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A variety of penalized nonlinear problems can be
expressed as the iterated solution to a nonlinear minimization, in
which the inner step involves minimizing a penalized weighted
least squares expression. We propose algorithms when matrices
in the least squares problem may depend on the unknown param-
eters. The problems in increasing complexity are (a) generalized
linear models, (b) iterated reweighted least squares, and (c) gen-
eral nonlinear problems. The algorithms are built around
GCVPACK (Bates, Lindstrom, Wahba and Yandell, 1985), a
package for generalized cross-validation, using a balance of
Cholesky and singular value decompositions which is adjusted
depending on the type of problem.

1. Introduction

A variety of penalized nonlinear problems can be
expressed as the iteration to a solution of a nonlinear minimiza-
tion, in which the inner step involves minimizing a quadratic
form such as

% | WE(y—Sa—TB-K3) || 2+ A8"Ky s a.n

in which S, T and K are the design matrices for the covariates,
polynomial and ‘‘smooth’’ part of the model, and y and W are
the responses and the weights. The simplest form is the partial
spline model, or semi-parametric linear model,

yi=STa+f(x)+e ,i=1,--,n, (1.2)

in which f () is some ‘‘smooth’’ function and e=(g;, - * - ,€,)T
has covariance matrix (WW™)™! which is usually diagonal. We
present three situations and proposed computational solutions
when matrices in the above linearized problem may depend on
the unknown parameters. The problems in increasing degree of
complexity are:

(1) Semi-parametric generalized linear models, in which S, T,
K and Ky are constant, while W and y may change with

each iteration.

(2) Iteratively reweighted least squares, in which only K

remains constant.

(3) General nonlinear problems (remote sensing, for example),
in which all matrices may change with each iteration.
Different compromises are suggested by each problem. Clearly,
one would like to decompose the constant matrices exactly once
and would like to keep decompositions of the changing matrices
as cheap as possible. The method proposed here combines the
advantages of SVD in locating the generalized cross validation
choice of A with Cholesky decompositions which are relatively
cheap once A is fixed. While the decompositions suggested are
not new, the combination of approaches appears to be an unex-
plored area. The basic strategy is as follows:

(1) guess at initial A (=eo) and (BT, ", 87)

(2) CD: iterate (part-way) to solution for fixed A

(3) linearize the problem as in (1.1)

(4) SVD: pick optimal A via GCV

(5) iterate (2)-(4) to convergence
Convergence criteria can include absolute or relative conver-
gence of the regularization functional and/or the parameter esti-
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mates, and absolute convergence of log(nA). The number of
iterations in (2) may be restricted, leading to rough estimates
which are fed into (3).

‘We do not assume any special structure to the design or the
matrices, except that we suppose that W is of full rank, and com-
putationally invertible. In many cases, W is actually diagonal,
but this will not be explicitly used in the linear algebra.

Algorithms for the linear model (1.2) have been given by
many authors, most recently in the multivariate form by Bates et
al. (1985). The algorithms below are extensions of Bates et al.
(1985), building on their Fortran77 package, GCVPACK.,

2. Semi-Parametric Generalized Linear Models

For semi-parametric generalized linear models (SGLM),
one has a parameter vector 8 which consists of a parametric
piece and a ‘‘smooth’’ nonparametric piece,

0, =STa+f(x),i=1,-",n .
One can formulate the problem as minimizing, for fixed A,
Sa@)=L®)+AJ(0) .

in which L is the log likelihood and J is the smoothing penalty
(see Good and Gaskins (1971); Leonard (1982); Green, Jennison
and Seheult (1983); O’Sullivan, Yandell and Raynor (1986);
Green and Yandell (1985)). We know from O’Sullivan (1983)
that if L () is suitably convex and J () is a quadratic form (e.g.,
the squared norm of a projection), then §,(8) has a unique
minimum for each A. These conditions appear to hold for many
generalized linear models. :

One can choose A to minimize the GCV criterion (Craven
and Wahba, 1979). which is “‘close’’ to minimizing the predic-
tive mean square error (see Craven and Wahba (1979); Speck-
man (1985); Cox (1983)). What we propose to do here is to
iterate on 8 and A, to find the & which is the GCV minimizer and
the & which minimizes § x(é). It is not known whether such a
procedure will converge, but we conjecture that, if the GCV
minimizer is bounded away from 0 and = and L is suitable con-
vex, then it does converge. '

The log likelihood can be written in an iterative form using
pseudo-values y and pseudo-weights W,

WWT=E |- oL
2007 |& 3
2.1
—ne Ty-1 a_L
y=0°+(WW [80 ]e— s

based on 6° from the previous iteration. Note that for the
independent normal model, W' is a diagonal matrix of the stan-
dard deviations and y is the vector of observed responses. The
linearized log likelihood is

L@ = [Wi5-0)]? .

The penalty J can often be written in a nonnegative
definite quadratic form in & (see Green and Yandell (1985)). We
follow the spline literature and formulate it as
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J(8)=J(8)=8"Ky8 subjectto TS8=0 .

Typically the kxk matrix Ky and kxt matrix Ty are either
derived from the unique design points or from a set of user-
supplied basis nodes (see Appendix 2 of Bates et al. (1985)). If
we write the parameter vector as

9=Sa+Tp+Kbd

in which S is the nX¢ covariate matrix, T is the nxr polyno-
mial matrix, and K is the nxk smooth matrix, the linearized
problem becomes (1.1).

We can locate the unique design points Ty, and the
corresponding unique covariates S,y , and form a QR decompo-
sition

[TU :SIU] = FG = ?1(-;] .

From this we construct the (unweighted) design

X =[T:S:KF,] (2.2)

and penalty
% e B 23
= lo FIK R, | o

We decompose £ using a pivoted Cholesky followed by a
Householder,

E'TE=LTL and LT=QR=QR, , (24)
and construct
o
Z=[Z,:Z,]=XEQ _ (2.5)
0 I
Finally, the original parameters are transformed to
B [ﬂrT 0]
o [=EQ [7] . (2.6)
ng 0 I lw

In the usual case that FJKUFZ is full rank, EQ, is an nX (c+1¢)
matrix which permutes the coefficients o and P, ie,
@'=P":a":0)EQ,. The objective functional can now be
reparameterized as

1
— Wiy -Zy0-Zm |1+ W'y . @7)

At this point, we have done all the ‘‘one-time’’ decompositions.
The following steps must be redone each time W and y change,
or simply once for the linear (normal) model. We form a QR
decomposition of

W'Z,=FG=F,G, ,
and create
J=(: L =[F:FIW'z, ,
leading to the minimization of

1
—IFWly-Go-Jyyl* (2.8)

1
+— IFWTy =3yl * + Mty .
The first term can be made zero by solving for m, with any given
Y

Go=FfWly-Jy . 2.9)
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The estimate of y is found by solving

My=JTFWTy , (2.10)
with
M=JTT,4nM .

The “‘hat’’ matrix can be formaily written as

1

AQ)=WTF [ (2.11)

Ty T
0 LMy ]F bid

provided we can invert M. Naturally, one would iterate to new
pseudo-values and pseudo-weights using (2.1) and repeat the
minimization of the objective function (2.7). At convergence,
one can obtain the estimates of the original parameters via (2.6).

One may approach the above solution for y and the ‘‘hat”’
matrix A(A) in different ways, depending on whether one wishes
to choose a new A, say via generalized cross validation, or
whether one wishes to leave X fixed.

2.1. SVD approach

One way to choose a new A is based on generalized cross
validation for the linearized problem (2.7). This is basically the
ridge regression problem of Golub, Heath and Wahba (1979).
Form a singular value decomposition of

J,=UDV" ,
where U and V are orthogonal and D is diagonal, to get
¥y=VD*+n AI)"'DUTF; Wy .
The ‘‘hat’’ matrix is
AN =WTF r - -
0 UD“(D*+nA)~'U

One can choose A to minimize the GCV criterion (Craven and
Wahba, 1979)

]FTWT .

n || WiI-AQ)y |2
[rr A-AQ)P

or as some intermediate value if this is seen as being too ‘‘far’’
from the previous value.

VM=

2 (2.12)

2.2. Cholesky approach

If we choose to leave A fixed, one can take the cheaper
approach of a Cholesky decomposition of

M=JJ+nAl=CTC ,
leading to the estimate of ¥ by solving
CTcy=JF Wy
The ‘‘hat’’ matrix becomes

AQ=WT . ’ FTWT 2.13

( )" W™'F 0 Jg_C_lc—TJg . ( . )
This route was followed by O’Sullivan, Yandell and Raynor
(1986), iterating to a solution for fixed A. The ‘‘optimal’’ A was
chosen by minimizing V (A) over a grid of log(A).

3. Iteratively Reweighted Least Squares Models

Iteratively reweighted least squares (IRLS) models differ
from semi-parametric GLMs in that only the penalty matrix
remains fixed (Green, 1984). The log-likelihood parameter 8 can
be locally linearized, but the S, T, and K matrices are no longer



fixed:

oL JdL oL

S=—,T=—F, K=",

Ja ap ad
We still only need form and decompose £ as in (2.3) and (2.4)
exactly once. However, the (unweighted) design (2.2) may
change with each iteration. Hence, the remaining computations
need to be done at each iteration. One could proceed in the same
manner as for the generalized linear models, but reconstructing
X, and hence Z and J, each time.

4. General Nonlinear Models

General nonlinear problems could proceed in the same
manrer as for IRLS, except that Ky changes each time. Thus
most computations need to be redone. It may be possible for
some nonlinear problems to reparameterize them as SGLM or
IRLS problems to eliminate this difficulty.

5. Diagnostics

The diagonal elements of the ‘‘hat’’ matrix have been used
for diagnostics in generalized linear models (Pregibon, 1981) as
well as in smoothing spline models (Eubank 1984, 1985). It is
natural to think of extending these uses to the present array of
models (Green and Yandell, 1985; Green, 1985). The diagonal
elements can be computed as

(AN} = || Fle; |2+ || M*F]e; || *

in which e; is the n-vector with a 1 in the i-th position and 0’s
elsewhere. For the SVD approach this is simply

(AW = || Fle; ||+ || DD+ A ™*UTF]e; ||,
and for the Cholesky approach (c¢f. O’ Sullivan (1985)),
(A = || Fle; ||+ || CTIFe ||*
Covariance matrices can be computed by noting that

COV(y)=W W', We find from (2.11) that

b I 0
—w-T
b 24 A el [o MM T

]FTW“T .
Hence, the variances are
VAR(8;) = || FTWe; || 2+ || LM I FIW-e; || 2 .
Noting the relation
MM T=M0-nAM™) ,
the variances can be written as
VAR 8)) = || FfW'e; [|*+ || CTITFIWe; |2
—nA || CICTIIR W e, || 2
for the Cholesky approach. For the SVD we have
VAR (8;)= || FTW"e; || >+ [| DX+ n AL UTFIW-e; |2 .

The covariance among the coefficients can be derived,
using (2.9), (2.10) and (2.6), as

p
COV| o |=EQ,G{'G{TQJE" +
5

R{” 19T e *
= T TRT
EQ _Gl_lFier]M J; I,M [-Gi_lFier] QE" .
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In many situations we may be only interested in COV (o).
Further, if the penalty I is of the proper rank, then the QR
decomposition of (2.4) should simply permute the indices for the
coefficients. In other words, EQ, often simply permutes the
coefficients o (and PB) into ®. In this case, let €; denote the per-
mutation foro;, i =1, - -, ¢. For the SVD approach,

VAR ()= || Gi"é; || + [ DD+ n AL VIWF,GT ¢ ||
For the Cholesky approach,
VAR (09) = || GiT¢; || 2+ || CTWF, G ¢ || *

- nA|| CICTWF, G T || 2 .

Joint work is in progress with Peter J. Green (Green and
Yandell, 1985) on analogues to diagnostic tools for generalized
linear models along the lines of Pregibon (1981, 1982) and
Nelder and Pregibon (1986).

6. Numerical Comparisons

We focus our investigations upon the Poisson and binomial
special cases of the semi-parametric generalized linear model as
these are potentially of wide interest and easy to formulate. We
allowed up to ¢ initial iterations of the Cholesky decomposition
(CD) for A=o= (perfectly smooth case), and up to ¢ CDs follow-
ing each SVD, where ¢ was 1, 2, or 10. No case required more
than 7 CD following an SVD, or more than 7 SVD overall.

‘We examined some real data on leafhopper oviposition and
potato pathogen in a field, both Poisson, and data on rat survival,
which was binomial. In addition we simulated data which we
thought might be ‘‘cumbersome’’ for the numerical algorithms.
The simulations were Poisson with a normal shaped curve of 6 =
log(mean value), with peak height of between 8=1.5 and 20.
Binomial simulations used a similar normal shaped curve for 6 =
logit(mean value), with peak height of between 8=1ogit(.01) and
logit(.3). Simulations were conducted for n =50 and 100.

The Cholesky steps in the real examples increased the run
time by 20-35%, including one-time costs and construction of
the diagonals of the ‘‘hat’’ matrix (see Tables 1-3), This
occurred because the number of SVDs was not reduced by more
intermediate CDs, nor were the sequences of optimal A’s for the
linearized problems markedly altered by the CDs. In addition,
each CD took about 10% of the time for an SVD. In these exam-
ples, the signal was fairly apparent, indicating that the linear
approximation was adequate using the SVD iterations alone.

Table 1. Poisson Oviposition Data (n=27)
task c=0 c=1 c=2 c=10
one-time 4.40 4.40 443 4.50
cholesky 0.78 4.22 778 1192
svd 2493 2502 2473 2478
hat 2.20 2.22 223 222
total 31.07 3457 3785 42.10
no. svd 5 5 5 5
no. chol 1 6 11 19
Table 2, Binomial Rats Data (n=127)
task c=0 c=2 c=10
one-time 34.6 33.9 35.0
cholesky 1.5 587 74.2
svd 2450 2456 2439
hat 34.6 34.8 352
total 3128 3642 3793
no. svd 5 5 5
no. chol 1 9 12




Table 3. 2-D Poisson Fungi (n=400, k=100)
task c=0 c=2 c=10
one-time 279 279 283
cholesky 140 1004 1475
svd 4486 4413 4425
hat 594 598 598
total 5354 6150 6637
no. svd 7 T 7
no. chol 2 16 26

The simulations showed that when the ‘‘signal’’ is small
relative to the ‘‘noise’’, the CDs seem to stabilize the minimiza-
tion problem, reducing the number of SVDs required and cutting
the run time. Table 4(a-b) present the combined CD and SVD
run times, while Table 4(c-d) present the numbers of SVDs and
CDs. As the height of the Poisson peak rises, the CD iterations
have a reduced impact on convergence. However, note that on
several occassions iteration with only one CD increased the
number of SVDs required. Allowing more than 2 CD steps only
seemed to increase the overall run time; the number of SVDs
was reduced in only a few instances. In addition, a few simula-
tions, not shown here, converged when up to 2 CDs per SVD
were allowed, but did not converge when 0 or up to 10 were
allowed. Similar statements can be made about the binomial
simulations (Table 5(a-b)).

Table 4(a). Poisson Run Times (n=50)

peak | ¢=0 c¢c=1 c¢=2 =10
1.5 | 134 120 94 103

2 163 150 130 141

25 | 134 148 126 134

3 132 148 125 138

4 159 178 155 142

5 158 180 157 144

6

q

8

9

131 173 155 120
133 159 127 161
131 175 157 141
135 178 158 144
10 157 204 188 174
15 134 180 187 181
20 158 207 189 175

Table 4(b). Poisson Run Times (n=100)

peak | c=0 c=1 c=2  ¢c=10
1.5 974 848 885 904

2 950 834 880 933

25 | 1149 1051 1098 932

3 759 824 659 718

4 956 1048 882 967

S 955 1069 1100 988

6

7

8

9

970 1244 915 1006
938 1038 873 970
939 1053 1105 1043
955 1280 1138 1026
10 1129 1245 1106 1371
15 941 1252 1109 762
20 962 1276 1131 1143

Table 4(c). Poisson Runs (n=50)
no. SVD / no. CD iterations
peak | c=0 c=1 =2 =10
1.5 5/0 4/4 315 3/10
2 6/1 5/6  4/8 4/12
2.5 5/0 5/5 417 4/12
3 50 5/5 4/7 4/13
4 6/0  6/6 5/8 4/15
5 6/0 6/7 5/9 4/15
6 5/0 6/6 5/9 3/16
7 5/0 5/5 4/7 4/19
8 5/0  6/6 5/9 4/14
9 5/1  6/6 5/9 4/15
10 6/0 77 6/10 5/16
15 51 6/7 6/10  5/18
20 6/0 117 6/10 5/16

Table 4(d). Poisson Runs (n=100)

no. SVD/ no. CD iterations

peak | c=0 c=1 ¢c=2 =10

1.5 5/0 4/4 46 410

2 5/0 4/4 4/7 4/12

2.5 6/0 5/5 5/8 4/11

3 4/0 4/4 3/6 3/11

4 5/0 S5/5 47 413

5 5/0 5/6 5/8 4/14

6 5/1 6/6 4/9 4/15

7 5/0 5/5 477 4/14

8 5/0 5/6 5/9 4/17

9 50 6/7 59 4/16

10 6/0 6/6 59 5/23

15 50 6/6 59 313

20 5/0 6/6 519 419
Table 5(a). Binomial Run Times (n=100)

size prob [ c=0 c¢c=1 =2 =10

10 3 108 87 90 91
2 106 118 125 131
sl 133 118 92 97
.05 135 148 130 135
20 3 109 91 92 96
2 137 119 123 127
.1 109 120 124 129
.05 165 151 159 168

Table 5(b). Binomial Run Times (n=100)

size¢ prob | ¢=0 c=1 c=2 c=10
10 3 943 827 671 692
2 970 829 858 882
ol 968 860 885 937
.05 1171 1064 898 977
.01 1166 1046 1097 935
20 3 743 604 632 635
2 760 617 636 645
1 780 838 650 680
.05 795 849 681 742
.01 1351 1261 1103 1225
.005 | 1513 1676 1536 1683
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Table 5(¢). Binomial Runs (n=50)
no. SVD/ no. CD iterations

size. prob | c=0 c=1 c¢=2 =10

10 3 5/0 4/4 3/5 3/8
2 4/0 4/4 4/6 4/9

A 4/0 33  3/5 3/6

.05 5/0 5/5 4/8 411

20 2 40 44  4/6 4/9
2 | s 44 46 4B

T V) R V7 S V7 S Vs

.05 6/0  5/5 5/8 5112

Table 5(d). Binomial Runs (n=100)
no. SVD/ no. CD iterations

size prob | c=0 c=1 ¢=2 c=10
10 3 5/0  4/4 3/6 3/8
2 5/0 4/4 4/6 4/8

a1 | 500 45 47 4

.05 6/0  5/5 417 4/12

.01 6/0 5/5 5/8 4/11

20 3 4/0  3/3 3/5 3/6
2 4/1 3/3 3/5 37

1 4/1 4/4 3/5 3/8

.05 4/0  4/4 3/6 3/10

.01 70  6/6 5/8 5/14

.005 8/0 8/8 7/11 7/20

Since we know that the estimates converge for fixed A
(O*Sullivan, Yandell and Raynor, Jr., 1986), a few iterations for
fixed A may guard against nonlinearity in the penalized likeli-
hood. It is not known at this time what conditions are required
on the penalized likelihood, as a function of A, to insure conver-
gence in the SVD-only approach.

If one follows Elden (1984) to stop the singular value
decomposition after the bidiagonalization, considerable time can
be saved since the effort to diagonalize is magnified by the
number of iterations. Earlier work on GCVPACK (Bates et al.,
1985) indicated that half of the singular value decomposition
time may be spent on bidiagonalization. Of course, once conver-
gence is reached, one could complete the diagonalization, doing
this only once, to easily derive the diagonal of the ‘‘hat’’ matrix.
Such a savings in computation would further reduce the advan-
tage of iterating via Cholesky with fixed A.
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