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Graphical Analysis of Proportional Poisson Rates

Brian S. Yandell

University of Wisconsin - Madison

We present graphical tools for examining proportionality of a Poisson process rate to a
baseline from a group of similar processes. We examine smooth deviations from this base-
line using smoothing splines for general linear models. An example of egg-laving rates for

leafthoppers 1s examined in some detail.

1. Introduction

This paper concerns inference for nonstationarv Pois-
son rates which are "almost” proportional 10 a common
haseline. It provides a means for "pre-smoothing” rate esti-
mates to avoid some of the common problems of estimating
functions with large curvature at certain places.

One mayv believe thiat a group of female potato leaf-
hoppers in the same fluctuating temperature regime (Hogg,
1984) would oviposit at rates which rose and fell at roughly
the same time. That is. one would suppose that the oviposi-
tion rates would be proportional 10 a common baseline rate.
One could estimate this baseline rate, and then esumate the
individual curves bv simplv determining the constant of pro-
portionaiinn. as was done by Bartoszvnski et al. (1981).
However. one might want to examine the proportionalitv as a
function of ume. to determine whether or not it is constant.

We propose a method to estimate this proportionality
over time. Although many approaches are possible (Cleven-
son and Zidek, 1977: Hastie and Tibshirani, 1984), we
develop our estimators in the tramework of penalized max-
imum likelihood (Good and Gaskins, 1971; O’Sullivan,
Yandell, and Ravnor. Jr.. 1984).

Section 2 formulates the problem of proportional rates.
Penalized maximum likelihood estimators for the baseline
rate and proportionalits terms are developed in Section 3.
Section 4 briefly presents diagnostic tools. The methods are
applied to leafthopper oviposition data in Section 5.

2. Proportional Poisson Rates

An individual leafhopper i, i=1, - - - ,r, may lay Y
eggs at time 7, ;< - - <1,. The count ¥, is assumed
Poisson with mean /,(7,), which may be nonstationary. We
focus on the model

mlEy = 90 (), 120 F= 10w 2.1)

Proportional rates would correspond to constant a;, with
71”(.) being the baseline rate. Taking logarithms vields

log(h; (1)) = log(h"(nN)+log(a, (1)), 2.1
or, reparameterizing one has
8.(0) = 8% + o, =00 wlaed < n 2.2

The degree to which the g;, or «,, are not constant
corresponds to how much the proportional rates assumption
is violated. This suggests that one could evaluate the degree
of nonproportionality by estimating a,, or equivalently o,
and plotting these against time.

2.1. Log Likelihood

The likelihood can be written down and decomposed
Into pieces so that, subject to constraints, we can have a
separate likelihood for each individual proportionality term.
The overall log likelihood

1 , o
— 33 ¥ Hog(l;; )=0"(1;)—a;(1,)]

=i

i

can be reexpressed as the sum of
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Throughout this paper, " +" indicates sum over the intended
index. Note that (2.3) is a Poisson penalized likelihood, and
(2.4) is a multinomial penalized likelihood conditional on
Y. ,. In other words, Y, is binomial (Y, ;.a;(1,)/r). This
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suggests splitting (2.4) into r terms of the form
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La;) = ——‘S‘}’ plogeal (¥ i o e e
i i) Yij—Wy

in which Bi; = g (.' ;/r. Thus the log likelihood can be

split into r+1 terms for 6“ and for a;, i=1, ,r, with

the the restriction that Sa (n)/r=1.

3. Penalized Maximum Likelihood Estimates

We now impose a penalty on the estimators to insure a
certain smoothness not guaranteed by the likelihood as writ-
ten. The penalized maximum likelihood estimate (MPLE)
for the baseline rate (Bartoszynski et al., 1981; O’Sullivan,
Yandell, and Ravnor, Jr., 1984) can be found by minimiz-
ing. for fixed A.

LBY Xy = L@O7)y + XJ(B") (3.1H

in which J() is an appropriate penalty function, tvpically
JEEY = f (Y an” a (3.2)

with m = 1 or 2 for penaltv on the slope or curvature,
respectivelv. A large value of the penalty, or smoothing.
parameter A forces 8" to be nearlv linear. while a small A
allows #" 10 interpolate the data.

The smoothing splines incorporate a prior belief that
the true curve is smooth in a certain sense. The smoothing
parameters A are chosen bv means of generalized cross vali-
dauon (Craven and Wahba, 1979). which tries to minimize
the mean square error, forcing a tradeoff berween bias and
variance.

Similar expressions can be written down for determin-
ing the MPLE of « for each 1,

Lio, A) = Lia;) = A J(a)) (3.3)

When m=1 and A, =%, the constant MPLEs are

a, = log(rY, . Y__ ) i=1, - ,r

The estimation problem can be split into »—1 minimization
problems, for 8" and for a ., i=1, .7, provided we are
willing 1o ignore the restriction that Sa/r=1. Of course,
such a restrictuion could be imposed, but it would place awk-
ward constraints on the smoothing penalties.

3.1. Data over Time Intervals

The data considered in Section 5 is grouped by 2 or 3
day intervals. With this design imbalance, the estimates of
07 and of «; may be biased, depending on the pattern of
grouping. However, the unconditional expectation of the
estimates is unbiased provided that the pattern of grouping is
independent of the state of an individual. We can adjust the

penalized likelihood expressions in a natural way to account
for the reduced data, namely,

(3.4
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in which By = a,-(rj)d,-_; }’,,A,./d_J That is, for each 1/,

there were #n; distinct times 1; at which counts Y, were

made. These counts encompass d davs each, and the pro-

portion of davs for i out of the total count Y is di/d,

These technical adjustments were used for computing, but
are not pursued further in this paper.
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3.2. Survival and Oviposition

Throughout the leathopper swudyv, individuals died.
Thus group size declined over time. These deaths can affect
the estimate of the "baseline” rate /", as well as the propor-
tonality terms @, even if all the rates are constant. This
problem is most profound for small groups, such as in the
lanier portion of the leafhopper experiment.

A simple solution shown in the data analvsis section is
to factor out a step function from the baseline rate, with
steps at times of death. This can be easily accomplished
with  partial splines (Shiau, 1985; Wahba, 1983a).
Appropriate modifications can then be made to (2.4) based
on the estimated step sizes. A serious danger arises in over-
parameterizing the model with steps for each individual.

4. Diagnostics for Poisson Rates

"

We propose an ad hoc "confidence interval” and log
likelihood residuals for graphical inspection of proportional-
inn. At present we have no concrete results, but support
these tools by analogy to other work.

Several diagnostics have been proposed for penalized
maximum likelihood in the linear (least squares) model with
i.i.d. errors. Wahba (1983b) proposed pointwise confidence
intervals based on a Bavesian model with normal errors.
Carmody, Eubank, and Thombs (1984) proposed jackknife
confidence intervals which performed poorly in comparison
to the intervals of Wahba (1983b). Other diagnostics based
on residuals (Eubank, 1984; Gunst and Eubank, 1983)
naturally extend diagnostics for unpenalized problems.
Recent work of Cox (1984) offers strong approximation of
the penalized least squares estimator in the i.i.d. case, under
certain conditions on the design points and smoothing
parameter, which lead to simultaneous confidence bands if
one ignores bias. Another direction based on a supremum
penalty for the regression functuon (Knafl, Sacks, and
Yivisaker, 1983ab) vyields bias-corrected simultaneous
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confidence bands; here, bias is accounted for by a bias
correction.

We adapt Wahba (1983b) to the non-i.i.d. case and
argue in an ad hoc fashion that this might have reasonable
properties for our problem. We consider the model

X = g+e, gNO,(1N)7 ' ). €NOT),

with § diagonal. The posterior estimator of g is

§=E(glX) = T 0 FAREY) IR=H A )
The covariance is derived in an analogous fashion as
COV(g | X) = (J+ H,)T /(1h) = H,3. 4.2)

This suggests an approximate 95% confidence interval for g,

= 190, \ h, ()\} (4.3)
Now- suppose. for fixed i, we let X, =0l i) .~ X))
and approximate the covariance to ﬁrsl order,
(r‘f = Zre)\p(—o:(f,‘)).f);_ o b= e
The estimated confidence interval for «, (7,) becomes
o (1)=1.96N 20 (A Yrexpl—a,, (1, )Y, (4.4

This approach has some problems, as the solution w0 the
penalized log likelihood is not the same as the solution 10 a
logit regression with normal errors. We will pursue this in
later work using ideas of Leonard (1982).

We propose an ad-hoc test of the hypothesis of con-
stant proportionalin by computing the difference in devi-
ances between the smooth and constant estimates,

2[hde ) —Lo)], =l

with «, () being the spline estimate of «, () for fixed smooth-
ing parameter A and «; the estimate for constant a,. In
other words, D(i,A) is simply the deviance between the con-
stant and the smoothed logit models. We suppose that this
statistic mav have approximately a chi-square distribution

D) = s

(4.5)

with degrees of freedom (n—1)—wace(/—H,). We will
compare this with the usual likelihood ratio statistic,
D(i)=2L(a,) with n—1 degrees of freedom, in the data

analvsis section,

Expression (4.5) suggests examining the deviance con-
tributions at ¢, (Green, 1984: Pregibon, 1981)

=[2

with the sign the same as that of ) —expla;, (1,)Y_;

For given 7 . this is approximately N(O 1): thus large posn-
tive or negéme values suggest significant deviations. How-
ever, the graphical "tests" at different i, are highly corre-
lated, and a graphical plot of / versus logit residuals cannot

¥, (og(Y;,) =6, (tn1= (4.6)

i

be viewed as a global test.

5. Data Analysis

We consider data from a laboratory experiment con-
ducted bv Hogg (1984) in which female potato leafhoppers
were kept in controlled laboratory conditions at one of three
fluctuating temperature regimes. We focus here only on the
cold regime. We examine the baseline for the 23 females in
this group along with the proportional term for two of these
females. A more complete analvsis is in progress jointly
with David Hogg, Entomology Department, UW-Madison,
who kindlv offered the data he collected.

All individuals have grouped records, that is counts of
eggs for 1-3 dav intervals. Also, individuals were removed
from the studv by death, either natural or accidental (due to
handling). We assume that the grouping does not introduce
anv bias in the estimation of the baseline rate, and that we
are interesied in the baseline rate and proportionality terms
at anv time onlyv for those leathoppers which were alive. We
initiallv proceed as if survival did not affect bias, and later
correct for survival as indicated in Section 3.3

Figure 5.1 shows the baseline rate and the rates for
individuals 22 and 23. Note the rise to a fairlv constant
rate, with gradual decay. The raw proportionality for indivi-
duals 22 and 23 are plonted alongside curve estimates with
penalties for slope and for curvature in Figures 5.2-3. The
curve estimate based on a penalty for non-zero slope appear
much rougher than the curves based on curvature penalty.
Approximate 95% pointwise confidence intervals for the pro-
portionality estimates, based on the curvature penalty, are
shown in Figures 5.4-5.

The likelihood ratio statistics with degrees of freedom
and p-value are shown in Table 5.1. Note the great reduc-
tion in degrees of freedom for the penalized curves, while
the deviances stay fairly high. Figure 5.6-7 show the logit
deviances over time.

Table 5.1 Smooth Deviances

Deviance d.f. log(\)

#22:

constant 188.21 68. >
m=1 (slope) 117.66 14.88 -0
m=2 (curvature) 99.49 8.83 -12
#23:

constant 113.99 64. x
m=1 (slope) 63.56 5.87 -4
m=2 (curvature) 62.36 3:35 -8

We conclude with curve estimates for the baseline
once one adjusts for the survival process. Figure 5.8 shows
the naive and adjusted baseline rate estimates for the cold
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regime. One sees that survival has little effect on the base-
line rate for most of the experiment, though estimates at the
later times can be affected.
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