG-ﬂz <.Fgp and
Fw,,,2 <CFW,31 are both equivalent to 6; < 8,.

We say that there is a stronger downward trend in D,,....D, than
Dy, ..., D, if DD is nondecreasing in i.

Now we can make precise the notion that the more increasing the failure
rate, the stronger the stochastic downward trend in the spacings.

Lemma 4.1, Suppose F is more IFR than G. Let Ty, . .., T, be a sample from F
with corresponding spacings D,, . .., D,. Then there is a sample T}, ..., T}, with
distribution G and spacings D1, . .., D, such that there is a stronger downward
trend in Dy, ..., D, than in D}, ..., D..

Proor. Let Ty < --- <T be the ordered failure times and let TiH=
G'F(Ty), i=1,...,n. Then Ty, ..., T are distributed as order statistics
from G. Next let Di=(n—i+1)(Ty— Ty-y). Since the function G-'F is
convex, its slope is increasing and thus

(Tt — Ta-)/(Toy— Ti-) < (T~ T-0)/(Tgy— T-1)

for i <j. It follows that (D}/D;) < (D/D,), i < j.
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As an application of this Lemma, we note that there is a stronger downward
trend in spacings from an IFR population than in spacings from an exponential
population. Since spacings from an exponential population form a sample from
an exponential distribution, there is no trend in these spacings.

Figure 4.1 shows a downward trend in the spacings for the tractor data of
Example 3.1. The spacings D; are plotted against i/(n + 1).

We consider two types of test statistics appropriate for testing no trend vs.
downward trend. The first is the class of linear rank statistics of the form

1S i R;

;E C(n + I)J(n + 1)
where R; is the rank of D, and c(1/(n+1)),...,c(n/(n+1)), J(1/(n+ 1)),
..., JJ(n/(n+1)) are constants to be chosen subject to the condition that
—c(if(n + 1)) and J(i/(n + 1)) are nondecreasing in i. Proschan and Pyke (1967)
proposed J(i/(n + 1)) = i/(n + 1), while Bickel and Doksum (1969) showed that it
is both better and asymptotically optimal for all alternatives f(t; 6, A) to choose
J(@i/(n + 1)) = —log(1 - i/(n + 1)). Thus we will from now on consider

W= 2 e[ eeli-559)]

i=1

The choice of ¢ depends on the alternative, and for the parametric alternatives
fa, fws fL» fm of Section 2 the respective asymptotically optimal choices of ¢ are
(Bickel and Doksum, 1969)

co(u)=(1—-u)! Jm Xxreadx cw(u) = —log[—log(l - u)],
—log(1-u) (43)
cr(u) = log(1— u), em(u)=-u.

14
x
F =
12
19 -
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E > .
*
6 :x x X %
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b R s oo ®
2 E S x X 5 = R
- 5% x
" % X)S;(x,xx%%‘ :‘ ,:j‘ Q:):“ m“x
2 Low s I ke i sed
8.0 8.2 8.4 0.6 0.8 1.8

Fig. 4.1. Plot of spacings D; vs. i/(n + 1) for the tractor data of Table 3.1.
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The second class of statistics is the class of (standardized) linear spacings
statistics which are of the form

5= 3 c(i)p/ED

where c¢(i/(n + 1)) again is nonincreasing in i. This class was considered by
Barlow and Prochan (1966). For the four parametric alternatives of Section 2,
the optimal ¢ to use in S is precisely as in (4.3) above (Bickel and Doksum,
1969; Bickel, 1969). We denote these asymptotically optimal spacings statistics
by Sg, Sw, S. and Sy respectively.

Next we turn to nonparametric properties of these two classes of statis-
tics. We say that a statistic T=T(Dy,...,D,) is trend monotonic if
T(Dy,...,D,)=T(Dy,...,D}) when there is a stronger downward trend in
D,,...,D, thanin D},..., D].

From Lehmann (1966) and Bickel and Doksum (1969) we can conclude:

Tueorem 4.1.  If —c(i/(n + 1)) and J(i/(n + 1)) are nondecreasing in i, then the
linear rank and spacings statistics W and S are trend monotonic.

Recall that a similar test is one where the probability of rejecting H, when
H, is true is the same for all values of the scale parameters A. This probability
is the significance level a. Tests that reject Hy when T = k, where k is a critical
constant and T is trend monotonic, are similar. This is because the downward
trend in ADy, ..., AD, is the same as that of Dy, ..., D,, thus T(Dy,...,D,)=
T(ADy, ..., AD,).

From Lemma 4.1 and Theorem 4.1 we get the following important result.

CoroLLarY 4.1.  Let B(T, F) denote the power of the test that rejects Hy, when
T =k, where T is trend monotonic. Then the test is unbiased and has isotonic
power with respect to the IFR ordering, i.e. if F is in the IFR class, then the power
B(T, F) is greater than the significance level « = B(T, K), and if F is more IFR
than G, then B(T, F) = B(T, G).

At this point, we have two classes of tests that are good for the non-
parametric IFR class in the sense of being unbiased and having isotonic power.
In each of the two classes of tests, we can obtain the asymptotically optimal test
for a parametric alternative f(¢; 6, A), by choosing

cu(u) = r h'() e dt (4.4)
1-u log(1—u)
where

hr) = aielogf(z; 0, 1)‘ .
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as in Section 3. The resulting statistics W, and S, can be shown to be
asymptotically equivalent (in the sense of having the same asymptotic power)
to the C(a) test based on T'(h) given in Section 3. Thus the rank and spacings
tests with ¢ given by (4.4) are asymptotically most powerful for f(¢; 6, A) in the
sense of maximizing the asymptotic power. See also Bickel (1969). Formula
(4.4) was used to compute the examples given (in (4.3)).

Let

€= i c(i/(n+1)) and st=n"! i (c—¢p o= c(
i=1

i

i=1 n+ 1) :
then the distribution of both Vn(W — &)/s. and V' n(S— ¢)/s. converge to a
standard normal distribution under H,. Thus approximate level a tests based
on W and S reject Hy when these quantities exceed the upper level « critical
value ¢, of a standard normal distribution.

Note that using integral approximations to sums, ¢ and s? can be ap-
proximated by wu(c) and o*(c) where

ml(c)= Ll c(u)du and o*c)= Ll cXu)du — u¥c).

For the four examples cg, cw, c. and cg of (4.3), we find

plca)=1, oXcg)=em—1, plew)=1-E, o*cw)=sm,

m(c)=-1, Uz(CL) =15 m(ce)= _%, o¥(cg) = %,

where E = 0.5772.
In the case of cy(u) = —u, we have &= —3 and sh= Bn—D/(n+1).

ExampLE 4.1. For the tractor data of Example 3.1, we find S, = —0.689,
éL=-0.979, s;=0.931 and V n(S.— ¢p)/sp = 3.22 which should be compared
with the ‘asymptotic equivalent’ value Tp =2.68 of Example 3.1. Similarly,
Su=—0.370 and V' n(Sy— cu)/sm = 4.69 as compared with Ty = 4.20 is Exam-
ple 3.1. Clearly, S and Sy both reject exponentiality. Note that, in this
example, the spacings tests appear to do better than the C(a) tests.

Finally, we remark that in terms of finite sample size Monte Carlo power, the
spacing tests were shown in Bickel and Doksum (1969) to do better than the
rank tests.

5. Test based on the total time on test transform

In this section, we introduce another transformation and other test statistics
whose distributions are sensitive to IFR models. Suppose we put n in-
dependent items on test at the same time. Let Ty, <---<T, denote their
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ordered failure times. At time Ty, the total time the n items have spent on test
is

TT; = nTyy+ (n— (T~ Te)+ -+ (n+ 1= i)(Tp— Te-n)
= > (n+ 1= Ty— Tg-n)= 2 D;
i=1 j=1

where T(()) = (). Note that TT,,, = E?:] Dj = E:L] T[,').
The transformation considered in this section is the one that transforms the

survival or failure times T4, ..., T, into W, ..., W,_;, where
i D,
=17
W, = ;
b2k D
We call Wi, ..., W,_, total time on test transforms, or total time transforms
for short. Under Hy, Wi, ..., W,_; are distributed as the order statistics in a

sample of size n — 1 from a distribution uniform on (0, 1) (Epstein, 1960).
This transformation is useful since W; tends to be larger for an IFR
distribution than it is for an exponential distribution, more precisely:

THeorEM 5.1.  Suppose F is more IFR than G. Let Ty, ..., T, be a sample from
F with corresponding total time transforms Wi, .. ., W,_1. Then there is a sample
T., ..., T, with distribution G and total time transforms Wi, ..., W, with

Wi=W, i=1...,n—-1.

The proof can be found in Barlow and Proschan (1966), Barlow and Doksum
(1972), and Barlow, Bartholomew, Bremner and Brunk (1972).

The result suggests using tests based on statistics that are monotonic in the
W’s in the sense that they are coordinate-wise increasing, i.e.

W o W o T, vl W)

whenever W,= W, i=1,...,n— 1.
For such tests we find

Turorem 5.2. Let B(T, F) denote the power of the test that rejects Ho when
T = k, where T is monotonic. Then the test is monotonic and has isotonic power
with respect to the IFR ordering, i.e. if F is in the IFR class, then the power
B(T, F) is greater than the significance level a, and if F is more IFR than G, then
B(T, F)=B(T, G).

One important monotonic statistic is the total time on the test statistic which
is defined by
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n

V= W;.

M

1

Since V is distributed as the sum of uniform variables under H,, its distribution
is very close to normal. The exact distribution is tabled in Barlow et al. (1972)
for n=12. For n > 9,

VI |

has practically a standard normal distribution.
A little algebra shows that

V=(+ 1)(n—’“ﬁ+ SM)

where Sy=—2%,iDJZ%,D; as in Section 4. Thus V is equivalent to Sy,
asymptotically equivalent to Ty, and asymptotically most powerful for the
Makeham alternative fy(z; 6, A).

Barlow and Doksum (1972) investigated a more general class of monotonic
statistics, namely

V.J:nilj(vvf)

i=1

where J is some nondecreasing function on (0, 1). They found that for a given
parametric alternative f(¢; 6, A), the test based on V; will be asymptotically
most powerful if J(u) is chosen to equal —c¢(u) where c¢(u) is the function given
in (4.1) and (4.2). Thus for the linear failure rate alternative fi(t, 6, A),
-2 log(1— W) is asymptotically optimal, while for the Weibull alternative
fw(t; 0, 1), 272 log[—log(1 — W))] is asymptotically optimal.

Other tests based on the spacings D; or total time transforms W, have been
considered by Stérmer (1962), Seshadri, Csorgo and Stephens (1969), Csorgo,
Seshadri and Yalovsky (1975), Koul (1978), Azzam (1978), Parzen (1979) and
Csorgd and Révész (1981b), among others. An excellent source for results on
spacings is the paper by Pyke (1965).

6. Nonparametric optimality

In Sections 3, 4 and 5, we have seen that different IFR parametric alternatives
lead to different asymptotically optimal tests. Thus we have no basis on which
to choose one test as being better than the others.

In this section, we outline the development of a theory that leads to one test,
namely the one based on the total time on test statistc V, as being asymptotic-
ally optimal. These results are from Barlow and Doksum (1972).
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We define the total time on test transform &' of the distribution function F
as

Fl )
= - F@)dv, 0<u<t,

0

and the standardized total time on test transform as
H ()= X))/ HF(Q), 0<u<l.

Note that Hz'(1) = Ex(T;) = mean of T, The reason for the inverse notation is
that H7' can be regarded as the inverse of a distribution in (0, 1). We let H or
H; denote this distribution. Note that W, of the previous section can be
regarded as H;-:(i/n)where F, is the empirical distribution function of Ty, . . ., T,..

It is easy to check that when F is exponential, H(u) = u, 0 =< u <1; while F is
IFR iff H(¢) is convex and H(t)=<t on [0, 1]. Thus the problem of testing for
exponentiality can be formulated in terms of H as testing

Hy:  H is uniform on [0, 1]
Vs,
H;: H is convex, H(t)=<t and H is not uniform on [0, 1] .

The optimality criteria we are going to consider is the minimax criteria, i.e. we
want to find the test that maximizes (asymptotically) the minimum power over a
nonparametric class . The term minimax is used since in decision theory
terminology, risk = 1 — power.

We cannot take (2 to be the whole IFR class since then the minimum power
would always be . The total time on test transform H' gives us a convenient way
of separating alternatives from H,. We let £2(4), 0 <A <1, be the class of all
distributions F where H is convex, H(f) <1, and

sup[t— H(t)]= 4.

If A is fixed, the minimum power over {2(4) will tend to one, thus we must allow
A = A, to depend on n, in fact the interesting cases have

4,=0(n"?).

Let B(¢r, F) denote the power of the level @ Total Time on Test test which
rejects Hy when V = k,, then

Lemma 6.1.  Assume that lim,.-(V nA,) exists and equals ¢ where ¢ is some
number in [0, «|, then

lim[ inf B(er, F)]<®(—k.+V3c).

n—ox= FeEf(4,)
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Now suppose that B(g;, F) denotes the power of the test which rejects H,
when V; =Z%{ J(W,) is greater than the appropriate critical constant. We
want to choose J to maximize the limiting minimum power. This is achieved by
choosing J(w) = w; thus the Total Time on Test test ¢ris optimal in the sense of
being asymptotically minimax. The result follows from the fact that if
lim,-.(Vn4,)= ¢, ¢ €0, ], then '

lim[ inf B(es, F)]<®(—k,+V3c).

n—x  FEN(A,)

The proof can be obtained (under appropriate conditions) from Barlow and
Doksum (1972) and Koul and Staudte (1976).

7. Distance statistics

If there is no natural alternative class of distributions (such as the IFR class),
one can use statistics based on the distance between the exponential dis-
tribution K,(#) and the empirical distribution F,(t) defined as F,(1)=
n'[#T, <1]. If A = A is specified, the Kolmogorov statistic is given by

D, (Ao) = max|F, (1)~ K,y (1)

For tables, see Owen (1962). £ al
In the more realistic case with A unknown, we replace A in K, by A =1/¢
and use

D} = max |F,(f) - K;(¢)|

where K;(f) = 1— exp(—At).

The distribution of D7} has been studied by Lilliefors (1969), Stephens (1974)
and Durbin (1975), among others. A very good approximation to the level «
critical values k, of D7 for a = 0.01, 0.05 and 0.10 are given by

" da
: Vi +026+(0.5Vn)

where d, = 1.308, 1.094, 0.990 for « = 0.01, 0.05, 0.10, respectively.
An alternative approach to estimating A in D,()A) is to first make a trans-

formation of T\,..., T, to obtain new variables whose distribution does not
depend on A. Thus we could use the distance between the empirical dis-
tribution of Wy,..., W, and the uniform distribution on (0, 1). The dis-

tribution of the resulting statistic is the same as that of the one-sample
Kolmogorov statistic. Tables can be found in Owen (1962, p. 423).
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For other distance statistics and their properties, see Seshadri, Csérgo and
Stephens (1969), Durbin (1973, 1975), Csorgo, Seshadri and Yalovsky (1975),
Sarkadi and Tusnady (1977), and Csorgo and Révész (1981(a)).

8. Graphical method in the uncensored case

8a. The Q-Q (Quantile-Quantile) Plot
The exponential quantile function evaluated at the population distribution
function is

Qr(n)= KT'[F(1)]

where K~'(u) = —log(1 — u) is the inverse of the exponential distribution. If the
exponential hypothesis is satisfied and in fact F(1)=1—¢e™ = K(Ar), then we
find

Qk(t) = At.
Thus a graphical method for checking exponentiality is to plot
Qr, (1) = K7'[F,(1)] = ~log[1 — F.(1)]

and check if this plot falls close to a straight line through the origin. Since we
cannot use the log of zero, we use the modification

00 = K| R~

and plot O(r) for t=1ty, i=1,...,n, where {f;} are the order statistic of the
sample. Since the t;, are sample quantiles, the resulting plot of (#;), K™'[i —3/n))
is called a Q-Q plot.

The reliability of Q(f) can be judged by giving the simultaneous level a
confidence band

[K~'(Fu(1) — ka), KB (1) + ko)

where k, is the level « critical value for the D7 test of Section 7. We reject
exponentiality if the line #/t does not fall entirely within the band. This
graphical test is equivalent to the D7 test of the previous section.

Note that, using Section 4, a convex shape for Q(t) indicates an IFR
alternative.

8b. The total time on test plot

Barlow and Campo (1975) demonstrated that
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H'(u)=HF\(u), 0<u<l1,

where HF' is the standardized total time on test transform of F defined in
Section 6, gives a useful plot for checking exponentiality. Under exponentiality,
H' should fall close to the identity function on (0, 1), while for IFR alternatives,
we would expect H,'(t) = t and H;'(t) concave (see Section 6). Figure 8.1 shows
this plot for the tractor data of Example 3.1. An IFR distribution is strongly
indicated for this data.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1:0°

i
x =1
n+l

Fig. 8.1. Total time on test plot for the tractor data of Table 3.1.

The reliability of H;'(u«) can be judged by using the asymptotic simultaneous
level a confidence band

bu
Vn

by
Vn

[H;l(u)f H\u)+ ],.0<u<1,,

where b, is the critical value of the maximum of the Brownian Bridge on [0,1].
Thus b, is given in Owen (1962, p. 439).
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9. NBU alternatives

Tests designed to detect NBU alternatives are motivated by measures of the
deviation of F from exponentiality towards NBU alternatives. One such
measure, considered by Hollander and Proschan (1972), is

(Y= L f; [S(1)S(0) - St + v)] dF(f) dF () .

When F is exponential, y(F) =0, while it is positive when F is NBU. Thus an
intuitive rule is to reject exponentiality for large values of y(F,). Hollander and
Proschan (1972) give the appropriate critical values and prove consistency of
this test rule.

Koul (1977) considered

a(F)= inf {S(t+v)— S¢)S(v)}

=0

as a measure of NBUness. a(F) is 0 when F is exponential and negative when
F is NBU. Koul (1977) gave critical values of the test based on «a(F,) for
selected values of @ and #.

Deshpande (1983) measures NBUness through

&P = | [8°0) - sen aF ()

and considers the corresponding test statistic £(F,). He develops the asymptotic
distribution and gives the Pitman asymptotic relative efficiencies 0.931, 1.006 and
0.946 of £(F,) to y(F,) for linear failure rate, Weibull and Makeham alternatives,
respectively.

For further results on measures of NBU alternatives, see Koul (1978) and
Hollander and Proschan (this volume, Chapter 27).

10. Types of censoring

Censoring may arise in a variety of ways, leading to several possible
assumptions about the form of censoring. Here we consider primarily right
censoring. For individual i, i = 1,..., n, the observed length of life, or time on
test, is Y;=min(T;, C), in which T; is the failure time with survival curve
S(t)= P(T,=1), and C is the censoring time with censoring curve G(f)=
P(C;=1). T, and G are assumed to be independent.

‘Type I’ censoring concerns experiments in which observation is terminated
at a predetermined time C;=C, i=1,...,n Thus a random number of
failures are observed. For ‘type II' censoring, observation continues until r < n
failures occur, with r fixed. Type II censoring may arise when one wants at



596 Kjell A. Doksum and Brian S. Yandell

least r failure times, for reasons of power, but cannot afford to wait until all
individuals fail.

In many clinical trials, the beginning and end of the observation period is
fixed, but individuals may enter the study at any time. This is an example of
‘fixed’ or ‘progressive type I’ censoring, in which the G, i=1, ..., n, are fixed
but not necessarily equal.

‘Random censorship’ refers to experiments in which the censoring times
are randomly distributed. This may occur when censoring is due to com-
peting risks, such as loss to follow-up or accidental death. However, T,
and C; may be dependent, as is the case when individuals are removed from
study based on mid-term diagnosis. The lack of independence brings problems
of identifiability and interpretation (Horvath, 1980: see Prentice et al. (1978)
for review).

Several other possible assumptions deserve mention. Hyde (1977) and
Mihalko and Moore (1980) considered left truncation with right censoring. Left
truncation may correspond to birth or to entering the risk stage of a disease
(Chiang, 1979). Mantel (1967), Aalen (1978), Gill (1980) and others generalize
this to arbitrary censoring.

Various authors (Koziol and Green, 1976; Hollander and Proschan, 1979;
Koziol 1980; Chen, Hollander and Langberg, 1982) assumed a ‘proportional
hazards’ model for censoring. That is, G =S8 with B the ‘censoring
parameter’.

All these types of censoring are special cases of the multiplicative intensity
model (Aalen, 1975, 1976, 1978; Gill, 1980). For our purposes, let N(¢), 1 =0,
be the number of failures in [0, #] and R(¢) be the number at risk of failure at
time t=0. If we are only concerned with right censorship, then R(f)=
#(Y; = 1). More generally R(f) must be predictable, that is left-continuous with
right-hand limits and depending only on the history of the process
{N(u), R(u); 0<u <1}. We assume that for each 1>0, the jump dN(¢) is a
zero—one random variable with expectation R(r) dH (¢), in which H() is the
cumulative rate, or hazard function. Aalen (1975, 1978) and Gill (1980) and
later authors use the fact that

N(r)—JO'R(u)dH(u), =0,

is a square-integrable martingale to derive asymptotic properties of the
estimators and tests presented below. Note that one does not need to assume
continuity of the survival S or censoring G curve.

The remainder of this paper concerns right censorship unless otherwise
noted.

11. Estimates in the censored case

The tests presented in later sections embody estimates of the survival curve,
the censoring curve, and/or the hazard function. The survival curve is usually
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estimated by the Kaplan—-Meier product limit estimator

1 .
i 17*)173‘5(2 f0<t< Yy,
s {7 I, (- Rerp)@=0) to=i<,

=0 if [>Y(n),

with the Efron (1967) convention that the last event is considered a failure. The
censoring curve may be estimated in a similar fashion, with the relation

G,(1)S. ()= 1-R(t")/n.

S, and G, are biased but consistent and self-consistent (Efron, 1967). If S is
continuous and G is left-continuous, then S, is asymptotically normal (Breslow
and Crowley, 1974). If § and G are both continuous then S, is strongly
uniformly consistent on any finite interval in the support of both § and G
(Foldes and Rejto, 1981).

The hazard function is estimated by the Nelson (1969) estimator

o= 3, (45 - [wan

{ilY;zr}

H, is biased, consistent and asymptotically normal (Aalen, 1978) under the
same conditions as those for S, It is also strongly uniformly consistent
(Yandell, 1983).

Some tests rely on a survival curve estimator based on H,, namely
S(t)=exp(-H,(t))>t=0.

G(1) is defined in an analogous manner. The properties of these estimates are
presented in Fleming and Harrington (1979). -

The asymptotic variance V of Vn(H,— H) and of V n(S,— S)/S has the
form (Breslow and Crowley, 1974; Gill, 1980)

V(z):J SG-1 dH.,
0

It can be estimated consistently by

Va=n [ RAR=17"dN=n 3 (R(#)E{T)%)— i

{ilv;=1)

12. Weak convergence

Several asymptotic tests for censored survival data are based on the weak
convergence of the survival curve S, or the hazard function to a Gaussian
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process. Throughout this section we assume that S is continuous, G is left-
continuous, and censoring and survival (failure) act independently.

Breslow and Crowley (1974) first proved the weak convergence for S, and H,
with G continuous. Meier (1975) handled the case of fixed censorship for S,.
Aalen (1978) and Gill (1980, 1983) considered the case of G left-continuous.
The results can be stated in terms of Brownian motion B on [0,0¢) or a
Browniar. bridge BY on [0, 1] with a time change (Efron, 1967; Gillespie and
Fisher, 1979; Hall and Wellner, 1980). Let = denote composition.

Tueorem 12.1. Let Z, = Vn(H,— H) or Z, = Vn(S, - S)/S. Then
Z, > BoV, ZJ(1+ V) = Bl (Vi(1+ V)

in D[0, T] for T < Ty = inf{t; S(t)G(1) > 0}.

Gill (1981) extended this result to the whole line:

THEOREM 12.2. Let Z, = \/E(S,. —S)/S. Then
ZJ(1+ V) = B (V/(1+ V))

in D[0, Tsg). In addition,
ZJ(1+ V,) 2 B (V/(1+ V)

in D{0, Tsg] provided that
Tsg Tsa
f SZdV=J SG'dH <,
0 0

Nair (1980, 1981) and Gill (1983) introduced weight functions which allow
weak convergence to weighted versions of B and B°.

Theorem 12.3 (Nair 1980).  Let Z, = Vn(H, - H) or Z, = V/n(S, — S)/S. Let g
be continuous and nonnegative on [0,1], and T, >T < Tgs. Then
ZV"A(T)qe (V Vou(T)) 2 (Bq)e(VIV(T)), (12.1)
(Z(1+ Va))ge (Vu/(1+V,) = (B%g)e(VI(1+ V) (12.2)
on D0, T].

Gill (1983) proved a similar result on the whole line for a restricted class of
weight functions.
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Tueorem 12.4 (Gill 1983), Let Z, = \/}1—(5,1 —S)/S. Let q be continuous on
[0, 1], symmetric at 5, nondecreasing on (0,3,

1
J g (t)dr <o
0
and (1—1)q~'(t) nonincreasing near t = 1. Then

(Zo/(1+ V))ge(VI(L+ V) = (Bq)=(VI(1+ V)).

These results will be used with various weight functions in later sections.

CsérgoS and Horvath (1982a, 1982b) showed that Z, (for the survival curve or
hazard function) can be strongly approximated on [0, T| by a Brownian bridge
process. They required continuity of G, but mention in Remark 3.3 (Csorgo
and Horvath, 1982) that continuity and independence of competing risks may
not be needed (see Horvath, 1980). Their results yield the same test statistics as
those available from the weak convergence results. In addition they provide the
rate of convergence, and Chung and Strassen type laws of the iterated logarithm
(Csorgd and Horvath, 1983).

13. Maximal deviation tests

One class of goodness-of-fit tests relies on the Kolmogorov-Smirnov metric
of the maximal deviation of the empirical from the theoretical distribution.
Here we exhibit results for a completely specified null distribution (S or H). For
the exponential family, S(x)=e™ or H(x)= Ax, one may view these as
conservative in the sense that if no choice of A yields a curve close enough to
the empirical curve, then the hypothesis of exponentiality is rejected. In other
words, if one cannot place a straight line completely within the 1—«
confidence bands for H(t), a,<t= T, then the exponential hypothesis is
rejected at level a.

The basic result (Aalen, 1976; Gillespie and Fisher, 1979; Hall and Wellner,
1980; Nair, 1980, 1981, Gill, 1980) is for Z,=Vn(H,—H) or Z,=
Vn(S, - S)/S,

Zalt) V(1) 3
= | Tl > me s,
Zalt) V,.(1) i
A TR L vean) Sup.lg(xBH)]

The cited authors restrict attention to the finite intervals [a,, T,] with T,,—p> T
Tsc and a, = 0. The limiting distribution then depends upon § and G, with
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a=V(a,)/V(T,) and b=1
for the convergence to Brownian motion, and

"ﬂg'ﬁ_ and b V(Tn)

=15 V(a,) TS A

for the convergence to BY. In the latter case, if g satisfies the conditions of
Theorem 12.4, then one can extend the sup to the whole line for Z,=
V'n(S,. — S)/S.

The maximal deviation statistics can be inverted to yield simultancous
confidence bands. More precisely, the 1— a confidence band for H{(t) is

H, (1) = Kyan (1 + V(1) ™ (17‘/{/(‘)7))

with K, the 1— @ point of sup|gB°|.

Consider several choices of g for this band. If g(u)=1/(1—u), one gets
bands proportional to 1, with asymptotic distribution that of sup|B|. This has
distribution (Feller, 1971)

_43 1y (7 (2n+ 1)2112) _ 1,
Pr{oilzzl |B(u)| < x} = EJQH 7 &P e ~4¢(x)—3
in which ¢(x) is the standard normal distribution. With the choice g(u)=
u2(1—u) "2, the bands are proportional to [V (]2, with asymptotic dis-
tribution

2Pr{ sup ‘%@l sx} =2Pr{ sup

a<u<l u al(l+a)<u<ly2

Bl
W= u)“x}

tabled by Borovkov and Sycheva (1968). The choice g(u)=1 yields bands
proportional to (1+ V,(t)) with asymptotic distribution equivalent to the Kol-
mogorov-Smirnov distribution tabled by Pearson and Hartley (1976, Table 54)
(see Hall and Wellner (1980) for the case T'< Tsg).

Useful approximations to the distributions of supa=x=slg(x)B(x)| and
SUP a=x</q(¥)B°(x)| can be found in the papers by Jennen and Lerche (1981) and
Jennen (1981).

The above tests are consistent but biased against continuous alternatives.
They are distribution-free asymptotically, up to the choice of interval end
points. The choice of g(-) is open, with the obvious remark that different
choices emphasize different intervals of the survival or hazard function. The
Borovkov—Sycheva (1968) type choice is appealing as the bands are then propor-
tionally wider than pointwise confidence intervals. These bands also have equal
variance at every point.
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Fleming and Harrington (Fleming, O’Fallon, O'Brien and Harrington, 1980;
Fleming and Harrington, 1981) introduced a class of Kolmogorov-Smirnov
type tests which differ in an important manner from those considered above.
They point out (Fleming and Harrington, 1981) that the asymptotic distribution
of tests based on (12.1) with g =1 depend on the maximum of a Gaussian
process with variance function which depends on the censoring curve,

V() V(T) = L’ G5! dH/LT G-'s-'dH.

They claim that such a test ‘has the undesirable property that its probability of
rejection of [the null hypothesis] based upon information up to time ¢ sys-
tematically tends to zero when censorship of data after time ¢ is increased’. The
tests based on (12.1) are asymptotically distribution-free (Nair, 1980), but the
power against alternatives will certainly depend on the choice of T and the
degree of censoring.

Fleming and Harrington (1981) propose instead to examine

Zoa(0)= [ 1187() + $@IGP0w) d(H* @)~ Hu@)

with a =0. This converges weakly to a zero mean independent increment
Gaussian process with variance

t
Va(t)=J Sta-bdH
0
which does not depend on the censoring G. Their statistic is

K,a= sup (Vn‘a(T)y”z!Zn,a(tn

0=t=T

with V,.(0)=[! Sea-DdH and T < Tss. K¢ and K* converge in distribution
to sup B and sup|B|, respectively. The parameter a >0 acts as the weighting
factor; the early part of the distribution § is more emphasized if 0 <a <1
while the tail is more heavily weighted if a > 1. This can be seen by noting that

—d(§%)=-8*"'dS=S§*dH.

See Fleming and Harrington (1981). Note that T may be replaced by T,,—p> T
and the weights and transformations discussed in Section 12 may be used here,
with the obvious modifications.

One-sided maximal deviation tests and simultaneous confidence bands arise
in an analogous manner. See the above references for details.
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14. Spacings and total time on test

Barlow and Proschan (1969) first derived the distribution of the total time on
test plots under the exponential hypothesis for censored data. Barlow and
Campo (1975) considered several types of censoring, showing the form of the
total time on test and indicating how censoring may affect the stochastic
ordering of scaled total time on test plots. Others (Lurie, Hartley and Stroud,
1974; Mehrotra, 1982) considered weighted spacings tests under type II censor-
ing. Aalen and Hoem (1978) considered the multiplicative intensity model of
Aalen (1978), generalizing earlier results to arbitrary censorship. The Aalen-
Hoem approach will be considered here.

We construct a random time change on the counting process of failures to
derive a stationary Poisson process under the null hypothesis of exponentiality.
The total time on test transform, based on this random time change, has the
same distribution as that in the noncensored case. Define

w(r) = L’ Rip) du

in which R(u) is defined as in Section 10. If t=0and t;, <, <--- <{ are the k
distinct failure times, assuming no tied failures, then

D= [" R du=y()= yie)

is the i-th spacing. Aalen and Hoem (1978) show that if the survival curve is
S(t) = exp(—H(1)) then

N*()= Ny~ (1)

is a Poisson process with parameter h(-)= H'(-) (their results are more
general). If S(-) is exponential then N* is a stationary process. Hence

N¥i)y=14 \i=T..u 0k,

and (D4, ..., D;) has the same distribution as a random sample from S(-). For
exponential S(x)= e,

Pr{D; > x} = Pr{t; > ¢ '(x)} = Pr{N (7' (x)) = 0}
= Pr{N*(x) =0} = e

Thus many results for noncensored data apply to (D, ..., D;). The scaled total
time on test transform is
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PlEie), =01, k.

This is plotted for some censored data on prostate cancer in Section 17. The
tests based on spacings presented in the first part of this paper generalize in a
natural way. In particular the cumulative total time on test statistic of Barlow et
al. (1972) becomes, for fixed k,

k-1

Vie= 23 d(t)/p(n) .

i=1

15. Other tests

Several other goodness of fit tests have been proposed in the literature for
censored data. These include tests based on contingency tables (Mihalko and
Moore, 1980), average deviations (Koziol and Green, 1976; Csérgd and
Horvath, 1981; Nair, 1980, 1981), generalized ranks (Breslow, 1975; Hyde,
1977; Hollander and Proschan, 1979; Gill, 1980; Anderson et al., 1981; Har-
rington and Fleming, 1981), and kernel density or failure rate estimators
(Yandell, 1983; see Bickel and Rosenblatt, 1973). We briefly present general
forms of the average deviation and generalized linear rank tests.

The average deviation, or Cramér—von Mises, tests are based on weighted
average deviations, from the null distribution. Let K,(x)= V,(x)/(1+ V,(x))
and

Z,(x) = Vnq(K,(x))(1 = K,())(S,(x)— S(x))/S(x) .

Then the statistics are of the form
’ T :
Wi = j Z dK,, i=1,2,
0

for specified weight function g. Similar statistics obtain for the hazard function
and for the transform based on equation (12.1). Asymptotic distribution of W3
for g =1 corresponds to that of the classical Cramér-von Mises test

B i J (S, — Sy dS,

in the case of no censoring, and is tabled in Pearson and Hartley (1976, Table
54). Koziol and Green (1976) show that 42 converges to a distribution which
depends on the censoring parameter $ of the proportional hazards model
(Koziol and Green, 1976). Clearly, the choice of weights g(-) will force
emphasis on different aspects of the distribution .
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Generalized linear rank tests take the form
T,
" K(s)aH, ()= dH*(s))
0

in which H*(t) = J{ I[R(s) > 0] dH(s) is the estimable portion of H(:). K(¢) is
some function of the history of the survival process, {(N(u), R(u)), u € [0, t]}.
If K(t)= R(1), this becomes, with T, = Y,

N(T)- [ T aH = N(T)+ 3 Tog(S(¥)

which is equivalent to Breslow’s (1975)

(N(Tn)—LT” R dH)z/LT" RdH

which converges to chi square with one degree of freedom. Hyde’s (1977)
statistic is a modification of this to allow left truncation. The asymptotic theory
for general K(+) is presented in Anderson et al. (1981) and Gill (1980). Finally we
mention that Burke (1982) has constructed a test for the hypothesis that both T
and C have exponential distributions.

16. Simulation results

A few Monte Carlo results concerning goodness of fit tests with censored
data are available. Koziol (1980) compared the censored Kolmogorov—Smirnov
test D, of Hall and Wellner (1980), the Cramér-von Mises statistic

“ T
2= n [ (S, - SRS+ VaP) d(Vil(1+ V2)
0
and a ‘traditional analogue’ of the Cramér-von Mises statistic
T
Vim-n | (S,-S7ds..
0

He considered scale (S(1)=e™*) and Weibull (S(r) = exp(—¢?)) alternatives to
the unit exponential in the Koziol-Green (1976) proportional hazards model,
with 1000 trials and sample sizes 20 and 50. At level 0.05, ¢ had the right size,
with W2 a close second. The size of D, was between 0.066 and 0.107,
depending on the degree of censoring (8 = 0.5, 1). ¢7 and W2 had better power
against Weibull alternatives, but D, and W2 had more power than ¢, against
scale alternatives. One may be surprised that D, performed as well as it did,
since the alternatives represent small changes along the whole distribution
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rather than marked change at any one point. The power of D, against Weibull
alternatives dropped from 0.904 to 0.576 as the censoring parameter increased
from 0.5 to 1. This suggests looking at the statistics of Fleming and Harrington
(1981).

Unfortunately (for our situation), the simulations of Fleming et al. (1980)
(Fleming and Harrington, 1981; Harrington and Fleming, 1981) were only done
for 2-sample situations. Further, these simulations concern statistics which
differ from those considered here. They examine variations on Kolmogorov—
Smirnov tests and several linear rank tests.

Hollander and Proschan (1979) compare the Cramér-von Mises statistic 2
with two linear rank statistics.

17. Data analysis

Data were obtained from Hollander and Proschan (1979) on 211 patients
with stage IV prostate cancer who were treated with estrogen in a Veterans
Administration Cooperative Urological Research Group (1967) study. The
observations span the years 1967 through March, 1977. Ninety patients died of
prostate cancer, 105 died of other diseases and 16 were alive in March, 1977.
The live patients and deaths from other causes were counted as censored.

Koziol and Green (1976) failed to reject the hypothesis of exponentiality
with parameter A = 1/100. Using the % Cramér-von Mises statistic with the
data truncated at an earlier date, Hollander and Proschan (1979) could not
reproduce the earlier value of 7, but their value and those of the Hyde (1977)
and their own test were not significant at « = 0.10. The significance prob-
abilities of the tests varied considerably (0.86, 0.49, 0.14, respectively). Csorgo
and Horvath (1981) state that Koziol has computed the Cramér—von Mises W2,
the Kolmogorov—Smirnov D,, and the Kuiper statistic with p-values of 0.15,
0.1, and 0.04, respectively. The ordering of p-values reflects the deviation of S,
from S in Figure 1 of Hollander and Proschan (1979). Csargo and Horvath’s
(1981) version of the Cramér-von Mises test is somewhat more significant
(p = 0.0405).

Our graphical tests indicate that the data may not be exponential, or may at
least be a borderline situation. Figure 17.1 is the total time on test plot,
showing the same criss-cross of the exponential case curve as seen in Figure 1
of Hollander and Proschan (1979). The hazard function plot of Figure 17.2
suggests that the data may be exponential over most of its range, but the rate
appears to taper off. Figures 17.3 and 17.4 are both transformations of the
survival curve (see Nair, 1981). Confidence bands are 80% based on the
Borokov-Sycheva (1968) weights.

The P-P plot in Figure 17.3 shows some discrepancy with the exponential.
This is a plot of

(u, S,(S (), D=su=<1t,
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Fig. 17.2. Hazard function plot for the prostate data.
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Fig. 17.3. P-P plot with 80% simultaneous confidence band for the prostate data. The straight line
(diagonal) represents the exponential hypothesis.
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along with appropriately transformed 80% simultaneous confidence bands.
Note that the confidence bands cross over the diagonal again near the tail
(u—0). Figure 17.4 is a plot of the shift function, which is a version of the Q-Q
plot (see Doksum and Sievers, 1976; Nair, 1981). The curve is

(x, TS, (x)—x), x=0.

Since S(u’ =e ™ is continuous, the shift function, or Q-Q, plot and the P-P
plot contain the same information. The rate parameter for these two plots was
estimated from the data as A = 0.00939.
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