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Automatic Smoothing of Regression Functions in
Generalized Linear Models
FINBARR O’SULLIVAN, BRIAN S. YANDELL, and WILLIAM J. RAYNOR, Jr.*

We consider the penalized likelihood method for estimating
nonparametric regression functions in generalized linear models
(Nelder and Wedderburn 1972) and present a generalized cross-
validation procedure for empirically assessing an appropriate
amount of smoothing in these estimates. Asymptotic arguments
and numerical simulations are used to show that the generalized
cross-validatory procedure preforms well from the point of view
of a weighted mean squared error criterion. The methodology
adds to the battery of graphical tools for model building and
checking within the generalized linear model framework. In-
cluded are two examples motivated by medical and horticultural
applications.

KEY WORDS: Penalized likelihood; Smoothing splines; IRLS;
Cross-validation.

1. INTRODUCTION

Nelder and Wedderburn (1972) introduced a collection of
statistical regression models known as generalized linear models
(GLM’s) for the analysis of data from exponential families.
With the subsequent development and spread of GLM computer
software, the importance of these models in practical data anal-
ysis has greatly expanded (see McCullagh and Nelder 1983).
As the popularity of these methods has increased, so has the
need for more sophisticated model building and diagnostic
checking techniques. In this context, nonparametric estimates
of the GLM regression surface can be very useful. Recently,
Hastie and Tibshirani (1984) studied an approach that combines
an additive approximation to the regression surface with the
fast one-dimensional smoothing algorithm of Friedman and
Stuetzle (1982). In this article we propose a more general mul-
tivariate smoothing spline-type estimator and develop an ex-
plicit cross-validation score to assess the appropriate correct
degree of smoothing. The method adds to the battery of tech-
niques for model building and checking within the GLM frame-
work, and it is particularly suited to the analysis of larger data
sets (say n > 50 data points).

The basic GLM analysis starts with data of the form

i 1), i=12,...,

in which the y; are independent observations, each from a one-
parameter exponential family distribution depending on the con-
trol variable or covariate ¢; (possibly vector-valued). Thus the

n,
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density of y; has the form
exp{(y:0; — b(0))/a(p) + c(y;, )}

for some appropriate a;, b, and c¢. ¢ is an unknown scale pa-
rameter and often a(p) = ¢/w; with the prior weights, w;,
known. The mean and variance of y; are given by

Ely] = b@®) = u;
var{y] = b(@)alp) = V..

Here a dot denotes differentiation. In the usual GLM model
the mean is related to the linear predictor or GLM regression
surface via the link function transformation g(u;) = #;, with #,
= X,B (see McCullagh and Nelder 1983, chap. 2). The link
function is assumed to be monotonic and differentiable and
often transforms the mean value to its natural parameter in the
exponential family. Further, it usually has the advantage of
removing numerically awkward constraints on the regression
function. A wide variety of distributions can be modeled using
this approach, including linear regression, with its assumption
of additive normal errors; logistic regression, where the re-
sponse is a binomial random variable; and log-linear models,
where the observations are from a Poisson distribution. Many
more examples are given in McCullagh and Nelder (1983).

In the case when the predictor, #, has a known parametric
form, there are many powerful techniques available to estimate
and assess the fitted model. If the form of the dependence of
the predictor on the covariates is not well known, however, it
is important to have methods available to indicate where the
fitted models fail to capture peculiarities in the data. To this
end, we propose to use a nonparametric regression technique
to estimate the GLM regression surface. Thus we let 77, = f(t,)
and try to estimate f nonparametrically. The results of this
technique can then be compared with the usual parametric models
to examine the adequacy of the fit and so forth. Like Silverman
(1978), Anderson and Blair (1982), and Raynor and Bates (1983),
we estimate f by the penalized likelihood method of Good and
Gaskins (1971). The nonparametric estimate of f is the func-
tion, f,,, that minimizes the penalized negative logarithm of
the likelihood

L(f) = 2 Wi £t) + ndJ(f), (1.1)
i=1

where
L(yi, f@&)) = (B(0) — y0)/a(p)

and J(f) is a penalty functional designed to incorporate prior
notions, such as smoothness, about the behavior of f. Similar
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estimators have also been proposed in a Bayesian context by
Leonard (1978, 1982). The smoothing parameter, 4, controls
the relative weighting of the penalty function in estimating f.
When 4 — 0 the solution will be a function that maximizes the
likelihood, whereas when A — o the solution will be deter-
mined by the prior. With due care, a large value of A results
in the usual GLM estimate for a suitable prior. In most practical
settings A is unknown a priori. Below we provide a generalized
cross-validation procedure for empirically assessing this param-
eter.

The article is organized in three parts. Section 2 characterizes
the penalized likelihood estimator for fixed A with a generic
Laplacian smoothing prior and discusses an algorithm for cal-
culating the estimator. A generalized cross-validation score is
introduced in Section 3, and in Section 4 Monte Carlo simu-
lations are used to illustrate the small sample behavior of this
score. Some practical examples are presented in Section 5, and
the final section discusses our results, pointing out some further
areas of applications for these techniques.

2. COMPUTATION OF THE PENALIZED
LIKELIHOOD ESTIMATE

21 The Laplacian Penalty Functional

Let f be a function defined on some design space (2, which
is a subset of R. In the penalized likelihood framework, the
estimation of f is facilitated by employing a Laplacian penalty
functional (see Meinguet 1979 and Wahba 1981). The Laplacian
penalty functional, denoted by J,,, is defined by

d amf 2
1.(f) = . Z=1 [ax,.,, - ax;m] dx.  (2.1)
Intuitively, J,(f) measures the visual smoothness of the func-
tion f. In one dimension, J,, is just the L, norm of the mth
derivative of f. The Laplacian terminology comes from the fact
that if f satisfies so-called “natural” boundary conditions, then
integrating by parts, J,(f) can be written as

I = (=1 | fanf d, 2.2)
where A™ is the m-fold iterated Laplacian. Given J,,, we let S
be a space of real-valued functions whose derivatives of total
order m are square integrable. The penalized likelihood esti-
mator, f,, is defined as the minimizer of the penalized like-
lihood over the space S. A simple characterization of the pe-
nalized likelihood estimate of f corresponding to the Laplacian
choice of penalty functional is available. The characterization
says that the minimizer of the penalized likelihood, if it exists,
must lie in a finite dimensional space of functions determined
by the collection of variables #;. The corresponding result for
multivariate smoothing spline estimators can be found in Mein-
guet (1979) or Wahba (1981).

2.2 Characterization and Representation of
the Estimate

We begin by looking at the one-dimensional situation. For
simplicity let Q = [0, 1] and let the penalty functional be J,(f)
= f § [f(®1* dr. Now S is a real Hilbert space, with inner product

(-, *) given by
(f, 8 = f0)g(0) + f(0)ZO) + [ f(Dg) dr. (2.3)

Recall that the penalized likelihood for generalized linear models
was written as

L6 = S Lo f®) + na fo ‘Gord. @4
i=1

Since evaluation is a continuous linear functional in S, by the
Riesz representation theorem (see Rudin 1976) there exist func-
tions e; in S, known as representers of evaluation, for which

f@&) = (f, e, (2.5)

The functions e;, which are piecewise cubic polynomials with
continuous second derivative, are given by

e(s)

i=12,...,n

1+ ts + t52/2 — §°/6,

O0=s=y

1+ s + £5/2 — 816, L<s=<1. (2.6)

In the Appendix we show that for all f in S,

La(f) = Lu(f)),

where f, is the projection of f onto S,. S, = Sy @ {e}J/-, and
S, is the collection of functions for which J,(f) = 0—that is,
linear functions. Thus the minimizer of the penalized likelihood
lies in the finite dimensional subspace S, of S.

The elements of the one-dimensional characterization carry
over to the multivariate situation. Here we suppose that the
design matrix for the regression of the data on the set
of polynomials of total degree less than m is of full rank. It
follows from this that for the general Laplacian penalty, J,.(f),
S is a Hilbert space with inner product given by

(f’ g) = (f’ g)O + <f’ g)m’

where
f, 8o = E f@)g®)
i=1
and
d
_ a"f arg
<f7 g)m - Q il,w,zl'm=l axil’ BEEEEEY axim axi,, e ey 3x,'m

Moreover, for 2m — d > 0 evaluation is a continuous linear
functional (see Meinguet 1979). Thus there exist functions e;
in S for which (f, e;) = f(¢) for all f in S. Letting S, be the
collection of functions that are annihilated by J,, (i.e., poly-
nomials of total degree less than m), it can be shown that the
minimizer of the penalized likelihood over S must now lie in
S, = span {e}i_,.

When )} = R¢, analytic expressions for the representers of
evaluation, e;, are available and the functions in S, can be
expressed, for some ¢ in R" and d in R¥, as

n M
f@O = ¢t ?logr, + 2, dd(r), dodd

i=1 v=1

deven, (2.7)

n M
= Z (4] T%m—d + E dv¢v(t)a
i=1

v=1
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17, = |t; — |, the Euclidean distance between ¢ and f; ¢, are
polynomials of total degree less than m; and M = ("}27") (see
Meinguet 1979 or Wendelberger 1981). If, however, ) is a
bounded region in R¢ and d > 1, then analytic expressions for
the representers, e;, are no longer available and in this case it
is common to use Ré-representers to approximate the {)-repre-
senters. Thus one works with an approximate representation of
the form (2.7) for the estimate. The computations in this article,
like those in Wendelberger (1981) or Wahba and Wendelberger
(1980), use this approach. It should be said, however, that this
approach typically leads to full O(n) matrices, and as a result
the method becomes highly computer intensive with increasing
sample size.. An alternative approach is to use approximate
representations for the functions in S, that have more desirable
numerical properties. For instance, the use of tensor product
B-splines (see de Boor 1978, chap. 18) leads to matrices with
block-banded structure and remarkably efficient algorithms for
computing the estimates.

2.3 Minimization of the Penalized Likelihood

Let S, = span,x,=, {#,} be a finite dimensional subspace of
S with dimension p. S, might be equal to S,, but more generally
we think of S, as some collection of functions that are used to
approximate elements of S,. Given S,, we now describe how
the minimizer of the penalized likelihood over S, can be carried
out. The coefficients, B, of the function in §, that minimizes
l,; are found by minimizing

EB) = 2 Ly Xi B) + num(z B, h,), (2.8)
i=1 r
where X;, = h,(t). Dropping “p,” ,(B) can be written as
LaB) = 2 LGy, XB) + nlB'ZB
i=1

= I(B) + nAB'SB, 2.9

where 2,, = <h,, h,>,. In Bayesian terms, 2! plays the role
of a prior covariance for B. Applying the Newton—Raphson
minimization procedure with Fisher’s scoring technique, a se-
quence of approximations, {B*}, to the minimizer of (2.9) are
generated according to

B! = Bt — [I(BY + 2nA 217! VIBY, (2.10)

where
LY = E{[a°L(BY73B,38) | n: = XfY

estimates the sample Fisher information matrix. The derivation
in McCullagh and Nelder (1983, pp. 32-33) can be modified
to obtain that B**! is equivalently the minimizer of

n

S wiz; — X' + nip'3B, @.11)
i=1
where
. = Rk R A .a_g(ll_') -1 — [M]Z
Z; X,B + (y; W) e s w, 72V, o .

Joumai of the American Statisticail Assoclation, March 1986

The mean and variance functions, y; and V;, are both evaluated
as though X,B* were the true value of f(z)). It follows that the
Newton-Raphson iteration, with Fisher’s scoring technique, is
equivalent to an iteratively reweighted “ridge” regression pro-
cedure.

Remark. The existence and uniqueness of minimizers of /,,
is a separate issue. If the log-likelihood is convex and has a
unique minimizer over Sy, then it can be shown that there is a
unique minimizer of /,; over S (see O’Sullivan 1983). In other
words, when the penalized likelihood is convex, then the ex-
istence of a unique maximum likelihood estimator (MLE) on
S, guarantees the existence of the penalized likelihood estimator
over the whole space.

3. ASSESSING THE SMOOTHING PARAMETER

34 Cross-Validation Scores for Smoothing
Spline Estimators

The penalized likelihood estimator of the GLM regression
surface depends on the value assigned to the smoothing param-
eter . For the Laplacian penalty, J,,, small values of the smoothing
parameter produce rougher-looking estimates. Although a strong
case can be made for visually inspecting estimators correspond-
ing to a variety of A values, there are situations in which an
automatic procedure for isolating a single “ball park” value is
convenient. One of the standard procedures for assessing model
adequacy is cross-validation. The use of cross-validation to
choose the smoothing parameter in smoothing spline-type es-
timators was developed by Wahba and Wold (1975) and Craven
and Wahba (1979). To describe these methods, consider the
usual smoothing spline setup in which we observe a smooth
function with error

yi = f@t) + &,

The ¢’s are mean zero uncorrelated, and let var(e) = w;'¢
with ¢ unknown. The smoothing spline estimator, f,;, is the
minimizer over the space of functions S of

i=1,...,n

1 n
;2 wily, = F&)P + A(f). (3.1
i=1

Expressing .. as a linear combination of representers of eval-
uation, we have f,; = 22_,fe;, with

B = X'WX + ni3]'X'Wy,
where X;; = n/t), 3% = <nj, >m and W = diagw,, . . .,

w,). Thus the vector of predictions, § = (fA,,,l(tl), R (A
can be written as
¥ = X[X'WX + ni3]"'X'Wy =H(Ay, (3.2)

where H(A) is the smoothing spline hat matrix. With this the
ordinary cross-validation score of Wahba and Wold (1975) is
given by

Veid _lé (.L_y'_)z (3.3)
0( ) - n w; 1 - H"(A,) . .

i=1

The generalized cross-validation (GCV) score, proposed by
Craven and Wahba (1979), replaces the individual leverages,
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H(7), by their average value. This score is usually written as

2 wily;, — ﬁi]z
v [n — trace HA)*
Interestingly, in the usual linear model framework, Vy(4) is
equivalent to Allen’s prediction sum of squares (PRESS), and
V() becomes the residual mean square divided by the degrees
of freedom for error, which was proposed by Anscombe (1967)
as a variable selection criterion (see Mosteller and Tukey 1977,
pp- 385-387).
Asymptotically, the minimizer of the GCV also minimizes
the weighted mean squared error between the estimate and the
truth; that is,

(3.4)

n

1 .
RQ) = ;2 wilfult) — f@)1

i=1

(3.5)

More precisely, a slight modification to the result of Craven
and Wahba (1979) gives the following: If A* is the minimizer
of EV(A), then

ER(A*)/min ER(A) = 0 as n— .
i

Further results are given in Li (1983) and Speckman (1982).

3.2 Extension of the Cross-Validation Score

The GCV score in (3.4) has the form of a ratio of the residual
sum of squares divided by the square of “effective” degrees
of freedom for error ([n — trace H(4)]? term). An analog of
the residual sum of squares in the GLM context is the gener-
alized Pearson x statistic (see McCullagh and Nelder 1983, p.
26). Replacing the residual sum of squares by the Pearson x>
leads to the GCV score

V() = [2 (i — ﬁ,-)z/f’;:l / [n — trace HDP, (3.6)
i=1

where /;, V,, and the linearized hat matrix, H(1) = X[X'WX
+ 2nAZ]7'X'W, are all computed at the final stage of the
iteratively reweighted algorithm in Section 2.

The GCV score can be given a more theoretical motivation,
and from this we are led to conjecture that the A minimizing
the GCV score will approximately minimize the weighted mean
squared error criterion

n

1 R
R(A) = ;2 wilfu) — @))%,

i=1

3.7

where w; = V; ![dg(u;)/0u;]%. R(A) is a mean squared error
criterion weighted by the expected Fisher information (for the
predictor) at the design points. Thus R(A) reflects the attitude
that the experimenter is most interested in understanding the
regression surface, f, in regions where the experiment has been
made most informative.

3.3 Theoretical Motivation for the GCV Score

Cox and O’Sullivan (1985) gave results on the asymptotic
behavior of general penalized likelihood estimators. From these
results it can be shown that our GLM regression surface smoother

is first-order asymptotically equivalent to f.1, where .. is the
minimizer of

(3.8)

S |-

2 W,{E,’ - f(ti)]2 + A"’m(f),
=1

z = fat) + (i — m)log(m)/ o,
and
w! = 2V[0g(m)/ du .

The mean and variance functions are now evaluated at f;, which
is aroot of the variational equation corresponding to the limiting
version of the penalized likelihood (i.e., the sample penalized
likelihood, 1,;, has a limit, /;, as n tends to infinity, and f, is
a solution to VI, = 0). B

The asymptotic equivalence between £, and f,; holds for
all A’s in some interval [4,, 4,] with A, — 0. The rate of
convergence of A, is such that A, << 1, where A, minimizes
the expected value of the weighted mean squared error, R(4).
Thus the interval [4,, o] contains all of the most interesting
values of A. Given that f,; is defined as a smoothing spline-
type estimator of the form (3.1), we are led to consider the
corresponding GCV score in (3.4):

n

V() = 3 Wiz — fult)P / [n trace HA)P, (3.9)

i=1

where ITI(A) is the relevant hat matrix. With some analysis, we
can show that V(4) has the following property: If 4, is the
minimizer in [4,, 4g] of EV(J), then

ER(Z,)/min ER(J)) > 0 as n— o,
[An,A0]

Thus, in the Craven and Wahba sense, the minimizer of V(1)
minimizes R(4) in large sample sizes. Unfortunately, because
of the dependence on f;, V(4) is uncomputable; however, we
can reasonably approximate V(4) by replacing f, by its sample
analog, f,;. Carrying out this substitution we obtain

V() = [2 O — ;2.-)2/!‘/.] / [n — trace HA)P, (3.10)
i=1

which is the form given in (3.6).

Given that V(A) is so closely related to V(4), one would
suspect that V(4) ought to do a good job of picking the minimizer
of the weighted mean squared error loss, and our simulations
bear this out.

4. MONTE CARLO EXPERIMENTS

Simulations with binomial and Poisson data in one and two
dimensions were carried out for a moderate sample size (100
distinct data points). Only 25 Monte Carlo runs were performed,
but, even so, one can see that the modified GCV function (3.6)
does a good job of picking the minimizer of the weighted mean
squared error (WMSE). The efficacy of the GCV estimate of
/. is measured by computing the ratio of the minimum WMSE
to the value of WMSE attained at the GCV estimate /. Table
1 summarizes these efficacy comparisons. In nearly all cases
the efficacy was close to one.



100

Table 1. Efficacies of Generalized Cross-Validation, Relative to
Weighted Mean Squared Error

Model Mean Median Minimum Maximum
Binomial .86 .95 .52 1.00
Poisson (1-D) .82 .87 .19 1.00
Poisson (2-D) .93 1.00 .62 1.00

Random numbers used in the simulations were obtained using
the pseudo-random number generator of Marsaglia (see Gross
1978), which is publicly available as part of the Portable Sta-
tistical Library from Bell Laboratories’ Computing Information
Service (in Murray Hill, New Jersey). This library is incor-
porated in the S system (Becker and Chambers 1984), which
served as the computing environment for our analyses. The
computation of estimates was done using the iteratively re-
weighted ridge regression procedure described in Section 2.
The regression algorithm, though similar to that of Wendel-
berger (1981), avoided singular value decompositions and found
A by evaluating the GCV on a course grid (in log scale). The
source code, as either an S function or a stand-alone rational
FORTRAN program, can be obtained from us. Users will also
need the Linpack subroutine package (Dongarra, Bunch, Moler,
and Stewart 1979).

41 Binomial Simulations

The risk curve used in the binomial simulation has a long
plateau at .25, increases like a logistic function until it reaches
its maximum at .75, and levels off. This type of risk function

1.0

0.9

Binomial p
© o o o
o o N @™
)
\
\

©
>

0.3
0.2
/
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0
x value

Figure 1. Binomial Test Function and Quartiles of Simulation Esti-
mates: —, true function; — —, median of estimates (25 simulations);
- - -, lower and upper quartiles (25 simulations).

Joumal of the American Statistical Association, March 1986

could occur in a situation in which there was a baseline hazard
that increased with the levels of the independent variable until
it reached a maximum observable level of risk. A motivation
for looking at this kind of risk comes from epidemiological
data discussed in Section 5.

In each simulation observations were generated according to

Yi ~B(5’ p(ti))’ i = l, L] 1009 (41)

where ¢; are equispaced and the risk, p(-), is given in Figure
1. Given these data, the smoothing procedure is used to estimate
the underlying logit curve; that is,

f@) = loglp(®/(1 — p))],

with the smoothing parameter being chosen by minimizing the
GCV score. The minimum of V(4) and R(4), the GCV and
WMSE, were found by computing the functions at values of
log(A) from 6 to -16 in steps of 2. Both functions tend to attain
their minima at similar values of 4.

The median estimate for each ¢ value and the outer quartiles
are shown with the true function in Figure 1. The smoothed
estimates do quite well in finding the general shape of the curve,
although they tend to overshoot in areas of high curvature, such
as the beginning and end of the plateau areas. Even there, the
behavior of the smoothed estimate does a credible job of in-
dicating the trend of the underlying curve.

4.2)

4.2 Poisson Simulations

A second set of simulations with Poisson data was performed.
The motivation for this came from work with plant pathologists
at the University of Wisconsin who were interested in describing
the distribution of virus activity in potato fields. See Section 5
for more discussion.

Simulations were carried out in one and two dimensions. The
Poisson rate parameter, u(-), ranged from 1 at the edge of the
“field” to 20 at the center. The one-dimensional runs had 100
equispaced data points whereas the two-dimensional runs had
100 points on a regular 10 X 10 grid. For each simulated data
set, the GLM smoother was used to estimate the logarithm of
the Poisson rate

f(&) = log p(), 4.3)

with the smoothing parameter again being chosen by minimiz-
ing the GCV score. (Here A was stepped through in natural logs
from 5 to -16.)

Figure 2 shows the true function and the median of the 25
simulations, along with the outer quartiles, for the one-dimen-
sional runs. The same problem of overshooting occurs as in
the binomial, presumably due to the high curvature at certain
points and to low expected counts at the boundary.

4.3 [Efficacy

For both the binomial and Poisson examples, the minimizer,
2, of the GCV function on the observed lattice of values has a
weighted mean squared error close to the minimum possible
value. The efficacy of GCV, defined as the ratio of the minimum
value of WMSE to its value at 2, ranged in the binomial sim-
ulation from .52 to 1.00, with a mean of .86 and a median of
.95. The Poisson simulations showed the same general pattern.
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26
24
22
20
18
16
14

Poisson mean
-
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0.0 0.2 0.4 0.6
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0.8 1.0

Figure 2. Poisson Test Function and Quartiles of Simulation Estimates:
——, true function; ——, median of estimates (25 simulations); - - -, lower
and upper quartiles (25 simulations).

The efficacies of A for these simulations are summarized in
Table 1. The table suggests that the GCV function might be
used to guide the analyst toward a reasonable starting value for
the smoothing parameter. A careful researcher would do well
to try some smaller A values in the neighborhood of the GCV
minimizer in order to get a better understanding of the regres-
sion surface.

5. SOME PRACTICAL EXAMPLES
51 Hear Disease and Concomitant Variables

This analysis concerns 19-year death rates in 1,665 men from
the Western Electric Health Study (Raynor, Shekelle, Rossof,
Maliza, and Paul 1981). The data include men who were alive
at the end of the follow-up period and those who had died from
heart disease. Participants dying from other causes were ex-
cluded. A natural way to model these data is via the standard
logistic regression approach, which allows one to estimate the
19-year probability of death after adjusting for concomitant
factors. The results of studies such as these help determine the
risks associated with various factors and are used by physicians
and others to provide medical advice to their patients. We fit
a logistic regression using two factors, diastolic blood pressure
(DBP) and cholesterol, and compare this model with a smoothed
logistic regression in the same variables (see Figure 3). (A first
guess for the smoothing parameter was obtained by the GCV,
although a slightly smaller value of A was used for the figure.)
The most outstanding difference between the two surfaces is
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Figure 3. Risk Estimates: (a) from linear generalized linear model; (b) smoothed.
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the presence of two plateaus in the smoothed surface. The
logistic model exhibits a constant rate of increase in logit risk,
completely missing the plateaus. If these plateaus can be ver-
ified by other analyses, they would suggest that with some
combinations of risk factors a slight modification in status can
result in a dramatic shift in risk, whereas with other combi-
nations only a change in a certain direction results in any ap-
preciable change in risk. For example, a person at the far edge
of the upper plateau needs a large change in DBP and cholesterol
in order to show an appreciable change in risk, whereas a person
at the near edge can have a substantial lowering of risk through
a small change in these factors.

5.2 Potato Early Dying Disease in a Potato Field

Verticilium is a virus that invades potato roots and seems to
induce the “potato early dying” disease. Farmers and research-
ers would like to determine the spatial pattern of virus in the
soil in order to decide whether and where to fumigate. Although
little is known about the movement of the virus, it seems to
invade potato plants in the spring and remains in the decaying
stem material in the fall, when the farmer plows for the next
season. The virus can be counted by diluting a soil sample and
plating the solution on a petri dish in the laboratory. The petri
dish is left for several days, after which the visible colonies
are counted. The counts seem to be distributed Poisson-wise.
A regular grid of soil samples and corresponding dish counts
yields a two-dimensional grid that can be fit by smoothing the
logarithm of the underlying Poisson rate to obtain a surface
map of virus activity in the field. Such a surface was constructed
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Figure 4. Map of Smoothed Verticulum Counts.
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(see Figure 4), based on a 20 X 20 grid with 30 meters between
centers. Data were collected by Philippe Nicot of the Plant
Pathology Department at the University of Wisconsin as part
of his dissertation research. The large ridges in this picture
occur along the rows of the field. This suggests that the virus
is spread primarily along rows as the farmer tills his field and
diffusion across rows is rather slow, lending some support to
the beliefs of plant pathologists. Again, more careful experi-
mentation would be required to validate these findings.

6. DISCUSSION

The goal of this article has been to develop a methodology
for obtaining and assessing smooth pictures for complicated
data, such as those from binomial and Poisson responses. Many
authors have recognized that the penalized likelihood formulism
can be applied in a natural way to smoothing logistic surfaces
(see Anderson and Blair 1982, Raynor and Bates 1983, and
Silverman 1978). We have shown that this extends naturally to
the class of GLM models. In addition a generalized cross-
validation method can be used to assess the appropriate degree
of smoothing in such estimates. A number of variations on the
cross-validation score are possible. For example, a plausible
ordinary cross-validation assessment might be the sum of squares
of the individual Pearson residuals divided by (1 — H;(4)).
Deviance or Anscombe residuals could also be used.

The cross-validation score is motivated by a linearization of
the penalized likelihood estimator. Perhaps such linearizations
can be employed more generally to obtain cross-validation scores
for other penalized likelihood estimators. Of course, an alter-
native technique, which we have not explored, would be to
apply a straightforward leave-one-out cross-validation directly
to the log-likelihood. In a density estimation this generates the
well-known Kullbach-Leibler-type estimator of Boneva, Ken-
dall, and Stefanov (1971). (Also see Bowman 1984 and Bow-
man, Hall, and Titterington 1984.)

Our limited experience with our proposed smoothing tech-
nique suggests that the cross-validated regression surface loses
sight of some structure, especially where there is high localized
curvature. This is a natural consequence of both the loss and
the penalty function used. In practice, it may be wise to examine
the model with the cross-validated fit and with a slightly rougher
fit. The results of the smoothing can then be examined intrin-
sically or compared with other models to determine features
that are best reflected in a parametric model and those special
features that would be missed by standard approaches. Confi-
dence intervals for the fitted surfaces could probably be obtained
by the methods introduced by Wahba (1983). In the examples
presented in the last section, the smoothed models suggest that
there are features in the data that would probably be missed by
a “standard” analysis. The results need to be confirmed by
other analyses, but the techniques certainly provide a flexible
exploratory and diagnostic tool for use by data analysts.

Finally, it would be interesting to extend the methodology
in various ways. For instance, McCullagh and Nelder (1983)
demonstrated that the GLM method could be used to model
censored survival data, using either a parametric model, such
as a Weibull function, or a semiparametric model, such as
proportional hazards. The techniques outlined in the article
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might be useful in fitting such hazards. They may also apply
to assessing the lack of fit of autoregressive moving average
models.

APPENDIX

Theorem A. Let S, be the collection of functions in S for which
J(f) = 0 (i.e., liner functions) and S, = S, @ {e}-,. Then for all
fin$S, L,(f) = 1,,(f,), where f, is the projection of f onto S,.

Proof. Any f in S can be written as f = f, + f,, with f, in §,
and f, in S,, the orthogonal complement of S,. By definition of e;
and S,,

) = (f, &)
= (fi, &) + ({f2 e)
= <fl’ ei>

= f1(®).
Thus

2 Ln £@0) = 2 Uy F1). (A.1)
i=1 i=1

Now J,(f) = {f — fo» f — fo)» Where f, is the component of f lying
in S,. Therefore, by straightforward algebra, J,(f, + f,) = J(f) +
Jy(f,). Combining this with (A.1), we have

X Uy £11) + nddof) + nddyf)

=1

= ln).(fl)’

which proves the result.
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