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We present graphical tools for examini
baseline from a group of similar processes.
line using smoothing splines for general linear m

leafhoppers is examined in some detail.

1. Introduction

This paper concerns inference for nonstationary Poisson
rates which are "almost” proportional 1o a common baseline. It
provides a means for "pre-smoothing” rate estimates 1o avoid
some of the common problems of estimating functions with large
curvature al certain places.

One may believe that a group of female potato leafhoppers
in the same fluctuating temperature regime (Hogg, 1984) would
oviposit at rates which rose and fell at roughly the same time.
That is, one would suppose that the oviposition rates would be
proportional to a common baseline rate. One could estimate this
baseline rate, and then estimate the individual curves by simply
determining the constant of proportionalinn, as was done by
Bartoszviiski et al. (1981). However. one might want to examine
the proportionality as a function of time to determine whether or
not it is constant.

We propose a method 1o estimate this proportionality over
time. Although many approaches are possible (Clevenson and
Zidek, 1977: Hastie and Tibshirani. 1984), we develop our esti-
mators in the framework of penalized maximum likelihood (Good
and Gaskins, 1971; O'Sullivan, Yandell, and Raynor, Jr.,
1984).

Section 2 formulates the problem of proportional rates.
Penalized maximum likelihood estimators for the baseline rawe
and proportionality terms are developed in Section 3. Section 4
briefly presents diagnostic tools. The methods are applied to
leafhopper oviposition data in Section 5.

2. Proportional Poisson Rates

An individual leafhopper i, i=1, -+ ,r, may lay ¥;; eggs
attime /;, )< - ° <iy. The count Y;, is assumed Poisson with
mean  h; (1), which may be nonstationary. We focus on the
model

hi(1) = h?(1) a,(1), =0, i=1," """ 2.1
Proportional rates would correspond to constant 4;, with h?(.)
being the baseline rate. Taking logarithms yields

Jog(h, (1)) = log(h® (1)+10g(a; (). @.n
or, reparameterizing one has
0,01 = 07(1) + a;(1), (=0, i=1, >0 (2.2)
The degree to which the g, or o, aré not constant corresponds
10 how much the proportional rates assumption is violated. This
suggests that one could evaluate the degree of nonproportionality
by estimating a,, OF equivalently «,, and plotting these against
time,

proportionality of a Poisson process rate 10 a
We examine smooth deviations from this base-
odels. An example of egg-laying rates for

283

2.1, Log Likelihood

The likelihood can be written down and decomposed into
pieces so that, subject to constraints, we can have a separate
likelihood for each individual proportionality term. The overall
log likelihood

1 , ,
L5, llog(r)=8" ()=, (1))
tJ
can be reexpressed as the sum of

1 ; 5
L(®%) = <3 V. llog(Y, ;/r)=8%(1)] 2.3)
g

and

1 " o
po T )u [log(r)”.’hj}—a,(rj)] 2.4)
iJ

Throughout this paper. "+" indicates sum over the intended
inden. Note that (2.3) is a Poisson penalized likelihood, and
(2.4) is a multinomial penalized likelihood conditional on ¥, 5.
In other words, )‘” is hinomial ()',rl.u,(l_,)fr). This suggests
splitting (2.4) into r terms of the form

Y ¥, ,~¥
__.’L].‘()“,—)'”-)log[ ,+‘r 2 ]
Ky g : )+_1'_""'rj

in which w,, = a )y, /r. Thus the log likelihood can be
split into r=1 terms, for 67 and for a,, i=1, - ,r. with the
the restriction that $a, (7)'r=1.

L{a,) = %E)‘”log

3, Penalized Maximum Likelihood Estimates

We now impose a penalty on the estimators 1o insure a cer-
tain smoothness not guaranteed by the likelihood as written. The
penalized maximum likelihood estimate (MPLE) for the baseline
rate (Bartoszynski et al., 19813 O'Sullivan, Yandell, and
Raynor, Jr., 1984) can be found by minimizing, for fixed A,

L(®“ ) = L(®") + NJ(©®7) (3.1
in which J() is an appropriate penalty function, typically
= [umont d 3.2)

with m = 1 or 2 for penalty on the slope or curvature, respec-
tively. A large value of the penalty, or smoothing, parameter A
forces 8¢ 10 be nearly linear, while a small A allows 82 to inter-
polate the data.

The smoothing splines incorporate a prior belief that the
true curve is smooth in a certain sense. The smoothing parame-
ters A are chosen by means of generalized cross validation
(Craven and Wahba, 1979), which tries to minimize the mean
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square error, forcing a tradeoff between bias and variance.

Similar expressions can be written down for determining
the MPLE of a, for each i,

L(ﬂ,-)\,-) = L(u,) + )\,'J(ﬂ,:J (3.3)
When m=1 and A, =2, the constant MPLEs are
a, = log(ry, /Y, ), i=1,-- ,r

The estimation problem can be split into r+ 1 minimization prob-
lems, for 8 and for a,, i=1, - - - ,r, provided we are willing 10
ignore the restriction that Sa/r=1. Of course, such a restric-
tion could be imposed, but it would place awkward constraints on
the smoothing penalties.

3.1. Data over Time Intervals

The data considered in Section 5 is grouped by 2 or 3 dav
intervals. With this design imbalance, the estimates of 8 and of
a, may be biased, depending on the panern of grouping. How-
ever, the unconditional expectation of the estimates is unbiased
provided thal the panern of grouping is independent of the siale
of an individual. We can adjust the penalized likelihood expres-
sions in a natural way 10 account for the reduced data, namely,

o o l ] A r oW
L") = =z Yy, Nog(y, /d. -0 (1] 3.4)
y
1 . Yu Y+_1—Yir'
L@,)=—%x1 log “]—()’ -Y )log[-,——'
! oy = K el }-*J-_”"u

in which By = a,(r_,)d” r‘+j:'d,_,. That is, for each i, there
were n, distinct times 1, at which counts )}, were made. These
counts encompass 4, days each, and the proportion of days for i
out of the total count Y., is d;/d, . These technical adjust-
ments were used for computing, but are not pursued further in
this paper.

3.2. Survival and Oviposition

Throughout the leafhopper study, individuals died. Thus
group size declined over time. These deaths can affect the esti-
mate of the "baseline” rate h°, as well as the proportionality
terms a;, even if all the rates are constant. This problem is most
profound for small groups, such as in the latier portion of the
leafhopper experiment.

A simple solution shown in the data analysis section is to
factor out a step function from the baseline rate, with steps at
times of death. This can be easily accomplished with partial
splines (Shiau, 1985, Wahba, 1983a). Appropriate modifica-
tions can then be made 1o (2.4) based on the estimated step sizes.
A serious danger arises in overparamelerizing the model with
steps for each individual.

4. Diagnostics for Poisson Rates

We propose an ad hoc "confidence interval” and log likeli-
hood residuals for graphical inspection of proportionality. At
present we have no concrete results, but support these tools by
analogy to other work.

Several diagnostics have been proposed for penalized max-
imum likelihood in the linear (least squares) model with i.i.d.
errors. Wahba (1983b) proposed pointwise confidence intervals
based on a Bayesian model with normal errors. Carmody,
Eubank, and Thombs (1984) proposed jackknife confidence
intervals which performed poorly in comparison to the intervals
of Wahba (1983b). Other diagnostics based on residuals

(Eubank, 1984; Gunsi and Eubanh, 1983) naturally extend diag-
nostics for unpenalized problems. Recent work of Cox (1984)
offers strong approximation of the penalized least squares estima-
tor in the i.i.d. case, under certain conditions on the design
points and smoothing parameler, which lead 1o simultaneous
confidence bands if one ignores bias. Another direction based
on a supremum penalty for the regression function (Knafl,
Sacks, and Ylvisaker, 1983ab) vields bias-corrected simultaneous
confidence bands: here, bias is accounted for by a bias correc-
tion.

We adapt Wahba (1983b) to the non-i.i.d. case and argue
in an ad hoc fashion that this might have reasonable properties
for our problem. We consider the model

X =gve, g NO.(N)'S,), €NOT),
with ¥ diagonal. The posterior estimator of g is
£=EQ|X)= 3, +mMT) X = B X @1
The covariance is derived in an analogous fashion as
COV(g | X) = (I+H)\)Z,/(n\) = H,S. 4.2)

This suggests an approximate 95% confidence interval for g,

§ = 1.9, Vh,0\) 4.3)

Now suppose, for fixed i, we let Xj--log()’,.j/(}’”-}’un and
approximate the covariance to first order,

3= i i B
o= 2rexp(-—u,(rJ.))/Y+j, j=1, .

The estimated confidence interval for @, (1;) becomes

)= 196V 2k, (N Jrexp(=d , ()Y, (4.4)

This approach has some problems, as the solution to the penal-
ized log likelihood is not the same as the solution to a logit
regression with normal errors. We will pursue this in later work
using ideas of Leonard (1982).

We propose an ad-hoc test of the hypothesis of constant

proportionality by computing the difference in deviances between
the smooth and constant estimates,

DG = 2L@)-L@G)) i=1, - ,r, (45

with @, () being the spline estimate of a,() for fixed smoothing
parameter A and a; the estimate for constant a,. In other
words, D(i,\) is simply the deviance between the constant and
the smoothed logit models. We suppose that this statistic may
have approximately a chi-square distribution with degrees of free-
dom (n— 1)—trace(i~ H,). We will compare this with the usual
likelihood ratio statistic, D(i)=2L(a;) with n—1 degrees of
freedom, in the data analysis section.

Expression (4.5) suggesis examining the deviance contri-
butions at i; (Green, 1984; Pregibon, 1981)

= (27, (log(Y;; )=, (§; V2, (4.6)

with the sign the same as that of Y, —expid,, ()Y, /r. For
given t,. this is approximately A(0,1); thus large positive or
negative values suggest significant deviations. However, the
graphical "esis” al differem %, are highly correlated, and a
graphical plot of ¢ versus logit residuals cannot be viewed as a
global test.

5. Data Analysis

We consider data from a laboratory experiment conducted
by Hogg (1984) in which female potato leafhoppers were kept in
controlled laboratory conditions at one of three fluctuating 1em-
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perature regimes. We focus here only on the cold regime. We
examine the baseline for the 23 females in this group along with
the proportional term for two of these females. A more complete
analysis is in progress jointly with David Hogg. Entomology
Department, UW-Madison, who kindly offered the data he col-
lected.

All individuals have grouped records, that is counts of eggs
for 1-3 day intervals. Also, individuals were removed from the
study by death, either nawral or accidental (due to handling).
We assume that the grouping does not introduce any bias in the
estimation of the baseline rate, and that we are interested in the
baseline rate and proportionality terms at any time only for those
Jeafhoppers which were alive. We initially proceed as if survival
did not affect bias, and later correct for survival as indicated in
Section 3.3.

Figure 5.1 shows the baseline rate and the rates for indivi-
duals 22 and 23. Note the rise to a fairly constant rate, with gra-
dual decay. The raw proportionality for individuals 22 and 23
are ploned alongside curve estimates with penalties for slope and
for curvawre in Figures 5.2-3. The curve estimate based on a
penalty for non-zero slope appear much rougher than the curves
based on curvature penalty. Approximate 95% pointwise confi-
dence intervals for the proportionality estimates, based on the
curvature penalty, are shown in Figures 5.4-5.

The likelihood ratio statistics with degrees of freedom and
p-value are shown in Table 5.1. Note the greal reduction in
degrees of freedom for the penalized curves, while the deviances
stay fairly high. Figure 5.6-7 show the logit deviances over

time. :
Table 5.1 Smooth Deviances

Deviance d.f. log(M)

#22:

constant 188.21 68. o
m=1 (slope) 117.66 14.88 -6
m=2 (curvature) 99.49 8.83 -12
#23:

constant 113.99 64. o=
m=1 (slope) 61.56 5.87 -4
m=2 (curvature) 62.36 1.35 -8

We conclude with curve estimaies for the baseline once
one adjusts for the survival process. Figure 5.8 shows the naive
and adjusted baseline rate estimates for the cold regime. One
sees that survival has linle effect on the baseline rate for most of
the experiment, though estimates at the later times can be
affected.
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