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GRAPHICAL TESTS WITH CENSORED DATA

B.S. YANDELL

We review recent results on graphical goodness-of-fit tests for censored
survival data. These include tests based on survival curves, hazard rates,
cumulative hazards, and spacings. Specific attention is directed to goodness-
of-fit using simulatneous confidence bands. A medical example for prostate

cancer is investigated by plots.

1. INTRODUCTION

This paper reviews recent results on graphical goodness-of-fit tests for
censored survival data based on survival curves, hazard rates, cumulative
hazards, and spacings. Specific attention is directed to graphical ‘presenta-
tion of goodness-of-fit in terms of simultaneous confidence bands. Small
sample properties are briefly addressed. Two-sample tests for are presented

as plots for a medical example.

Much of the recent literature on goodness-of-fit for survival models,
in particular the exponential model, was reviewed in Burke [6], Csdrgd
and Horvath [15] and Doksum and Yandell [19]. We focus here
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upon goodness-of-fit tests that can be presented as graphs of a curve or
curves and accompanying simultaneous confidence bands. Tests consist of
noticing whether the suspected (parametric) curve, e.g., exponential, lies
entirely within the confidence band. For two samples, one constructs a
test as a confidence band for the difference, or as two suitably modified
bands. We discuss inference for hazard rates, cumulative hazards, survival
curves, and spacings.

Section 2 presents notation and estimates. The main questions and
theoretical results appear in Section 3. Graphical tools are arrayed in Sec-
tion 4. Section 5 focuses upon small sample properties, raising some
problems through simulation results. An example for two-sample goodness-
of-fit is presented in Section 6.

2. NOTATION AND ESTIMATES

The notation follows Sections 10 and 11 of Doksum and
Yandell [19]. Let the survival time for an individual be denoted by 7.
The survival probability is denoted by S(#) = P(T'= r). The hazard rate,
h, is that function which is proportional to the infinitesimal probability
that T = ¢, thatis

() dt=Pt<T<t+dt|T>t)+ oldt), t=0.

Further, let H denote the cumulative hazard, the integral of the hazard
rate. Note that H(r) = —log S(¢#). When more that one curve is under
discussion, subscripts will be used in a natural way.

Randomly censored data may be thought of in at least two ways.
We observe the time of failure or censure, Y, and an indicator D as to
whether the event is a failure (D = 1) or a censure (D = 0). We assume
that the censoring and survival mechanisms act independently. An alter-
native mathematical formulation under this independence assumption is
that Y = min(7,C), and D= x[T> C], with C the “potential” cen-
soring time. Note that for any individual we only observe T or C. Thus
for many biological applications, such as clinical trials, this later “potential
survival time” formulation is nonsensical, as one of these random variables
may be undefined and incapable of being realized. For convenience we
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denote the distribution of ¥ by L(y) = P(Y = y).

Consider a sample of n individuals, Q‘TUHH Cxulomv,...,
(Y ,D ). Let the number dead and the number at risk be, respectively,
n n

N ()=#{il1Y,<t D=1},
R, (&)= #{i| ¥;> t].

Well studied estimates of S, H, and & for such a sample are, respectively,

the Kaplan—Meier survival curve

bm
en  5@= i (-gap)

the Nelson—Aalen empirical cumulative hazard

;! b

2 H (t)=|R7 " dN_ = e

(2.2) L (2) 44 n ?%&mgﬁ\b

and the Watson—Leadbetter kernel hazard rate (Blum and Susarla [2],
Burke [7], Burke and Horvédth [9], Yandell [33])

n b_.
N_ Ww:, M\Mwﬂ.

i=1

2.3) k(0= [K,(t,p) dH, )=

Here K, is some kernel, which may have a fixed width or variable width
(e.g., nearest neighbor) across the domain. A typical fixed width kemel

would be

K, (1,0 = 3w (£52)

with w(-) a smooth symmetric density function centered about 0, and
nb
log n

The asymptotic variances of the above estimates are

=rooe. AR ppTERS

with &=+ 0 and

!

(24)  nVARWH ()= V, 0= OFQJL dH(x)

(2.5)  nVAR(S (1) =S2(D) Vg4 (1)
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2.6)  nb VAR (h, ()= V, ()= [K,(z,x) dV(x).

“hese are estimated in a natural way by substituting estimates. For in-
tance, an estimate of V is

1
V, 0=n[R (x~)~1 dH, (x)
n 0

Il

t
n [ R G YR Gty AN, e
0

3. QUESTIONS AND THEORY

One wishes to state with a picture that an hypothesized curve does or
loes not agree with the evidence of the data. This has been done heuristi-
:ally with plots for some time. However, recent results allow one a justifi-
ation, albeit asymptotic, in terms of simultaneous confidence bands for
n array of curves.

3.1. Survival and cumulative hazard. The graphical tests using simul-
aneous confidence bands are based on results for maximal deviations of
he forms

1
. (H, (1) — H(1))

3.1) su 2, sup 1B,
5@_ T+ V() | digiien
1
32) 7smﬁman|m§_u B
: sup = sup u)|,
as<t< A ﬁ\mm\: O<sus<l

n which => stands for convergence in distribution, B? is a Brownian
jridge and B is standard Brownian motion. These transformations were
roposed by Aalen [1], Hall and Wellner [22], and Csdrgd and
lorvath [16]. Reviews on the transformations of product-limit and
elated processes can be found in Nair [26] and in Csdrgdé and
lorvath [18]. The exact choice of a and A depend on tail conditions

if the true distribution. An estimate of the variance process, e.g. ¥, , can
n

e substituted provided that it converges uniformly at a fast enough rate,
nd that appropriate additional conditions are placed on a and A. Similar
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results hold for survival curves, with (H, — H) replaced by —g or
S -8

-

n
strong approximation by the “Hungarian embedders” (Burke, Csorgd
and Horvath [8], Csorgé and Horvath [16], [17]), allowing
approximations of integrals of empirical processes.

These results have been strengthened from weak convergence to

One can emphasize particular portions of the domain by introducing
1
a weight function g, with g(f)« 2 nhonincreasing in a neighborhood of 0.
V() V()
H ; H .
ﬂaw n Ame and Wﬁ\tllw\mfmvw m mwwv for
the left hand sides, and g(u) for the right hand sides. Here, a and A
must tend to finite limits within the domain of survival. Further, although
one can substitute ¥V, for Vg with a weight function in (3.2), no
n

This weight would be g

general result has been found for such a substitution in (3.1). One choice
for g yields bands with the distribution of sup |B].

8=

(33 Hmxen 2,

_4
S (H#Cn 28,1,

Equal variance bands, with distribution tabled by Borovkov and
Sycheva [3], arise for another choice of g,

1
2
v, 02,

n

1
B4  HinECn *

1 2
S, £Cn 1S, ()Vy (D7

Finally, one can obtain Kolmogorov—Smimov type distribution bands of
the form

L
2

(3:5) H@+Cn “(1+ v‘tszu

u s
S (1) £Cyn msz: + V, ().
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Note that one has constant width bands for the cumulative hazard with
(3.3). One obtains constant width bands for the survival curve with (3.5)
in the case of no censoring. The bands in (3.4) correspond to a uniform
widening of pointwise confidence intervals.

Another approach to choosing what portions of the distribution to
emphasize is a composite band introduced recently by Mason and
Schuenemeyer [25] in which one takes the minimum of a Kolmo-
gorov—Smirnov statistic and Rényi statistics at each end; however their
work only applies to the case of no censoring. Fleming and
Harrington [20] and Csdrgd and Horvath [18] discuss alter-
native bands which remove the effect of censoring on the variance of the
pivotal statistic. See the reviews and cited articles.

3.2. Log cumulative hazard. The log of the cumulative hazard has
been studied recently by, Schumacher [28] showing similar types of
weak convergence results. In particular, for a< < 4,

L
n?H(1)(log H, (1) — log H(1)) -

v, (0)
T+ 7,0 st

TV, m)

1
n?H(r)(log H, (1) — log H(1) Vi (D)
Vi (4) Nvm?\moéw.

These lead to simultaneous confidence bands with the same weight func-
tions as in the previous section, namely

1 1

log H,()+C,n 1H (1) 2
Vy @
o)

A 4
Hommzcﬁmuxmmzavm:i\:::z.

3

1
(3.6) logH,(*Cyn 2|

[S1E

3.3. Hazard rate. Simultaneous confidence bands for hazard rates
using kernel estimates with censored data were derived at about the
same time by Burke [7] and Yandell [33]. See also Burke and
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Horvath [9]. The results follow earlier work on density estimation,
yielding bands of the form, a<r< 4,

s | i

G2 b, ()£ Chy,(n0) 2V, (1?2,
or alternatively

A kgL

n 2

h, () * Ck,, (nb) :gu ;

in which k;, depend on (4 —a), b and the fixed kernel w(-).

It appears that, based on work of Csérgd and Révész [14], one
could derive similar bands for nearest neighbor estimates of the hazard

rate. Tanner and Wong [31] have explored such an estimator

empirically.

3.4. Total time on test. Tests based on spacings are discussed briefly
in Doksum and Yandell [19]. Csorgd et al. [11] obtained a strong
approximation for the total time on test process by a Gaussian process in
the case of uncensored data. Csdrgd et al. [13] extended the total time
on test transforms to censored data.

For this section, let F=1-§ and F,=1-S, . The empirical
total time on test statistic is

Folw
H-lw= | (-F@)d, O0<u<l,
0
with
Frl@)=min{T,|F (T)>u, i=1,...,n}.

The scaled total time on test statistic is

H )
Dl = ——5—
n mzl.ﬂ:vu

it has not been possible to obtain uniform results over the entire interval
O0<u<1. Instead fix p, < %A,Hn.vv with Hﬂ = ::,T,_WAQN.W )= 0}
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Csodrgd et al. [13] show that one can obtain convergence in distribution
of

1
t,w)=n?(H 1 (w)— Hz ')

and

1
s, w)=n?D7 w) - Dy )

to Gaussian processes uniformly over the interval [0, p,]. However, the
covariance processes depend in complicated ways on F and on V., the
variance process. Further, the only known choice which leads to a Gaussian
process with a tabled distribution is exponential F and no censoring. In
this case the scaled total time on test pivot s, converges to a Brownian
Bridge. For other choices of F and V, one can make statements about
pointwise confidence intervals only, unless one can transform the data
such that it would have an exponential distribution.

Recently, Csoérgd et al. [12] proved bootstrap versions of the
convergence in distribution for uncensored data. Work appears to be in
progress to extend these results to censored data, providing an empirical
way to bootstrap simultaneous confidence bands. However, finite sample
bootstraped confidence intervals and bands may suffer from low coverage
probability (Loh [24], Schenker [27]).

3.5. Two-sample bands. The two-sample problem is closely connected
to the problem of goodness-of-fit. If one has (asymptotically) independent
estimators H,, and H, , say, one can construct a simultaneous con-
fidence band for the difference as

Vi ® | Y ®
n

_M

Alternatively, one could construct bands for each curve,

EZSIMM:SHQL =

1 2

i 1,
H ,(OxCny 2V, (02w,

(3.8) o 1
H, (5£C,m, * ¥, (W5,

=614 =

with

1n® | Van® 3

N

v, v, (0
= e

(—2=)°

Note that whenever these two bands overlap, the band for the difference
covers 0. Hence gaps between the two bands indicate domains of dif-

ference. If H\r; = v.wa (that is, if one has a common estimate for _\H = H\Nv

and n; = n,, then ENW.

Wty = ——
JM
G| 2

Similar results hold for the proportional hazards model, in which one
is concerned whether or not /i = aww. In this case, if there is a consistent
estimate of a which converges at a sufficiently fast rate, one may find a
simultaneous confidence band for H, —af,. This is demonstrated in the
example.

4. GRAPHICAL TOOLS

The chief graphical tools available for goodness-of-fit are plots of
curve estimates against time or of the estimated curve against.the hypothe-
sized curve. For instance, one can plot an estimated survival curve and
simultaneous confidence bands along with the guessed null” curve. The
test is whether or not the hypothesized curve is enclosed by the confidence
band. In fact, one need not even plot the survival curve itself.

Alternatively one may do some transformation such that the hypothe-
sized curves, or family of curves, are straight lines. Two well-known exam-
ples are the P— P and @ — Q@ plot, being respectively plots of S 0(£) vs.
S () and Gy W @ 0N 1 Note that the P— P plot can be
Smima as a plot of the points (u, S, ((S%w))— 1), thatisa plot of ,w on
a time-changed axis. Nair (1981) mroéma how to construct mHE::m:mocm
bands for the P—P, @ —(Q, and for analogous plots for cumulative
hazards. In the latter case, (u,H, ((H Ow))~1) should plot as a straight
line. That is, the confidence band should completely contain a straight line
through the origin.
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Hazard rates are usually plotted against time, with the estimate h,
and hypothesized %% on the same axis. In the case of increasing :mmma
rate, one might consider plotting 4, vs. h%. The total time on test plot
provides a graphic tool for examining increasing hazard rate. However, as
indicated earlier, simultaneous bands only make sense when the underlying
model is exponential.

Several types of plots suggest themselves for two-sample comparison,
in addition to the obvious extension of the goodness-of-fit type plots such
as P—P and Q- Q. Note that a confidence band for the difference

in — 95,5, isequivalent to a confidence band around the P — P line. In
Q:m case, the question is whether the confidence band covers the diagonal.
Plots of S5, or H, againsttime can be analysed using the readjusted con-
fidence bands presented in Section 3.5. Kay [23] suggested plotting
log (H :L vs. ftime, mnoting that the curves would have a constant separation
if the hazards were proportional. The confidence bands (3.7), or bands

adjusted for two samples, would formalize the graphical procedure.

Another possible two-sample plot compares cumulative hazards H,
i= 1,2, with a common hazard estimate H, . The curves should both be
linear if the hazards are proportional, and they should be coincident if
their ::amw_ﬁnm hazards are the same. One could in fact plot log (H,,) vs.
log (H,,), Bmem the curves linear and parallel if the hazards are propor-
tional. It is not readily apparent to the author how one would construct
confidence bands to encompass both the shape and the question of propor-

tionality for these curves.

5. SMALL SAMPLE PROPERTIES

Small sample properties were briefly discussed in Doksum and
Yandell [19]. Chen, Hollander and Langberg [10] obtained
:xact small sample results for the Kaplan—Meier estimator. Gillespie
ind Fisher [21] showed that large sample approximations may be poor
for moderate sample size (see discussion in Csérgd and Horvdth [17]).
However, Nair [26] showed that the large-sample approximations for
survival bands (3.3) and (3.4) are quite good with samples of size 100, even
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with 25% censoring. Other important simulation work is due to Fleming
and Harrington in several papers. Similar empirical work for cumu-
lative hazards would be expected, but does not appear to have been done

yet.

Little work has been done on small sample properties of hazard rates.
Tanner and Wong [31] have computed moments. The simultaneous
convergence leading to the strong approximation and maximal deviation
results appears to parallel that of density estimates. In other words, con-
vergence is slow. Empirical choice of smoothing parameters for density
estimates has been a subject of much interest recently (Bowman [4],
Bowman, Hall and Titterington [5], Stone [30]). Again, this
work would appear to be analogous to that needed for hazard rates.

6. MEDICAL EXAMPLE

An example of goodness-of-fit for censored data was presented in
Doksum and Yandell [19], concerning the question of whether the
distribution of survival times from prostate cancer were exponential or not.
Here we show some two-sample plots for a clinical trial comparing the
effectiveness of chemotherapy with and without radiation treatment.

The two groups each had 45 patients, with 8 observations censored
in each treatment group. Stablein, Carter and Novak [29] showed
the survival curves and log cumulative hazard curves, but concentrated
their attention on logrank tests and the question of proportional hazards.
Here we present (Figure 1) the survival curves with 80% confidence
bands, adjusted as in Section 3.5. From this figure and the discussion of
Stablein, Carter and Novak [29] one sees that the curves differ in
the middle section but draw together after about 1.5 years. The real ques-
tion is: how do they differ? The proportional hazards assumption is central
to much analysis of censored survival data. In other words, one supposes
that

Y

H (t)=aH,(1), >0,

in which 1 and 2 stand respectively for chemotherapy only and chemo-
therapy + radiation. However, as noted by Stablein, Carter and
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Kaplan—Meier survival curves. Dashed line = chemotherapy only; dotted line = chemo-
therapy plus radiation; solid lines for 80% simultaneous confidence bands for difference.
Shaded region is area of differential survival.

Figure 1 Chemotherapy survival

Novak [29], it appears suspect in this problem. We take the constant
of proportionality from Stablein, Carter and Novak [29],
a= exp (— 0.2666), and plot H,, and aH, , with 80% confidence
bands, adjusted as in 3.5 (Figure 2). Note that the curves differ between
200 and 300 days, and appear to have similar slopes except in two places.
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Nelson—Aalen cumulative hazard curves, adjusted for proportional hazards. See Figure 1
for details. Shaded region is area of nonproportional hazards,

Figure 2 Proportional hazards check

A plot of the hazard rates (Figure 3), based on 4 nearest-neighbors,
clearly shows these two places as times of high risk for the respective
groups. That is, chemotherapy only patients are subject to increased risk
around 200 days, while this increased risk is evidenced 200 days later for
those with chemotherapy and radiation. Risk of death at other times seems
fairly constant. These hazard rates are plotted without confidence bands,
as the asymptotic bands are too wide for this scale. There is empirical
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Figure 3 Chemotherapy NN hazard

and theoretical evidence (Y andell, unpublished) that bands for hazard
rates could be much narrower, but for now we can view Figure 3 as an
heuristic tool. Stablein, Carter and Novak [29]did not find the
specific hazard picture evidenced in the cumulative hazard and hazard rate
plots, probably in large part because they did not have these tools directl

available to them. ‘
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