Ann. Inst. Statist. Math.
38 (1986), Part A, 429-438

BOOTSTRAPPED CONFIDENCE BANDS FOR PERCENTILE LIFETIME
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Summary

We propose bootstrapped confidence bands for the percentile life-
time function. Our method is based on a joint approximation of the
empirical and quantile processes and their bootstrapped counterparts.
Modest simulations support the results. Confidence bands are applied
to quantile and median residual lifetimes of tractor rear brakes.

1. Introduction

Let F be a life distribution function with support (0, T'x), where
Ty=sup {t>0: F(t)<1}<oco and corresponding quantile function Q(x)=
inf {t>0: F(t)=2}, 0<xz<1, Q0)=0, Q1)=Ts. Let 0<p<1l be any
fixed number, and consider the 1—p percentile residual lifetime

R, p)=QQ—p(1-F(@))—t, 0=t<oo,

originally introduced by Haines and Singpurwalla [9], and interpreted
as the 1—p percentile additional time to failure given no failure by
time t. Schmittlein and Morrison [12] explain in detail the potential
advantages of the median residual lifetime R(¢, 1/2) over the more fre-
quently used mean residual lifetime. These two papers deal with char-
acterization theorems, while Gupta and Langford [8] provides results
for the associated inversion problem. Joe and Proschan [10], [11] use
R(t, p) to compare two classes of life distributions.
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Let X,,---, X, be independent, identically distributed random vari-
ables with common distribution function F. The order statistics of
X,,- -+, X, will be denoted by X;,<X;,<---<X,, Besides the empiri-
cal distribution function

F,t)=(1/n) § {1=si1sn: X;SU},
we consider also the empirical quantile function

0, z=0,
Qu(x)=
Xins (k=1)/n<z<kin, 1sks=n.

Cs6rg8 and Csdrgd [4] introduced the following estimate of R(t, p):

Let

r.(t, ) =n"*(R,(t, p)—R(t, D)) .

Cs6rg8 and Csorgd [4] studied the asymptotic properties of the process
F(R(@, p)+t)r.(t, p), where f=F" is the density function of F. Assum-
ing more regularity conditions on F than we are going to here, they
proved strong approximations of f(R(¢, p)+t)r.(t, ») by Gaussian pro-
cesses, and proposed asymptotic confidence bands for R(¢, p). While
the limit process of f(R(Q(x), »)+Q(x))r.(Q(z), p) does not depend on F
(distribution free), they did not attempt to compute the distributions
of the supremums of the limit process over appropriate intervals such
as te[0, T, p fixed, or (¢, p)€ [0, T]1x[a, b], with F(T)<1 and 0<a<b
<1. Thus their method gives asymptotic confidence bands for R(t, p)
only in principle.

The main aim of this note is to show that the bootstrap method
can be used to construct confidence bands for R(t, p). The confidence
bands are applied to lifetimes of tractor rear brakes following a modest
simulation.

2. Bootstrapped empirical and quantile functions

Given X,,--+, X,, let Y,,..., Y, be conditionally independent ran-
dom variables with common distribution function F,. The empirical
distribution function of Y;,--.,Y,,

Frat)=Q1/m) {1sism: Y.<t} ,

is called the bootstrapped empirical distribution function of F,. Let
Yin< -+<Y,.n. be the ordered sample of Y’s and consider the boot-
strapped empirical quantile function
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0, x=01

Qn, (%)=
Yims (k=1)m<zx=kim, 1=k=m .

Using these bootstrapped functions we can define the bootstrapped em-
pirical percentile residual lifetime as

(2'1) Rm,n(t! p):Qm,ﬂ(l_p(l_Fm,'n(t)))—t ’ 0<p<1! 0§t<°°
and the bootstrapped version of 7, defined as

(2'2) Tm,n(t’ p)zmllz(Rm,'n(t’ p)_Rn(t! p)) .

The following theorem provides strong approximations for 7, and 7, .,
which will be used for construction of confidence bands for R(t, p).

THEOREM 2.1 We assume the conditions
(i) F has a density function f=F' which is positive and continuous
over the support (0, Ty) of F,
(i) there are two positive constants ¢ and C such that c=m[n=C for each
m and n.
If our probability space is rich enough, we can define two independent
sequences of two-parameter Gaussian processes {I,(t, p), t=0, 0<p<1}y,
and {4.(t, p), t=0,0<p<1}3_, such that

(2.3) sup sup |7.(t, p)—I.(t, p)|=0,(1), Mm—o00,
aspsb 0StsST

and

(2.4) Sup Sup |7n...(t, »)— 4., pP)|=0,(1), m,n— 00,

aspsd 0StsST

where 0<a<b<l and T<Ty. We have in addition that

{I(t, p), t=0, 0<p<1} 2 (44(t, D), £20,0<p<1}
for each m, n, and EI,(t, p)=E 4,(, p)=0,

E I, p)I(s, 9)=E 4,(, D)4n(8, q)
_ p+ea—pg(1—-F(tA3)—(@1—F(#)Vae(1—F(s))
fRA—p(1—F®))Nf(RAL—ae(1—F(s))))
_PEFHAQL—=g(1—=F(9)+aFESAL—p(l—F(1)
fRA—p1—-F@®)Sf(QA—q(1—F(s))))

where tAs=min (t, 8) and t\Vs=max (¢, ).

The next theorem will allow us to use the bootstrapped maximal
deviation statistic to derive confidence bands.

THEOREM 2.2. Assuming (i) of Theorem 2.1 we have that
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G(y)=G(y, a, b, T)=P {sup sup |I5@¢ p)|<y} .

aspsh 0StsT

is continuous in y € (0, o) for each 0<a<b<l and T <Ts.

Now we are in the position to construct our promised bootstrapped
confidence bands. Using our bootstrap generation of processes 7>, 1=
1< N, N times, by the Glivenko-Cantelli theorem we get
(2.5)  Gyma(®)=Q1/N)${1<i<N: sup sup |72.(, p)|=x}

aspsb 0StST
—P{sup sup |7, p)|sz} as.

asSpsd 0StST

and uniformly in z for » and m fixed. By Theorem 2.1 and (2.5) we
get

(2.6) Gy ma(2)—G(x) a.s.
and uniformly in # as N, m,n—o. Let a€(0,1) be fixed, and define
Cyma(@)=Inf {2>0: Gy ma(x)Z=1—a}
and
c(a)=inf {x>0: G(x)=1—a} .

By Theorem 2.2 and an argument like that of Corollary 17.3 in Csorgd
et al. [6] we get that

2.7 Cy,ma(@)—c(a) a.s.

as N, m,n—oo. Hence from (2.7) we see that an asymptotically (1—
@)1002, confidence band for R(t, p) is given by

(2.8) Rn(t) p)—cN,'m,n(a)n_l/zéR(t) p)éRn(t) p)+cN,m,n(a)n—1/2 y
0<t<T, a<psh.

If we fix a pp=a=b, 0<p,<1, then (2.8) reduces to a confidence band
for R(t, pv).

3. Applications

Simulations were carried out for exponential data with sample sizes
of n=10, 20, 50, 100, and 500. Bootstrap samples of size m=n were
drawn N=1000 times, and the maximal deviations of the bootstrapped
percentile lifetime process (2.2) were recorded. We computed the max-
imal deviations over a finite interval [0, T\,], with T, ,=sup {t>0: F(t)
<0.9}. The bootstrapped empirical distribution, Gy,n (¥, 0.5) defined
in (2.5), appeared stable for n=m =50 (see Fig. 1). Of course, a heavier
tailed distribution might require further truncation for stable behavior.
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Fig. 1. Simulations of Gy, n, (¥, 0.5) with N=1000 and m =n=10 (dot), 20 (short dash),
50 (medium dash), 100 (long dash) and 500 (solid).

We examined 107 failure times for right rear breaks on D9G-66A
Caterpillar tractors. These data are available in Barlow and Campo [1]
and in Doksum and Yandell [7], where total time on test and other
tests of exponentiality were investigated. Here we present (asymptot-
ically) 509 and 90% confidence bands based on (2.8) for the quartiles
(25th and 75th percentile) and the median. The critical values were
taken from the bootstrapped empirical distribution Gy, 107,100(%, D), P=
0.25, 0.5, 0.75, with the supremum taken over [0, 2900], which corre-
sponds roughly to the interval {t>0: F,(t)<0.8}. The confidence bands
are somewhat wide, reflecting the heavy tail of the failure distribution
as noted by earlier authors. Moving the truncation point lower tight-
ens the bands slightly, but one can still have long percentile lifetimes.

Some simulations were done varying the bootstrap sample size m
separately from n. The empirical distributions were largely unaffected
when #n=100. This suggests that one could use m=100 for large sam-
ples. The computing was very fast, taking less than 5 minutes real
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Fig. 2. Percentile lifetime of tractor rear brakes: (a) confidence bands for R(¢,0.75)
on [0,2900]; (b) confidence bands for R(Z,0.5) on [0,2900]; (c) confidence bands
for R(t,0.25) on [0,2900]; (d) bootstrapped empirical distribution Giooo,107,10(¥, D)
for »p=0.25,0.5,0.75.

time on the U. Wisconsin Statistics Research Computer, a VAX 11/750
with floating point, for n=m =500 with N=1000 bootstrap trials.

4. Proofs
Introduce the processes
a,O)=n" (F(t)-F®), 0st<oco,
U (@)= (2 —F(Qu2) , 0=x<1,
and their bootstrapped versions
U () =M (Fon(Q)—Fot)) ,  0=<t<oo,
U, o(B) =M (F(Qu(®)) — F(Qnn(2) , 0=2=1,

Bickel and Freedman [2] and Csbrgdé et al. [5] proved the following
theorem.
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THEOREM 4.1. We assume that condition (ii) of Theorem 2.1 holds.
We can define two independent sequemces of Brownian bridges {B.(x),
021}, and {D,(x), 0=sw=1};_, such that

(4.1) SUp | (&)= Bu(F(t)[=0,(1),  m—roo,
(4.2) 8sup |u.(@)—By(z)|=0x(1) , n—oo,
and

(4.3) SUD |an o(t) = Du(F()|=0x(1) ,  m, n—>00,
(4.4) SUP [Un (%) — Da(@)|=0£(1) » m, n— oo .

Now we are ready to give the

PROOF OF THEOREM 2.1. Let

116, g PEF@)=Bl=p(1—F(0)
b )= Q= p(I—F®))

We write

(4.5) 7t D) =n"{Q.(1—p(1—F,(%))— Q1 —p(1 - F.(¢)))}
+n"{Q(L—p(1—Fy(1))) —Q(1—p(1-F ()} .

Using a one term Taylor expansion we get

1/2 _ _ -1 1 1
A0~ = gy oy~ Feam)

where F(Q.(@)Ax=7,(x)<F(Q.(x))Vz. Using condition (i), Theorem
4.1, and the fact that sup |r,(x)—x|=05(1), we obtain that
0szs1

2 B.(x) | _
4.6 VHQu(x)— =0p(1) ,
(4.6) S 17100~ Q@) +- 248 =0, )
for each 0<e<1/2. The Glivenko-Cantelli theorem gives
4.7) sup |F(t)—F(t)|=0-(1) ,

and therefore

(4.8) sup sup [ {Q,(1—p(1—Fy()))—Q(—p(1—F,(1)))}

aspsb 0StST B,(1—p(1—F(t))) —=0,(1
+ f@QA—p(—F(t))) oD

by the almost sure continuity of the Brownian bridge process. By the
mean value theorem we have
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2V H{Q1—p(1—F(t))) — QA —p(1 — F(¢)))}
= Da(t) + { 1 _ 1 }
fRA-pA—-F@®)) (fQm@®) fQA—p(1L—F(t))

where 1—p(1—(F.(t)VF () =<7.()<1-p(1—(F.(t)AF(t))). Using again
(4.7), condition (i) and Theorem 4.1, we get

pay(t) ,

4.9) sup sup

aspsd 0stsT

QA —p(1—Fy(1))— Q1 —p(1—F()))}

__ PBF®)  |_,.q.
F@i—pa-Foy |-

Collecting now (4.5), (4.8), and (4.9) we obtain (2.3).

The proof of (2.4) follows similar lines. Toward this end let

_ PDo(F(®)—Dal—p(l—F(t)
Al )= T p(L—F ®)))

We write again

(410) 'rm,'n(t! p) =m!" {Qm,n(l _p(l - Fm,n(t))) '—Q'n(l _p(l —Fm,n(t)))}
+m " {Qu(1—P(1— Fr o(1))) —Qu(1 —p(1 - Fo(1)))} -

Just like before, we arrive at

1/2 _ :;1-— 1 __ 1
M { @y (%) — Qu()} Q) Unn(®) + FQR®)  f(Q(zn,q(%))

where F(Qn (%) AQu(2) ST p (2) S F(Q,..(*) VQ.(x)). Using again Theo-
rem 4.1 and its consequence that

sup | F(Qn A(x))—x|=0p(1) , sup | F(Qa(2))—x|=0,(1) ,

(o)

and

(4.11) sup |F,, (t)—F(&)|=0x(1) ,
0St<oo

we obtain

(4.12) sup sup (m{Q, (1—p(1—F, A1) —Qu(1—p(1—F, (1))}
aspsd 0StsST
D,1-p1—F(®)) |_
+ =o0p(1) .
FQA—p(—F@)) |
The estimation of the second term on the right side of (4.10) requires
somewhat more calculations. First we observe that

(4.13) (M {Qu(1—p(1—Fo,a(t) —Qu(1—p(1—Fo(t)))}
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____pD(F(®)

F@QU—p(—F®))

<| QU — P~ F o) ~QUL— 2~ Ft)

____ PD(F()
fQA—-p(1—F()))

n < % >"2 lnm {Q.(1—p(1—F,(t))) —Q(L—p(1—F(2)))

B B,(t)
FQA—p(1—F®))
+(%)"’|nw (Qu(L—p(L— Fi () — QL —D(1— Fn ()))
_ B,(t)
FQA—p(1—F®))
=aP@t, p)+aP(¢, p)+a(t, p) .

By the mean value theorem and Theorem 4.1 we get
(4.14) sup sup |a’(¢, p)|=0-(1) .

aspsb 0StST
From (4.8) and condition (ii) we immediately obtain that
(4.15) sup sup |a(¢, p)|=0s(1) .

aspsd 0SIST

The Glivenko-Cantelli theorem of (4.11) implies that we can write F, ,
instead of F, in (4.8), and therefore

(4.16) sup sup |a>(¢, p)|=0.(1) .
aspsb 0StsST

Thus (4.12)-(4.16) give (2.4). By the representation of I, and 4, in
terms of Brownian bridges the calculation of their covariances is only
an exercise.

PROOF OF THEOREM 2.2. We prove that
G(y)=P {sup sup |I'(¢, p)|=y}
aspsd OSLST

is continuous in ¥ € (0, o), where

PB(F(t)) —B(1—p(1—F(t)))
FQA—p(1—-F()))

and B is a Brownian bridge process. It is clear the I' is a represent-
ation for both I, and 4,. Let ¢, 3>0 be arbitrary numbers. Using
the uniform continuity of 1/f(Q(u)) on every closed interval of (0,1)
and Lemma 1.1.1 of Csorgs and Révész [6] (cf. Theorem 2.C in Burke

F(t! p):

’
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et al. [3]) we can define the finite sequences a=p,<p,<---<pg=b and
0=t,<---<t,=T such that

P{max max sup sup |['(¢, p)—T( p)|>e}<a.

1SISK—11S7SM—1 D;SPSp 4 tjStStiy)

The random variables &,,=I'(t;, p;) have Gaussian joint distributions,

E¢, ;=0 and E¥¢:,>0, 1<i<K, 1<j<M. By Theorem 1 of Tsirel’son

[13] we know that the distribution function of max max |¢,,| is con-
1SiSK-115/SM-1

tinuous on (0, =), and hence we have also proved Theorem 2.2.
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