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Diagnostic tools are developed for generalized linear
models in which the linear predictor is semi-parametric,
linear in most of the explanatory variables but with an arbi-
trary functional dependence on the remaining extraneous
variables. Estimation is by penalized maximum likelihood.
Diagnostic tools are proposed with analogy to Pregibon
(1981, 1982). Data on phone ownership in two states is
analyzed in depth.

1. Introduction

We consider generalized linear models in which the
linear predictor has an additive semi-parametric form,
linear in most of the explanatory variables but with an arbi-
trary functional dependence on the remainder. Estimation
of the parameters and the non-parametric curve in the
model is approached by maximizing a penalized likelihood.
Emphasis is placed on development of diagnostic tools
along the lines of Pregibon (1981, 1982). We analyse data
on phone ownership in two states kindly provided by Ed
Fowlkes, AT&T Bell Laboratories.

The semi-parametric regression idea via penalty func-
tions has been considered by several authors in varying
degrees of generality; see for example Green, Jennison and
Seheult (1983), Wahba (1984), Green (1985) and Engle et
al. (1986). While our approach fits in a very general frame-
work including iteratively reweighted least squares (Green,
1984) and quasi-likelihood models (Gay and Welsch, 1986;
Nelder and Pregibon, 1986), we focus here upon the gen-
eralized linear model. We begin with the log-likelihood,
which can be written as

n
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with z={z;}X, the observed responses and 0={6;}/1;
related to the expected responses {p;}/.; through a link
function O=g (). We suppress explicit mention of z in
notation. We replace the familiar linear predictors
8; =x;'B by the more general predictors

6 =xB+¥t;) , @

with B the p-vector of parameters of interest and x; the
corresponding explanatory variables for the ith observa-
tion. The scalar (or vector) t; consists of extraneous vari-
ables, with y(e) a function or curve whose form is not
specified. For instance, we may want to model the proba-
bility of a household having a phone as a function of
several socio-economic factors. While age and income
affect this probability, we may not be interested in these,
but need to allow for an arbitrary form for such a relation.
We consider this in detail in section 4.
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We cannot simply maximize the log-likelihood, as
this would lead to interpolation by 7, producing an implau-
sibly rough fit with B non-identifiable. However, if we
introduce a suitable ‘‘roughness penalty’’, the problem of
maximizing

L@@, -1 3

is well defined. The scalar A is a tuning constant, used to
regulate the smoothness of the fitted curve y. The penalty
functional J is some numerical measure of the "rough-
ness" of y. This might be adopted on ad-hoc grounds, such
as the integrated squared derivative which globally penal-
izes curvature, or it might follow from a Bayesian argu-
ment specifying a prior distribution for y (in which A is
essentially a ratio of variances). Typically we try a range
of values for A in an exploratory fashion, as well as con-
sidering an automatic choice based on the data.

One may use this approach to discover the form of ¥
in the hope of modelling it parametrically in the future.
However, we focus instead on inference for B in the pres-
ence of an unknown Yy, and develop diagnostics for gen-
eralized residuals. The next section briefly presents the
maximum penalized likelihood estimates. Section 3 intro-
duces diagnostic tools culled from several related lines of
investigation (e.g. Pregibon (1981, 1982) and Eubank
(1984,1985)). Section 4 presents a summary of an analysis
of the data on phones. For a more complete version see
Yandell and Green (1986)

2. Maximum Penalized Likelihood Estimates

The maximization of (3) can be obtained by the
method of iteratively reweighted least squares (Green,
1984; O’Sullivan, Yandell and Raynor, 1986). This
scheme is based on the Newton-Raphson method with
Fisher scoring. We present the algorithm for a chosen,
fixed A. For further algorithm details see Green and Yan-
dell (1985) and Green (1985); see Yandell (1986) for an
alternative scheme.

We first restrict attention to Yy of the form
Y@)=3E O (), with ¢, , k=1,--,q, prescribed basis
functions. Thus Y(t;)={EE}; for an nxq matrix E.
This may limit Y to some smooth subspace, e.g. one
spanned by B-splines, or may provide no restriction. We
can write © as

0=Dp+EE ,

with D=(x; - - - x,,)T. Based on an initial guess of 8 we
create pseudo-values y={y; }/1,,

y=A‘1u+9 5 C))]



in which

aL L
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For binomial data of the kind considered here, we use
& (W =log (W(1-u))=0, with 1 the probability of owning
a phone. The partial matrices u and A take on simple
forms, with A diagional. For each case i, let {A}; =
Hi(1—-p;) and {u}; = z; —H; , with z; =1 if the household
has a phone, 0 otherwise, leading to pseudo-values ¥ =
0; +(z — 1) /[ (1= )],

The penalty J(}) can often be expressed in a qua-
dratic form with some gxgq symmetric K satisfying cer-
tain conditions (Green, 1985). Thus (3) can be approxi-
mated by a locally linearized problem which involves
minimizing a quadratic form

(y-DB-EE)TA(y-DB-EE) + LETKE ,

leading to estimates for B and E, which are used to update
0O, u and A, and hence the pseudo-values (4), with

iteration until convergence. The MPLE é=9(|§,§) , has the
form

6=Df +EE
=[S+ (I-S)DM;'DTA@-S))y )
= A%HA"%y
with My =DTA(I-S)*D and § = E(ETAE + AK)"'ETA .

The parameter estimates depend on the choice of A.
While A can be picked ad-hoc for visual smoothness, we
often use an automatic choice based on generalized cross-
validation (Craven and Wahba, 1979). Choosing A to
minimize

GCVM =nvi? | A-HpA¥y|? , ©

with v, =¢r (I-H,), comes close to minimizing the predic-
tive mean square error for linear models, and appears to
serve the same purpose for generalized linear models
(O’Sullivan, 1983).

3. Diagnostics

We present a variety of diagnostics in the spirit of
Pregibon (1981,1982). While we cannot formally justify
these at this time, they appear to be on the right track and
to follow the type of generalizations to non-parametric
problems developed by Eubank (1984,1985); see Yandell
and Green (1986). Throughout this section the dependence
on A is suppressed in the notation.

3.1. Tests of parameters

We can test the parameters B in the same manner as
Pregibon (1982) and others, using the (conjectured) asymp-
totic normal distribution of B. At the MPLEs we have
approximately COV (B) = M['M,M;T. Goodness-of-fit
can be assessed globally, as in generalized linear models,
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by the deviance D%(9) = 2L(g @) ~L(®)} or by the
chi-square statistic xz(B) = (y—B)TA(y—B) with degrees-
of-freedom approximated by v =1 (I-H) (Green, 1985).

We now consider testing a full model against a
reduced model,

6 =DyB, + D,B, + EE
8z =DB; +EE ,

with D; and D, of full ranks p and r » Tespectively, and
D=[D;:D;] of full rank p +r. We could use a differ-
ence of deviance statistics, or similarly with chi-square
statistics. However, in general the degrees-of-freedom
Vg —Vp may not be near r, with possibly differing
degrees of smoothness in the two models, Fixing A the
same for both models does not rectify this since the
degrees-of-freedom depend on S and the model design,
either Dy or [D;:D,], ina complicated way.

One natural alternative is the score test as developed
by Pregibon (1982) for the parametric generalized linear
‘model. The information matrix for the parametric piece is
Fo=A(I-8S), with A and § evaluated at the reduced
model. The score vector for the reduced model is

u = [Fo-FoDy(D{FoD,)"'DFly = Fiy.

Following Pregibon (1982) the score statistic can be written

-as

5%®Bg,6#) =u™D,(DIF, D, DT .
The score vector for the one-step (linearized) approxima-
tion to the full model is Fy, with
F =Fy-FD(D'F,D) 'DTF, .

=F, - F\Dy(DJF\D,)"'D]F, .
The latter form of F allows us to express the score statistic
as

5%6p.64)=y"Fiy - yTFy ,
which is easily computed. The score test for the semi-
parametric generalized linear model does not in general

reduce to a difference in chi-square statistics as in Pregibon
(1982) since (I-S) isnota projection matrix,

3.2. Generalized Residuals

Following Pregibon (1981) and Eubank (1984, 1985)
WE propose examining constructs of generalized residuals.
The chi-square and deviance residuals are, respectively,

ri =0 0; = 6;) and d; =12%(L (g (5)) - L(6)) |

in which L (6;) is the i th term of the log-likelihood (1).
The matrix H of (5) is the “hat matrix’’, with diago-
nal elements 4; being the leverage values. Eubank (1984)
showed that for the non-parametric linear (normal) model,
H shares many of the properties of the least-squares ‘‘hat

matrix”’. Pregibon (1981) identified this matrix for the
parametric generalized linear model, The chi-square resi-




duals r have covariance ¢(I-H), suggesting the use of
standardized residuals

T =re -k

for plotting purposes. The dispersion ¢ is commonly
estimated by D%(@)/v. If we set ¢=1 we have the square
root of the decrease in chi-square due to deleting the ith
observation. T is a first-order approximation to the chi-
square ‘‘goodness-of-fit sensitivity’’ (Pregibon, 1981). A
slightly more complicated expression arises for the devi-
ance goodness-of-fit sensitivity, as d;>+ hy;T?.

Cross-validated residuals arise from fitting the model
using all points but the point of interest, and may provide a
more accurate measure of the fit at each point (Craven and
Wahba, 1979). The cross-validated (CV) estimate of 6;
with the i th observation removed is, to first order,

8y = Bi+hyy) (1 =hy) . )

This can be used to define CV residuals (Pregibon’s
“‘coefficient sensitivity’’ ) and standardized CV residuals.

Influence measures can be developed to compare the
fit with and without a particular point. One may also be
interested in the effect of an influential point on fits at
neighboring points. Yandell and Green (1986) develop

these using the ideas of Pregibon (1981) and Eubank
(1985).

4. Data Analysis of Household Phone Ownership

‘We present an exploratory analysis of data on house-
hold phone use kindly provided by Edward Fowlkes,
AT&T Bell Laboratories. The data comes from 2134
households, 1810 in Texas and 324 in Missouri, gathered
from the 1980 census by the National Economic Research
Association (NERA). Of these, 1605 households in Texas
and 300 in Missouri had phones. Data were collected on
several socio-economic and family factors, as well as
phone cost. Table 1 contains the principal factors which
were ultimately selected. Other factors include use and
installation rates, urban/rural, line density in the area, and
some other family and language factors. It was suggested
that we investigate the probability of having a phone as it
relates to income, age and the other factors. Initial exami-
nation of histograms suggested that only income needed

Table 1. Data Description and Score Statistics

name range description score
phone 0,1 1=household has phone
age 17-90 in years (household head) -
income .145-70 in thousands of dollars 119.96
educ 0-20 education in years 57.36
black 0,1 1=black, O=non-black 21.21
nonf 0,1 1=non-family household 14.11
nonff 0,1 1=nonf with female head 25.74
olang 0,1 1=English is not primary 11.19
pchl 0-6 number of young children 8.48
spff 01 single person female family 2.89
(10 variables not selected) (2.18)
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transformation for symmetry. Taking the 4th root made
income fairly normal, and we called the resultant new vari-
able “‘incomed’’.

We considered semi-parametric logistic regressions of
phone use, with age and/or income4 being non-parametric
and other socio-economic factors entering in a parametric
fashion. These were chosen primarily because they were
the most *‘continuous’’ factors, most others taking on only
a few possible values. We present details only on the age
model here. We took a step-wise forward selection
approach to adding variables one at a time. We considered
as criteria the largest reduction in GCV, the most
significant parameter and the largest score statistic for
adding a single variable, leading to essentially the same
sequence. The semi-parametric ‘‘age model’’ entered 8
variables at a 90% confidence level, or 7 at a 95% or 99%
level, based on the score statistics with an (assumed)
asymptotic 7 distribution (see Table 1), The semi-
parametric ‘‘income4 model’”’ allowed 10 variables at a
90% level, 9 at a 95% level, and only 6 at a 99% level.
These variabels were the same as for the age model, with
the addition of counts of young and mid-age children. It is
reassuring that the same variables emerged in roughly the
same signed order. Age was the first variable to be added
into the ‘‘income4 model’’, while income4 entered after
educ in the “‘age model’’. This is not surprising when one
views the non-parametric curves (Figure 1). The non-
parametric income4 curve Y, is very smooth, but ‘‘J”
shaped, while the non-parametric Y,,, is very rough but
tracks a near-straight line except at the extremes. The
roughness of 7,,, may be due to undersmoothing by the
linearized GCV criterion.

Figure 1a. nonparametric age
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Figure 1b. nonparametric income4

v
=2
‘n
s
©
E s
E
@
o wn
OI' -
Lr! L 1 ! !
0.5 1.0 15 20 25 30
income4

The model fits were achieved to minimize the GCV,
with deviance used instead of the residual sum of squares
(chi-square) in (6). The GCV decreased with increasing
number of model parameters, as expected (see Table 2, age
model only). However, while the deviance decreased in a
similar manner, the chi-square did not. This may be due in
part to using the deviance instead of the chi-square in (6),
and requires further study. However, there is no guarantee
that either the deviance or chi-square should decrease, as
optimization, i.e. the choice of A, is based on the GCV.
The degrees-of-freedom difference between models is
rarely close to 1; in fact it increased for the ‘‘income4
model’’ when age was added, which could possibly be
explained by the increase in A. This argues against a naive
comparison of model fits without controling the tuning con-
stant.

Table 2, Model Fit Statistics for AGE model
model dev chi df $lambda$ GCV
null 14548 21340 2133 - 0.682
0 1272.0 18585 20658 0.00238  0.636
1 +educ 11554 1909.6 2065.1 0.00251 0.578
2 +income4  1098.0 16972 20637 0.00177  0.550
3 +black 1079.1 17622 2062.6 0.00162  0.541
4 +nonf 1065.6 16583 20619  0,00181 0.535
5 +nonff 10389 17222 2060.5 0.00146 0.522
6 +olang 1028.1 16510 2059.5 0.00137 0.517
7 +pchl 1020.0 16320 2058.5 0.00142 0.514
8 +spff 1017.0 16553 2057.5 0.00139 0.513

The interesting patterns with age and incomed
prompted us to perform a 2-D non-parametric regression of
logits on income4 and age. Due to limitations of available
computer hardware and software, we were only able to per-
form a 2-D non-parametric regression on a randomly
chosen subset of 200 cases. For this subset, the null devi-
ance and chi-square were 84.54 and 200.0, respectively,
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while the fitted deviance and chi-square were 64.79 and
47.13, respectively, with v=154.85 and A=.009111.
Figure 2 suggests an interaction between income4 and age.
The ¥;,. of Figure 1b appears to be valid for ages 21-55 or
so, with a more dramatic relation appropriate for people
over 65. In fact, 93% of the people 65 and over have
phones, regardless of income, while only 88% between 21
and 59 do, with income being an important factor. It would
be interesting to allow a different degree of smoothing in
age and incomed, or to analyse subsets by age in addition
to running a full 2-D semi-parametric model.

Figure 2. nonparametric 2-D
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4.1. Diagnostics

We focus on diagnostics for the “‘full”’ semi-
parametric age model to illustrate some graphical diagnos-
tics. Several leverage values were over .3 (Figure 3). Most
of these were for household heads over age 80, with a few
under age 20, This could reflect the age and income4 pat-
tern of phone use discussed earlier.

The different types of residuals gave essentially the
same scatter plots. We present only the standardized CV
deviance residuals T;) in Figure 4. Goodness-of-fit sensi-
tivity appears to be a useful tool to ferret out points which
have a large influence on the deviance (Figure 5). None of
the cases seem to have a great influence on the fit, and are
not presented here.

We now highlight several of the points which stand
out via the diagnostics. Case 1106 had the highest lever-
age, while cases 1305 and 1679 had large negative devi-
ances and high goodness-of-fit sensitivity. These are near
the extremes of education level, have low incomes, and are
single-persons. The high leverage case is male with no
education, while the other two are female with 17 years
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Figure 5. age fit sensitivity
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education. For the age model, the point with high leverage
has a small deviance, and the points with large deviance
and sensitivity have small leverage.

5. Conclusions and Future Work

We have presented a collection of tools for semi-
parametric generalized linear models and have demon-
strated their value in understanding the preference for
household phones. The picture that emerges is not simple
and illustrates some of the flexibility of these tools. It
appears that the diagnostics can pick out interesting cases,
although the statistical properties of these diagnostic tools
remain to be determined.

Future work will follow several lines. First, we wish
to ascertain the properties of these diagnostic tools.
Second, we would like to further investigate this data set,
fitting the 2-D, and possibly 3-D (with education) semi-
parametric models. We also would like to explore fitting of
subsets of the data to substantiate the patterns observed. It
appears that a separate analyses may be fruitful for the
lower income group, the lower income 20-60 age group,
and for those over 65. It became clear during analysis that
the computational tools are quite handy, but are slow for
large problems. We plan to address this by trying to
improve some algorithms, and by obtaining access to a
supercomputer for larger analyses.
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