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C263. SMALL-SAMPLE PROPERTIES OF SPATIAL
AUTOCORRELATION

1. INTRODUCTION

Spatial patterns arise in various contexts such as agricultural -field
experiments, geological explorations, epidemic studies and satellite
image processing. In this paper, we focus on data collected in regular
grids, or contiguous quadrats, and examine the small sample pro-
pertics of two tests for autocorrelation by some Monte Carlo studies.
We consider first-order models for simultaneous autoregression and
simultanecous moving averages. Models not directly considered in-
clude conditional autoregression and error-in-variables; see Cliff and
Ord (1981) and Ripley (1981) for details and further references.

The purpose of this paper is to determine the small-sample power
of Moran’s I statistic (Moran, 1950) in comparison with the likel;-
hood ratio (LR) statistic when the underlying model is misspecified.
Haining (1978) found cmpirically that the LR test was morc
powerful than Moran’s I, when the underlying model is correct, It is
also known that the LR test is better than the 1 test when sample
size is large and the underlying model is right. ;

2. NOTATION AND MODELS

Consider a rectangular mxn grid, with Y={Y},i=1,...,mn being
the random vector of realised values for a spatial process. For
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convenience, let E(Y)=0. Define {a) the m_.s:_:mzno:m ucﬂcqamgm.w?_n
model (SAR) as (I—-pW)Y=E, and (b) the m_ﬂ::m:nocm dof:m-
average model (SMA) as <H:‘.+ (W)L, _._f,_d Fawzfuze_n 1) ynd
W= W b ds the mnxomn matrix of __a_cm_@.m for :nﬁﬁ_ cn_m?
bours. The likelihood-ratio test under Uo__r :5&&;@;@ .;né_cvoa
as in CLIl and Ord (1981). ?\_o::_,mh ol mﬁ.:m:m_ #m.ﬁmnmznm #s
I=[mn Y'WYJ/[(I'W1)(Y'Y)], where 1 is m,.imﬁn.ﬁ of I'siand Y js
adjusted by the sample mean. Both tests are cmma,B test mv.n,v_dmnwoa
of spatial autocorrelation, The LR p_mﬁu_ﬁ,éwﬁcﬁ _.:_mﬂ._,usanz«_mm
parameter is zero or not where an extreme yale of Moran _MHE,_M:o
indicates the presence of m:_coo:a_m:‘o:. : el

3. SIMULATION PROCEDURE AND meC—.._.m :

Square grids of edge sizes 5 to 10 were simulated with o=1 and
correlation parameter 0 for the m§>. data or p for the SAR QE.P
having values between —0.2 and 0.2 in steps of o.om.. For wmnr grid
size and parameter combination, 1000 Monte Omw_o simulations were
performed. Normal variates were generated using Hw\_mﬁ and the
decomposition for the W matrix was done E_ E?ﬁ»ﬂﬁ. Each
simulation yiclded an I {est statistic m.:a an LR test statistic for the
“wrong” model, Le. the LR mE:m:o. for the SMA .Hoaw_ was
computed from the SAR data, and ”.;om ﬁ_:mm. The critical values
were (uantiles generated from 2000 m_EEW.:osw under the null case
of :o_::u_ white noise (see Table 1). m:,_n_:cm_.mosma. was calculated
for @ =0.05 and 0.01, with similar results. The w.:sc_m:osm. for a=0.05
are summarized in Tables 2 and 3. The main conclusions F:oi“
(1) When sample size is small, the LR mm?,o.mn: appears to yield a
slightly more powerful test even if the anw_ is wrong, Nevertheless,
the I test performs just as well when the grid size s large, say larger
than 7x7. (2) The power of the SAR data with SMA fit appears
to be larger than the other “wrong” model for both tests. @ ._: both
models, when the truc autocorrelation ﬁE.mEm_n_.._m _uom::ﬁ., Eo
power of the I test is greater than the _L.w test, .;n opposile is
observed when the true parameter is negative. This mmﬁsﬂ to be
caused by estimating the correlation parameter by MLE, which was
noted 3.?.::;5:: and Ketellapper (1979),
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C264. A GEOMETRICAL APPROACH TO THE

AMALGAMATION PARADOX - .= :
This note was previously an appendix to Good & Mittal (1986) but
was detached because we were requested to shorten that paper.

Let a=[a,b;c,d] denote a 2 by 2 “population contingency table”
and let o denote an association measure. Most associatipn measures
«, and all those in Good & Mittal (1986) (called. G & M later),
are homogeneous functions of (a, b, ¢, d) of degree. zero, that is
a(a)=0o(la) for all positive values of 4. It is therefore convenient to
represent a or Aa geometrically by the same point. In other words we
may use threc-dimensional homogeneous coordinates (a,b,c,d) (see,
for example, McCrea, 1947, pp. 41-42). The reader might prefer to
replace a, b, ¢, and d by letters at the end of the alphabet to make
them look more like coordinates. i . :

The equation «(a)=constant thus represents a surface embedded
in three dimensions. 1 the equation is quadratic this surface is part
of a quadric: only a parl because the coordinates are all positive. In
these circumstances we say that the measure « is quadric. All the



