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Scand J Statist 12: 159-169, 1985 

Uniform Confidence Bounds for Regression 
Based on a Simple Moving Average 

STEINAR BJERVE1, KJELL A. DOKSUM2 and BRIAN S. YANDELL3 
1 Universit of Oslo;2 University of California, Berkeley;3 University of Wisconsin, Madison 

ABSTRACT. Let m(x)=E(YIX=x) be the regression function of Y on x. Suppose that YI, . . , Y. 
are independent observations of Y at x=xl,. . . x,x. We consider nearest neighbour estimates, 
*h(x), and employ well-known inequalities to obtain finite sample size uniform confidence bounds 
for Em(x) and asymptotic uniform confidence bounds for Em(x) and m(x) based on m(x). Finally 
we discuss bias and consistency properties of m(x). 

Key words: non-parametric regression, confidence bands, nearest neighbour, consistency. 

1. Introduction 

Let (XI, Y,), . . . , (Xn, YJ) be a random sample from a bivariate population with distribution 
function F(x, y). We are interested in constructing uniform confidence bounds and bands for 
the unknown regression function 

m(x)=E(Y|X=x) 

without making parametric assumptions about either m or the distributional form of F. We will 
assume existence of the conditional variance function given by 

u2(x)=var (YIX=x). 

The results we derive are conditional on the given x values, essentially reducing us to the usual 
regression situation. 

For a recent review of some of the work that has been done in non-parametric regression see 
Collomb (1981). Asymptotic results based on strong approximations leading to simultaneous 
confidence bands have been obtained for histogram estimates by Major (1973), for kernel 
estimates by Revesz (1979) and Liero (1982), and for nearest neighbour estimates by Revesz 
(1977, 1979). Although most of these results assume that the variance does not depend on x, 
Liero (1982) derived simultaneous confidence bands with mild restrictions on the conditional 
variance. Wahba (1983) developed Bayesian confidence bands for smoothing spline estimates 
of the regression function. Asymptotic simultaneous confidence bands for censored survival 
problems, using ideas from nearest neighbour approaches, have been derived by Doksum & 
Yandell (1982). 

Our construction will be based on the k-nearest neighbour estimator, 

where the summation is taken over the indices of the k values of X lying closest to x. 
Section 2 provides some preliminary probability results based on inequalities. A Chebychev 

type inequality for regression and exact uniform confidence bounds for Emh(x) are derived in 
section 3. Asymptotic distribution theory is used to obtain another set of bounds in section 4. 
Section 5 focuses on bounds based on non-overlapping neighbourhoods while bias and 
consistency is considered in section 6. Conditions under which the bounds and bands for 
Emi(x) can be extended to m(x) are given in section 7 and the problem of choosing the size of 
the neighbourhood is discussed in section 8. Finally, section 9 presents an illustration of the 
bounds. 
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2. Preliminaries 

Let Xi be the ith order statistic obtained from XI, X2,. Xn, and let Yni denote the ith 
induced order statistic of the Y-observations. That is, if Qi is the anti-rank of Xi, XQ =Xni, then 
Yni= YQ,. We assume that the distribution of Xi is continuous, in which case, conditional on 
Xni=xni, i=1, ... , n, the Yni are independent (see e.g. Bhattacharya, 1974, lemma 1). Thus 
the distributional assumptions may be written as follows: 

Yni=m(xni)+Eni, i=1,. . . n, (2.1) 

where En, . . ., ?nn are independent, 

Xni . .. . "Xnn, EEni=O and Var (Eni)=U 2(Xni). 

For convenience we will, until section 5, write Yi for Yni and xi for xni. 
Our main estimate for m(x) will be the k-nearest neighbour estimate, or simple moving 

average, defined by 

m (x)= Yi/k, (2.2) 
ielnk(X) 

where Ink(x) are the indices of the k values of x1,.. ., xn closest to x. In the case of a tie between 
two values xs and Xs+k we adopt the convention of including only the smaller of the two indices, 
s, in Ink(X). Thus mi(x) will be left continuous. 

We also consider an estimate introduced by Revesz (1979) which is a nearest neighbour 
estimate with the index set, Ink(X), balanced around the point x. That is, the index set has the k 
nearest neighbours such that xi,x for at least k/2 indices i, and xiBx for at least k/2 indices, 
where k is assumed even. In other words, x is a median of the set {Xi: iEIInk(X)}. We denote this 
estimate by 

mh(x)= , Yilk. (2.3) 
iE Ink(X) 

Again, in case of a tie between two indices, we include only the smaller one. 
Let 

Ji= {X: Ink(X) {i+,.. ., i+k} }, i=O, ... , n-k. (2.4) 

Denote Mi by 

Mi=t(x) for xeJi, , ... ,n-k. 

Thus we have 

mi=(Yi+l+ .+Yi+k)/k, i=0O ... I n-k. (2.5) 

We assume that the x's all are in the interval (an, b,) where possibly a,= - 00, bn= X . Then 

J0= (an, (xl +Xk+1)/2], Jn-k=((Xn-k+x,)/2, bn) and 

Ji=((xi+xi+k)/2, (xi+1+xi+k+1)/2I, i=1,... ., n-k-1. 

Let 
i+k 

Si=m^i-Em^i= 
E 

wi, i=O,. . , n-k, 
j=i+ 1 

where 

vY=rrY-m(x1)I/k, j= 1,...,n 
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Define ?0=0 and 

Si= Wj, i=1 .. , n. 
j=1 

Then 

Si=Si+k-Si, i=O,...n-k. 

Lemma 
For each t>O 

n-k n 

P(Si?-t; all i=O,.. ., n-k)?1-4(kt)-2 { r2(xi)+E a2(xi)}. 

Proof. Let 

A={Sk+i?-t/2, all i=O,... ,n-k}={Sj>-t/2, all i=k,. . . ,n} 

B= {SiSt/2, all i=1, ..., n-k} 

C={Sj,-t, all i=O, . . . ,n-k}. 

Then AnBcC and by Bonferroni's inequality, we have 

P(C) BP(A nB) > 1 -P(Ac) -P(Bc) 

Kolmogorov's inequality (e.g. Loeve, 1963, p. 235), yields 

P(AC)=P ( max {-Sj}>t/2) <P max (-Sj}>t12 <4(kt)- or 

By a similar argument, 

n-k 

P(Bc)-4(kt)-2 o 2(x,) 
i=l1 

and the result follows. 

3. Exact uniform confidence bounds for E,m(x) 

Since inf(x) {(m(x)-Emrh(x)}=min {Si; i=0, ... ,n-k}, then by the lemma, 

P (inf[m(x)-Em(x)]?--t)1 -14(kt)-2 [a2(x )+ U2(x,)]- 

Thus if we set 

n-k n -1/2 

then Mli(x)+ta is a simultaneous upper confidence boundary for Emh(x) with confidence 
coefficient at least 1-a. 

11 
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Similarly, Mii(x)-ta is a simultaneous lower confidence boundary for Emi(x) with confidence 
coefficient at least 1-a. Let T+=sup(x)?{fm(x)-Emh(x)} and T=max{T-, T+}. Then 
P(7-t)-P(T+?t)+P(T-?t). It follows that we have obtained the following uniform 
Chebychev type inequality for regression. For each t>O, 

P sup | m(x)-Etm(x) | St}1-8(kt)-2 [ ar2(Xi)+J a2(Xi)]* (3.1) 

Thus mi(x)-Emi(x) converges in probability to 0 provided k-2 X,;l) r2(xi) tends to zero as 
n-*oo and k-3oo. If a2(x) is bounded, this follows if (n/k2)-*O as n-* 0o. 

Note that 

M (x) ? 2 ta. (3.2) 

is a level (1-a) simultaneous confidence band for Em(x). If we assume that u2(x)=u2 for all x, 
then 

ta = (2a/k) { (2n - k)/a} 1/2 

and the width of the confidence band is (4o/k){(4n-2k)/a}ll2. If we choose k=nA+l/2, A<1/2, 
then the width is 

8n- aal/l2 

minus a smaller order term. Thus the width tends to zero provided that O<A<1/2. 
To use the band, we need an estimate of (J2. A natural estimate is the residual mean square 

n 

o2r=n {Yi-_h(xi)}2. (3.3) 
i=l1 

This estimate of variance is consistent under the conditions of Revesz (1979) if mti(-) is replaced 
by m(-) of equation (2.3). We conjecture that the proposed estimate (3.3) is also consistent 
under the same conditions. 

4. Bounds based on asymptotic distribution theory 

We assume that o2(xr)=a2 and we let Si, A and B be defined as in the proof of the lemma of 
section 2. First note that 

max {-Si}=max{-Sk, -Sk-Wk+l,i . * -Sgk-Wk+l *- .Wn 

=-Sk+max {O,-Wk+l,.* ,-Wk+-. ..-Wn}. 

Thus we can write 

knr"2 max {-SJ}=-(k/n)1"2k12Sk+ (1-(k/n)}k2 (n-k) ax { Si 
k -<i< n 0<i--n-k 

where ?O=O and Si=k( 1) Wk+j, i=1,.=. a, n-k. In the above equation, the first term on the 
right-hand side converges to zero provided (k/n)-+O as n-* o. Thus P(kn-112 
max(k-i-n) {-S&}6t) converges to 2Q(t/a)-1 by a result which gives the asymptotic 
distribution of the maximum of partial sums in terms of the distribution of the maximum of 
Brownian motion (e.g. Billingsley, 1968, p. 72). Thus, when (k/n)-}O as n-* 00, then 

P(A)=P( max {-S9}-t/2)=2({kt/(2rn1'2))-1. 
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Table 1. Relative widths of bands (3.2) 
and (4.1) 

a 0.1 0.05 0.01 

(3.2)/(4.1) 2.28 2.82 5.02 

A similar argument shows that the same approximation holds for P(B). Using this and the 
arguments of section 3 we find that asymptotically a level (1 -a) confidence band for Emi(x) is 

m-(x) ?2a(D-1(1 - a14)n 1121k. (4.1) 

Choosing k=nA+l/2, the width of the band is 

4oa(D-1(1-a/4)n-`. 

Table 1 compares the relative widths of the confidence bands (3.2) and (4.1). 

5. Bands based on non-overlapping neighbourhoods 

The bounds and bands in sections 3 and 4 will be of use only for large data sets. In this section 
we develop a band which is much narrower, but it is simultaneous only for a sequence 

tn1, ... , t,,6 of x-values. The model is 

Yni=M(Xni)+ni, Xin< *... <Xnn 

where En1, ... ., nn are independent with Var (Eni) =r2(Xni) and 

max Ixn,j+k-xnj I =O(n-/1/2), 0<A<1/2. 
i 

If we choose t.<.... .<tn such that for some c>0 and some ), 0A<1/2-A 

min(tn,j+1-tnj)?,cn- A, 

then for n large enough, there will be no overlap between the k=nA+ 1/2 nearest x-neighbours 
to the points tn 1,.. ., t,V. Thus if we define 

Tni = m (tni) -Emh (tni), i= 1, . .. I tS 

then there exists N such that Tnl .... , Tno are independent for all n?N. By Chebychev's 
inequality and (2.5), for n-N, a>O, 

P max I Tni I -a> i 1 - (ak)-2 E U2(Xnj)}. 
i i=1jElnk(tn.) 

If we assume r2(x)=u2 then 

m( +o - /l(1- a) "PIll (5.1) 

is a simultaneous confidence band for Emi(x) valid for all XE {tn1,.. , t,}. The width of this 
band is of the order 0(n.{A+(1/2)}/2). 

By (2.5) and the Central Limit Theorem, 

lim P(knn-40t)=0(t/r), 
n-b >m 
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where k=nA+1/2, and j is fixed. Thus if we set 

M6=rnax {|ITnl I, . . . , IT,|} 

where /3 is finite, then 

lim P(k _2Mpt)= {2D(t/or) - 1 (5.2) 

and 

m(x)? (-1[{1 + (1 -a)1/8}/2]a/ko12 (5.3) 

is asymptotically a level (1-a) simultaneous confidence band for Emr(x) valid for 
XE {tnl, * * *, t. , } 

This band is also of order 0(n-{A+(1/2)}/2). Note that (5.1) and (5.3) are considerably 
narrower than the bands (3.2) and (4.1). 

We next derive approximations to (5.2) and (5.3) valid for large /3. Let VI=max(j) {Tni}, 
W, = min(j) { T,,}j, then M, = max {Vp, - W, } and 

1(l 2Mfl St) = (1/2Vf S -' t, /2Wp t 

Using this and results on the asymptotic distribution of extreme order statistics (e.g. 
Galambos, 1978, pp. 65 and 106), we find that if 

a -or a,=(2 log )1/2_ (log log /3+log 4.r) ~~~~4-1(1//3) ~~~~~~2(2 log /3)1/2 

and bo =(2 log /3)1/2, then 

lim { lim P(k1"2Mfi/aSa+bpz) }=exp(2eZ) (5.4) 
fi-00 floo 

It follows that for large /3, an approximation to (5.3) is 

mA (x)?a(a, +bpZa)k (5.5) 

where za=-log{-1/2log (1-a)}. 
The band (5.1) can be made asymptotically valid for all x provided that the tnj's are chosen 

suitably, that the bias is of smaller order than the widths of the bands (see section 6), and that 
m(x) is uniformly continuous. 

It would have been more elegant to take the limit in (5.4) as , and n simultaneously tend to 
c, say by setting/3=ny, 0<y<?1/2- A. With y= 1/2- A, this would lead to a band similar to that of 
Revesz (1979). Theorem 1 of Revesz (1979) holds for mii(x) based on the sets Ink(x), yielding 
the confidence band 

Mif(x)?a(as+bsza)k-1'2 (5.6) 

with s=nl/2-A1. The width of this band is of order O{n-(A+1/2)/2(logn)1/2} when k=nA+l/2. 

6. Bias and consistency 

The results of the previous sections are for mii(x) centred at 

m(x).=Em'(x)= 2 m(xi)Ek. 
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In order to be able to centre at m(x), we need to show that the bias 

mh(x)-m(x)= 'E {m(xj)-m(x))1k 
iElnk(X) 

is uniformly of small order. 
Assume now that x is in an interval (an, bn) with an and b, finite and that the regression 

function satisfies the Lipschitz condition: 

Im(x)-m(y) Ic x-y|, x, yE(an, bn), some c>O. (6.1) 

Let xEJi, i=0, 1, . . ., n-k, with Ji as defined in section 2 and let xo=an, Xn+I=bn. Then 

jtm(x)-m(x) | c E: Ixi-xll k 
jElnk(X) 

<c max { (Xi+k-xj)/2, (Xi+k+ 1-Xj+ )/2}, x EJi 

since Ixj-x I < Ixj-x0j 1, where x0j is the point on the boundary of Ji furthest from xj. Combining 
this with (3.1), we obtain the following uniform consistency result. 

Theorem 
Suppose that the assumptions of the model (2.1) hold, and that m(a) satisfies the Lipschitz 
condition (6.1). Then m'(s) is uniformly consistent in the sense that 

P ( SUp [ m(x)-m(x) 
a,<x<bn 

provided 
n 

oa2(Xi) =o(k2) (6.2) 

and 
max Xn,j+k-Xnj I =o(1). (6.3) 

O0jsn-k+1 

In the case where we can express xn,j as qpn{i/(n+1)) for some increasing function (Pn on 
(0, 1) satisfying the Lipschitz condition (6.1) uniformly in n, (6.3) is satisfied whenever 
(k/n)-*O as n-* oo. Thus, typically, (6.2) holds when (k2/n)--oo, while (6.3) holds when 
(k/n)-}O. For k=n /l+A, this means O<A<1/2. Note that an and bn need not be bounded. 
For instance, Xnj=D-1{j/(n+1)}, where F-1 is the inverse of the standard normal distri- 
bution function, satisfies (6.3). 

Revesz (1979) considers a different restriction on the regressor: suppose that X is random 
and that Xis in the interval [0, 1]. Let X have a densityf such that f(x) e, xE[0, 1], for some 
E>O. Let k be such that 

kn-213 log n-*O, k-'(log n)3-*O as n-*oo. (6.4) 

Then (R6vesz, 1979, lemma 1) 

lim sup- sup IXi-Xi+k I -2/E a.s. 
n-- o: k 1 Si-<n-k 

where X1, . . . , Xn are the order statistics of a sample of size n from a population with density f. 

From this and the Lipschitz condition (6.1), it follows that 

sup |tm(x)-m(x) |=O(k/n) a.s. 
x 
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Thus we have shown consistency again under a different set of conditions than those of the 
theorem. 

Under the conditions of the above paragraph, and assuming that m(x) has a uniformly 
bounded derivative, Revesz (1979) has shown (lemma 2) that 

sup I|m(x)-m(x)|=o{(k log n)'-12} a.s. 
x 

Stone (1977) obtained general consistency results for nearest neighbour estimates in terms 
of L' convergence, r>1. 

Spiegelman & Sacks (1980) considered window estimates and showed the mean squared 
error to be of the order O(n-213) when m satisfies the Lipschitz condition. Thus their bias is of 
order less than n-113. Their bandwidth is of order bn=n- 1/3, corresponding to k=n213. 

Lai (1977) and Mack (1981) considered the asymptomatic bias of nearest neighbour 
estimates and found the bias to be of order (k/n)2 when f and m satisfy certain conditions 
including the condition that they are continuously differentiable up to second order. 

7. Asymptotic confidence bands for m(x) 

We want to extend the bands for Emi(x) to m(x). Note that if we write 
bMAX=sup(x) I m(x)-m(x) I for the maximum bias, then 

P( sup 6mz(x)-m(x) j't) P sup mi(x)-Imi(x) It-bMAx). 

Thus, from (3.1), when a2(x)=a2, a level (1-a) uniform confidence for band m(x) is 
M,i(x)+2 a2t' where 

ta=bMAX+(2or/k) {(2n-k)/a} 1/2. 

Note that when bMAX=O(n112/k), then as n--*, ta/tal-U and (3.2) is asymptotically valid as a 
confidence band for m(x). Since typically bMAX=o(k/n), we require that k/n is of smaller 
order than n1I2/k. When k=nl/ +A, this means 0<A<1/4. 

Similarly, the band (4.1) is also asymptotically valid when bMAx=o(n"/2/k). 

Using the inequality 

max I ,(tnj)-m(tnj) |bMAX (7.1) 

we find that the bands (5.1) and (5.3) are asymptotically valid when bMAX=o(k-1/2). When 
k=nl/2+A and bMAX=O(k/n), this corresponds to O< <1/6. 

The above conditions for the bands (3.2), (4.1), (5.1) and (5.3) are equivalent to the 
condition that the bias is of smaller order than the widths of the bands. This condition does not 
work for the bands (5.5) and (5.6). By considering (5.4) and using the inequality (7.1), we see 
that a sufficient condition for the asymptotic validity of these bands as bands for m(x) is 

bMAx=o{(k log 1)3/ } . 

When bMAx=O(k/n), f=nY, O<ys/2-A, and k=nl/2+ , this corresponds to 0<A<1/6. 
Rosenblatt (1969) gives asymptotic results for kernel estimators of the regression function. 

He gets pointwise confidence-intervals of width n-2/5 using a bandwidth of order n-1/5 which 
corresponds to k=n4/S or A=0.3. 
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8. Choice of neighbourhood size 

The choice of neighbourhood size, k, involves a delicate trade-off between bias and variance. 
Specifically, with k=n A+1/2, as A approaches 0, the bias decreases and the variance increases. 
Alternatively, as A approaches 1/2, the bias increases and may become of larger order than the 
width of the bands. As more smoothing is imposed on the regression function m(), bias 
becomes less important. However, this introduces restrictions on the shape of m which may 
not be desirable. An ad hoc procedure would be to choose an intermediate value of A, say 
0.15, and see (a) how large k is relative to n for one's sample size, (b) what is the empirical 
trade-off between bias and variance, and (c) how smooth (visually) is the resulting 
non-parametric regression estimate. One hopes that methods, perhaps along the lines of 
penalized likelihood and cross-validation, will be developed to provide empirical guidelines 
for the choice of k. 

9. An illustration 

To get an idea of the accuracy of the bands, we computed the band (5.6) for data 
(x1, Y1), . .. , (x1oo, Yloo) generated from the model 

Yi=exp (yl) exp (y2xi) x +ei (9.1) 

where yi=5, y2= -1/2, y3= 1, and 1, ... , E,, are i.i.d. AX (0, 100), xi=i/25, i= 1, .. ., 100. The 
significance coefficient is 0.90. A=0. 15, yielding a neighbourhood size of k=20. While this k is 
large relative to n= 100, it seems to give a smooth but accurate estimate of the true curve. a is 
computed from (3.3) ignoring data at the edge, that is, the first and last 10 points. 

140 

120 - 
* 

U,~~~~~~~~~~ 
D 00 $ >-~r 

*f* 

o20 2 3 

x=Amount of fertilizer 

Fig. 1. Simultaneous confidence band. Solid line=true curve; dashed lines=asymptotic (Revesz) band 
(5.6); stars=simulated data. Sample size 100. Band clipped to region of inference. Simultaneity for the 
five x-values, x=0.4, 1.2, 2, 2.8, 3.6. 
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Table 2. Widths of the confidence bands for model (7.1) 

Band (3.2) (4.1) (5.1) (5.3) (5.6) 
Width 89.6 39.3 31.0 10.3 11.6 

This model has been suggested for agricultural experiments where an amount x of fertilizer 
increases yield Y for low and moderate doses while it decreases yield at high doses. 

The result is shown in Fig. 1 where the middle curve is the true function m(x)=exp (YI) 
exp (y2x) x'5 and the upper and lower curves define the band. The band is fairly accurate with 
the width being 11.6. Since the band is simultaneous, we can test model assumptions. For 
instance, a parabola does not fit in the band and a quadratic (in x) regression model is rejected. 

We also computed the widths of the other bands (using a= 10 rather than &r). The results are 
given in Table 2 using k=20 and fl=s=5. Note that the widths of (5.5) and (5.6) are the same. 

Note that since ei is normal, (5.3) is exactly a level 0.90 simultaneous confidence procedure 
for f3=5. 

Note also that the simultaneity is restricted to five x-values, and that the band is asymptotic 
as a band for m(x). 
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