
D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 COMMUN. STATIST.-SIMULA., 16(1), 263-297 (1987)

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

Douglas M. Bates
Mary J. Lindstrom

Grace Wahba
B M ~ S. Yondell

Department of Statistics
University of Wisconsin-Madison

Key Words and Phrases: ill-posed problems; partial thin plate smoothing splines; penalized likeli-

hood; semi-parametric models; ridge regression; thin plate smoothing splines; truncated singular

value decomposition.

Purpose and Description

Purpose

These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation

(GCV) (Craven and Wahba, 1979) calculations in data analysis and data smoothing including

ridge regression (Golub, Heath, and Wahba, 1979). thin plate smoothing splines (Wahba and

Wendelberger, 1980), deconvolution (Wahba, 1982d), smoothing of generalized linear models

(O'Sullivan, Yandell and Raynor (1986), Green (1984) and Green and Yandell (1985)), and ill-

posed problems (Nychka et al., 1984, O'Sullivan and Wahba, 1985). We present some of the

types of problems for which GCV is a useful method of choosing a smoothing or regularization

parameter and we describe the structure of the subroutines.

Ridge Regression: A familiar example of a smoothing parameter is the ridge parameter h in

the ridge regression problem which we write as

where 7 is a p-dimensional parameter vector, y is an n-dimensional response vector and X is an

n x p design matrix.

Copyright O 1987 by Marcel Dekker, Inc.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 264 BATES ET AL.

For any positive h, an optimal y,, can be easily calculated Unfortunately, this leaves the

question of which value of h to use. Golub, Heath, and Wahba (1979) demonstrated that minimi-

zation of the GCV function V(h) is a powerful criterion for the choice of an optimal h, where

and A(h) is the n x n "hat" matrix of the ridge regression

A(h) = X (X ~ X + n hI)-'xT .

At first glance, optimization of V(h) seems a formidable computational problem since each

value of h has its corresponding A@). However, Golub, Heath, and Wahba (1979) gave a method

of expressing V(h) as an easily-calculated rational function based on the singular value decompo-

sition (SVD) (Dongarra et al., 1979, chapter 10)

where U is n x p with orthonormal columns, V is p x p and orthogonal, and D is pxp and diago-

nal with diagonal elements

d 1 2 d 2 T - . . Zd, TO

which are the nonnegative square roots of the eigenvalues of XTX. The "hat" matrix can then be

written as

and using

z = uTy
we can write

Once the S M of X is computed, it is trivial to evaluate V(h) for a wide range of values of h and

determine the optimum value of h. Equation (1.1) indicates that, for most problems,

d; < n fi < d: . After an optimal h is chosen, the corresponding n is calculated as

% = V (D ~ + n M) - ~ D Z . (1.2)

Multivariate data smoothing with thin-plate splines: A more important application of

GCV is determining smooth representations of an underlying multivariate function from which

noisy data is observed. The ridge regression problem serves as an introduction to the idea of GCV

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 265

and the computational steps for efficient evaluation of the GCV function but data smoothing using

thin-plate smoothing splines (TPSS) is a much more common application of GCV. These methods

extend the computational methods derived in Wahba and Wendelberger (1980), Wendelberger

(1981), and Wahba (1984a).

For convenience we first describe the calculations for a two-dimensional "independent"

variable x but the software is designed for the general case. The data model for TPSS is

where the (xi ,yi), i = 1,2, . . . , n , are observed data, f is an unknown function which is assumed

to be reasonably smooth, and the ei, i = 1,2, . . . , n , are independent, zero-mean random vari-

ables.

In general we will measure smoothness o f f by the integral over the entire plane of the

square of the partial derivatives off of total order 2. That is,

To allow generalizations, the software uses a smoothness penalty defined by the partial derivatives

of total order m as

In d dimensions,

with the sum within the integral over xai =m. In general, one must have 2m - d > 0 with d the

dimension of x. Using this smoothness penalty, the TPSS estimate f of f is the minimizer of

From Duchon (1976), the minimizer f of (2.1) can be represented as

where

~ , (t) = (- I) ~ PZm x-l ((m-~)!)-' 11 t I((Zm-2)In(11 t 11)

and t is the dimension of the space of polynomials on two variables of total order at most m-I,

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET AL. 266

A basis for this space is

The general definition of Em, which depends on the dimension, d, of the independent vari-

ables x is

The dimension, t , of the polynomial space is given in general by

A property of the TPSS representation is that both the function f evaluated at the data

points and the smoothing penalty Jm can be expressed using the n x n matrix K with entries

&Ii, = E,,,(xi -x,) . (2.4)

The function f also requires the n x t matrix T with entries

PIij = $i (xi) .
The matrix T having full column rank guarantees a unique minimizer of (2.1). Duchon (1976)

showed that 6 in (2.2) must satisfy

T ~ ~ = o . (2.5)

Then and & are the minimizers of (2.1), which can be written as

Note that the restriction in (2.5) is important, as K will generally have negative eigenvalues, but

for any vectors 6 satisfying (2.5) it can be shown that

s T ~ 6 2 0 .

Our objective is to reduce the calculation of the parameters ps and 6n, the "hat'' matrix A&), and

the GCV function V(h) to a simplified form as was done for the ridge regression case.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 267

No replicates case: When there are no replicates in the x's, we proceed by taking a QR

decomposition (Dongarra et al., 1979, chapter 9) of T as

T = FG = [F1:F2] = FIGl ["'I
where F is n x n and orthogonal while G is n x t and zero below the main diagonal. F1 is the first

r columns of F and F2 is the trailing n - t columns while G1 is the first t rows of G. The columns

of F2 provide a basis for the 6 which satisfy

SO we can set

6 = F2<

where < has dimension n - t . Using

wl = F:Y

wz = FZy

the objective function of the optimization becomes

Assuming G1 is non-singular (that is, the points xi , i = 1, . . . , n , are adequately dispersed so that

the columns of T are linearly independent) the first term in (2.6) can be made zero by solving

clps = wl - FTKF'L
= W, - F:KS&

for Pi. In practice we check the condition of G1 and return an error condition if it is computation-

ally singular, indicating that the columns of T are strongly correlated. This condition is equivalent

to the computational singularity of the problem of least squares regression of the data onto the

span {@,I. Singularity will rarely occur since the column dimension of T is small.

We can now reduce the problem to a form like ridge regression by using the fact that

F ~ K F ' is positive definite to form the Cholesky decomposition (Dongarra et al., 1979, chapter 8)

where L is (n-r)x (n-t) and upper triangular. In practice we use a pivoted Cholesky decomposi-

tion so we can check the conditioning of F~~KF'. If this matrix is computationally singular, which

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

268 BATES ET AL.

can occur if 11 xi - xj 11 is very small but non-zero for some i + j , we return an error condition. A

near-singular F ~ K F , is usually avoided since, in checking for replicates, we declare xi and xj to

be replicates if the &stance between them is very small. See Appendix 1 for more information on

the detection of replicates and the computational singularity of L.

After ensuring that L is non-singular, we define

y=LC

and the last two terms of Sx(P,G) in (2.6) can be written as

This has the same form as the ridge regression problem with solution

yh = (LLT + n h l) - ' ~ w ~ .

We take a SVD of LT as

and write the estimate as

n = V(D' + n XI)-'DuTw2

and the "hat" matrix as

A(h) = F , F ~ + F,UD~(D~ + n XI)-'UTFz

As in the ridge regression case, we use

z = uTw2

to write

The actual calculation of the parameter &.corresponding to the Em's is performed as

&. = F2u(D2 + n U)-'z
(2.9)

= F~U(D' + nu)-'UTFzTy .

Replicated x values: Replicates of x values introduce some minor complications since we

must define only one ai corresponding to each unique x position. The best way to handle this is to

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 269

pre-process the data by sorting the x values to determine the unique x values and the number of

replicates of each value. Let k be the number of unique x values. We can express the objective

function optimized by Sx and ph as

subject to the condition

T@ = 0

where T and K are of size n x t and n x k respectively, while Tu and Ku are of size k x r and

k x k respectively. These matrices are related by

T = MTu

K=MKu

where M is an n x k indicator matrix (all its enmes are ones or zeros and there is only a single one

in each row) which, for each row, indicates the unique x that corresponds to that observation.

If we take a QR decomposition of M as

and pre-multiply all the vectors in the first term of (3.1) by B, (3.1) divides into

In practice, it is not necessary to explicitly form M and take its QR decomposition since C1 is

diagonal with cii being the square root of the number of replicates of the i 'th unique x. The ele-

ments of the vector cilBTy are the means of the y 's at the corresponding unique x's. Further,
2 11 BZy 11 is the sum of squares due to replication.

With this information available we can write

o = c iTS

to produce

and proceed as in the case with no replications using ClTU in place of T, and C,K"CT in place

of K. That is, take a QR decomposition

and form F ~ c ~ K " clTF2 which then determines the Cholesky decomposition

F ~ ~ K ~ c $ ~ = L ~ L .

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 BATES ET AL.

and the product

allows us to write

Given the value of f i , the calculation of and PI follow as in the no-replicates case. That

is,

8~ = c ? F ~ u (D ~ + ~ ~I)-'U~F:B:~

Partial spline models: These are an extension to the thin-plate smoothing spline model in

which some of the coordinates of x, the "covariates", do not enter into the thin-plate spline. See

Wahba (1984b, 1985) and Shiau, Wahba, and Johnson (1985). The model is

in which si are the "covariates" and {viJ are c given functions. For convenience, we will con-

sider these variables as forming another matrix S of size n x c . The partial spline estimates off

and a are the minimizers of

and it is known that the minimizing f has a representation of the form (2.2). Let S be the n x c

matrix with ij'th entry yrj(xi, si). The matrix [T:S] must be of full column rank. The objective

function for a fixed X becomes

When determining replicates, we only consider the d variables which determine the spline. When

there are no replicates, we proceed as in the basic TPSS case except that we take the initial QR

decomposition as

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

L J

so V (h) is calculated as in (2.8) with all summations running to n - t - c . That is, after the Chole-

sky decomposition of ~ z i ~ i ; , &-d the SVD of the transpose of the Cholesky factor, we have

The calculation of Cb and proceeds as in the basic TPSS case. With these available, we solve

for ax and Bb simultaneously. In other words, we have simply replaced Tp in (2.6) by

It can be shown that the implied constraint s T 6 = 0 does not change the solution.

When we have covariates as well as some replications in the d coordinates of the x's, we

have to distinguish between those columns of S which follow the replication pattem of the x's and

those which do not. If all the columns of S follow the replication pattem, we have an indicator

matrix M for which

Taking the QR decomposition of M as M = B C , we then take a QR decomposition of C1[Tu:Sul

and proceed as above.

If there are columns of S which do not follow the replication pattern of the design, we need

a more general approach. The covariate matrix is divided into S = [S1:S2] in which the columns

of S1 have the same replication structure as the design points xi, i = 1, . . . , n . We have an indica-

tor matrix M for which

and a QR decomposition of M = B C as above. However, we cannot easily reduce the objective

function to a form such as (3.2) by premultiplying by B, as B ~ S ~ is not annihilated. Instead we

choose to take a QR decomposition of

which is used to reduce the parameter vector and penalty maaix. We proceed as in the case of a

general design matrix with a semi-norm penalty as described in the next section by creating the

parameter vector

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET A L .

0 = a , with 6 = CTF2< , ["3
and the design matrix

The penalty becomes eTz 0, with

Partial spline models with nodes at selected points, which may not actually correspond to

data points, are discussed in Appendi 2.

General design matrix with a semi-norm penalty: The ridge regression case and the

TPSS cases which we have considered both have some special structure. In the ridge regression

case, the design matrix, X, is general but the penalty term, yTy, has a special form so we can

streamline the calculations. In the TPSS cases, the penalty term, 6 T ~ 6 subject to ~~6 = 0, is more

general but the design matrix, [T:Kl is related to the penalty so, again, we can exploit this special

structure to provide faster algorithms. Even in the case with both a general design and a general

penalty, though, we can still form efficient computational methods for GCV.

The most general GCV calculation we consider is the penalized least squares problem with

an objective function

where 0 is a p -dimensional parameter vector, y is an n-dimensional response vector, X is an n xp
design matrix, and Z is a pxp positive semi-definite symmetric matrix defining the smoothness

penalty. Note that partial splines can be written in this form as a special case.

A partial spline model with discontinuities in the {yj} of (4.1) which fits in the context of

(5.1) is described in Shiau, Wahba, and Johnson (1985). Other special cases included splines and

vector splines on the sphere (Wahba (1981), Wahba (1982% 1982b, 1982~)) and remote sensing

problems (Wahba (1980a)). Appendix 2 presents some examples and the algebra needed for a

partial spline model with basis functions.

The minimization of (5.1) can also be used as a step in the iterative solution of penalized

GLIM models (O'Sullivan (1983), O'Sullivan, Yandell and Raynor (1986)), nonlinear regulariza-

tion problems (O'Sullivan (1983) and O'Sullivan and Wahba (1985)) and iteratively reweighted

least squares problems (Green (1984), Green (1985) and Green and Yandell(1985)).

We can find the GCV estimate of h in the general case by using a series of matrix decompo-

sitions to reduce (5.1) to the form of the ridge regression calculation as was done in the TPSS

case. First we must isolate the null-space of the semi-norm defined by Z. That is, we must

describe the set of 0's for which

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

We assume the dimension, h, of this space is known and take a pivoted Cholesky decomposition

(Dongarra et al., 1979, chapter 8)

where E is a p x p permutation matrix and L is @-h)xp with zeros below the main diagonal.

The conditioning of L is evaluated to ensure that L actually has computational rankp-h. If L is

rank deficient, we increase h until the resulting @-h)xp matrix L is of full row rank and return a

non-fatal error code. If the user's value of h was too large, we return a fatal error code as this

indicates that the null space of Z is smaller than expected. As described in Appendix 1, the tech-

nique of increasing h until L is of full row rank is incompatible with the partial spline code as

written here.

A QR decomposition of L~ as

provides the h x p matrix Qz which is an orthogonal basis for the null space of the semi-norm

defined by Z. We can now transform to parameters 7 and fl of dimension p - h and h , respec-

tively, as

where B lies in the null space and SI@) from (5.1) can be written

with

This provides the desired form of the penalty term. We must now divide the least squares

term into a part that can be made zero by an appropriate choice of fl and a part that depends only

on 7. Another QR decomposition, this time as

is used to form

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

where

and

After checking that G1 is non-singular, the first term in (5.2) can be made zero for any value

of y by solving

W = w l - J i y (5.3)

for p. This reduces the general penalized least squares to the same form as the ridge regression.

A singular value decomposition

Jz = UDVT (5.4)

produces the representation of the "hat" matrix as

The matrix D is a x a , with a = min(n,p)- h , and the matrices U and V are rectangular of sizes

(n- h) xa and @- h) x a , respectively. Again, using

z = uTw2 (5.5)

the GCV function can be expressed as

and the parameters vectors yh, and 0, are determined in the usual way given 2, with (5.3) and

y, = V(D2 + n hI)-'DUTw2 ,

yielding

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 275

The biggest computational bottleneck is the SVD of J2 when n andp are large, particularly

since J2 is often ill-conditioned. We can accelerate the SVD calculation by using a truncated ver-

sion of the singular value decomposition (Bates and Wahba, 1982). Notice that, in (5.6) and the

solution of n, values of dj such that

can be set to zero without significantly changing the results. Starting with a tolerance zp, usually

a small multiple (z) of the relative machine precision (p), the truncated SVD algorithm finds a

matrix j2 which has a ' < a positive singular values and satisfies

in which 1 1 11 F is the Frobenius norm. For details of the truncated SVD algorithm, see Appendix

3. We replace J2 by j2 in (5.4), thereby reducing the effective number of parameters to a'. With

the truncation we only calculate an (n- h) x a * matrix U and a @- h) xu* matrix V so the vector

z defined in (5.5) will be a*-dimensional, with a replaced by a * . When J2 is ill-conditioned, we

get a ' considerably less than a and, since the calculation of the SVD is of order 0 (nu2), this can

create substantial savings in computing time. However, V is sensitive to z for small h. To check

on the effect of the truncation on the value of V(h) and hence the calculation of fi we return the

diagnostic quantity

This is a lower bound on each of the quantities nfi/(d;+nd) in (5.6) which are replaced by 1

when d, is set to zero. Preliminary tests indicate that if the diagnostic quantity is above 0.999 then

the truncation has negligible effect on V.

Another important method of accelerating the GCV calculations by avoiding the final reduc-

tion to diagonal form in the SVD was given by Elden (1984). This involves stopping the evalua-

tion of the singular value decomposition at the intermediate step of the reduction of J2 to a

bidiagonal form, then forming an expression for V(h).

Description

The package has three main subroutine drivers. The first driver, dtpss for thin plate smooth-

ing splines, is the most efficient and the most restrictive, allowing covariates only in the case

where the replication pattern is the same as that found in the design. The second driver, dptpss for

partial thin plate smoothing splines, handles general covariates and in turn calls the third driver,

dsnsm which handles penalized least squares problems with a semi-norm penalty. After a call to

dtpss or dptpss the subroutine dpred can be called to evaluate predicted values for additional

points not in the design.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

2 7 6 BATES ET AL.

Replicates are handled in drpss and dptpss using the following routines. The subroutine

dreps sorts the x vectors and returns C1 and the information necessary for the routines duni and

dsuy (used only in dtpss). Subroutine duni reduces a matrix (T or K) to the corresponding matrix

with unique entries (TU or KU). The routine dsuy sorts y and computes B:y and the sum of

squares due to replication.

The subroutine dtpss, the thin plate spline driver, calls the routine dsetup to create the

matrices C l ~ u c : and C1[Tu:SIU] from the design points xi , i = 1,2, . . . , n using the routines

dmakek and dmaket. The LINPACK routine dqrdc is called to decompose C2[TU:SIu] into its

QR decomposition FG, followed by the routine dftrkfto calculate F T ~ l K u C : ~ . Dsgdcl does the

Cholesky decomposition of F2T~1KuC:~2 and the singular value decomposition of the Cholesky

factor. Dgcvl uses these results to compute the generalized cross validation estimate of h and the

corresponding estimates of the other parameters. The work in dgcvl is divided into application of

the rotations by FT in drsap, optimization of the V(h) function in dvlop, computation of predictive

mean square error (if requested) in dpmse, creation of the coefficient vector in dcfcrl, creation of

the predicted values in dpdcr, and creation of the diagonal of A(Z) in ddiag. Subroutine dvlop

calls dvmin to minimize V(h) by repeated calls to dvl. The minimization is done by an initial grid

search in the ln(n h) scale followed by a golden ratio search in the neighborhood of the minimiz-

ing grid point. The input variable ntbl controls the resolution of the initial grid search. A value for

ntbl of 100 or greater is recommended to ensure that the global optimum is located. If a plot of

V(h) versus ln(n h) indicates that a local optimum has been obtained the user may either increase

the value of ntbl or use the option to specify a reduced range for the search. The grid of ln(n h)

values is returned along with the corresponding V(h) values in the variable tbl. The variable

auxtbl is returned containing x, ~(f.), V(0) and V(-).

The driver dptpss for partial thin plate splines calls routines dreps, dmaket, duni, and

dmakek to set up [T:SJ, [Tu:Slvl and Ku. These are fed to dctsx to create the matrices C and X

which are used by the driver dsnsm.

The subroutine dsnsm is a general driver for penalized least squares problems with a semi-

norm penalty. It calls ddcom which decomposes C and X and returns information used by dgcv to

find & &, and other results. The work in ddcom is split into the decomposition of Z in a call to

dsgdc and the @ansformation and decomposition of the design in dcrtz and dzdc which in turn

calls dtsvdc or dsvdc to perform the singular value decomposition. The work in dgcv is divided

into the same subroutines as dgcvl with the exception that dcfcrl is replaced by dcfcr.

In the general case, the driver dsnsm allows an option to use a truncation singular value

decomposition through the routine drsvdc which preprocesses the design matrix Jz to reduce the

dimensionality before invoking dsvdc (see Appendix 3). The truncation tolerance, ~ x p is passed

to dtsvdc as the parameter mitarat. The drivers dtpss and dptpss would not benefit from truncation

in the SVD calculation so they use the LINPACK routine dsvdc.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 277

Simulation Applications: When GCVPACK is used for simulation studies the option to com-

pute the predictive mean square error should be used. The known "true" response is input in the

variable adiag and the predictive mean square error, R (h), is returned, along with V(h), in the

variable rbl. It is recommended that plots of V(h) and R (1) versus ln(n h) be used to evaluate the

success of the GCV function in finding the optimal h (the h which minimizes predictive mean

square error). The variable auxtbl contains R (f i) , R (0) and R (m).

The decomposition of the X matrix requires the most intensive computation. The subrou-

tines dtpss and dptpss are both set up to take advantage of the savings in computation that exist for

multiple response vectors with the same design. To modify dtpss to handle a problem with more

than one response vector all code up to and including the call to dsgdcl is executed once. A loop

can be added to execute the remaining code for each y vector. In practice this modification would

involve adding only a few lines of code.

To modify dptpss, or any other driver which calls dsnsm, a loop must be added in dsnsm. In

dsnsm there are two subroutines, ddcom which needs to be executed once, and dgcv which must

be executed once for each response vector. In dptpss, after the call to dsnsm, a transformation is

applied to the coefficient vector. This must be done to the coefficient vector corresponding to each

y vector.

Related Algorithms

The numerical linear algebra in our routines is performed using the LINPACK (Dongarra et

al., 1979) routines. The introductory comments of each GCVPACK routine list which LINPACK

and BLAS (Basic Linear Algebra Subroutines) routines are called directly or indirectly. There is

one machine-dependent constant, the relative machine precision, which is used in these routines

to determine error conditions caused by ill-conditioning, but that constant is computed each time it

is needed.

The present work generalizes algorithms for ridge regression of Golub, Heath, and Wahba

(1979) and Bates and Wahba (1982) which use the singular value decomposition. Elden (1977)

gives an algorithm which terminates the singular value decomposition at an intermediate step,

reducing X to a bidiagonal form, thereby saving time (see the Test Results section). This could

be incorporated into GCVPACK but we have not done so yet.

Wendelberger (1981) implemented an algorithm for thin plate splines based on eigenvalue-

eigenvector decompositions for one-dimensional and multi-dimensional thin plate smoothing

splines. Hutchinson (1984) developed an algorithm for thin plate splines with large data sets using

the thin plate basis functions of Wahba (1980b); see Appendix 2.

Reinsch (1967) initially proposed a fast algorithm for fixed h using a Cholesky decomposi-

tion (see De Boor (1978)). In the onedimensional case, the penalty can be written as a product of

matrices with only 2m-1 non-zero diagonals. Hutchinson and de Hoog (1985) give an 0 (n)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

278 BATES ET AL.

algorithm for computing V (h) using a Cholesky decomposition of these matrices. See also

O'Sullivan (1985). GCVPACK is not designed to take advantage of the unique structure of one

dimensional polynomial smoothing splines, and runs much slower than the code of Hutchinson

and de Hoog (1985) in this case.

O'Sullivan, Yandell and Raynor (1986) developed algorithms for smooth generalized linear

models based on a Cholesky decomposition of XTX + n XI. Green (1985) and Green and Yandell

(1985) presented algorithms for penalized likelihood schemes which include generalized linear

models and other iteratively reweighted least squares methods. They present a one-dimensional

algorithm based on Reinsch (1967) and a general algorithm based on the Cholesky decomposition.

They have also incorporated an iterative algorithm using the SVD to automate the choice of i , but

it needs extensive testing to determine if it is stable. Shiau (1985) developed algorithms for a par-

ticular class of partial splines consisting of discontinuities o f f or higher order derivatives at

known or unknown points. This includes a one-dimensional algorithm based on Hutchinson and

de Hoog (1985) and a multidimensional algorithm based on the Cholesky decomposition.

Test Results

The package and drivers have been tested for internal consistency and for accuracy against

other known algorithms. Here we present some timing results to show that the methods are feasi-

ble for relatively large data sets and to offer insight into which portions of the code should be

avoided, if possible. For example, the code allows the computation of the diagonal of A(X) for

forming diagnostics (Eubank, 1984) but this calculation alone can take 15% or more of the total

execution time.

All timing runs were performed on a Vax-111750 computer with a floating ~ o i n t accelerator

and running the 4.2 BSD UNIXTM operating system. We quote two sets of times for the example:

one using the driver dtpss and the other using dptpss. Each of the drivers was timed twice: first

using the Fortran version of the Basic Linear Algebra Routines (BLAS) then using Assembler

Language BLAS. As explained in Dongarra et al. (1979), the BLAS are a set of low-level rou-

tines that perform such elementary tasks as accumulation of dot products and, by replacing them

with Assembler language versions, the Linpack routines can be made to run faster.

The design for the example is a 9 by 9 factorial in xl and xz with one covariate, x:. Two

replicate observations were simulated at each of the 81 design points, Thus n = 162, k = 81,

m = 2, d = 2 and c = 1. Our timing results are shown in Tables 1 and 2. The total times are

slightly greater than the sum of the times spent in the lower level subroutines since the driver rou-

tines have to do some definition of pointers, etc.

UNfX is a Vademark of AT&T Bell Laboratories

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

dsgdc 1
Cholesky
bidiag.
diag .
dsuy

dgcv 1
drsap
dvlop
dpmse
dcfcrl
dpdcr
ddiag

Total dtpss

Table 1: Example 1 using dtpss

Fortran BLAS

make K and T 14.45

ddcom

Assembler BLAS
Time(Sec.) Percentage

3.03 4
9.42 12

Routine
dreps
dsetup

dsgdc
Cholesky
QR

dcrtz
dzdc

bidiag.
diag.

dgcv
drsap
dvlop
dpmse
dcfcr
d ~ d c r

Fortran BLAS
Time (sec.) Percentage

3.07 3
11.85 11

dhiag 1 66.02 18
Total dptpss 1 359.43

Assembler BLAS

14.62

Table 2: Example 1 using dptpss

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET AL.

The first thing to notice from these tables is that dtpss is strongly preferred over dptpss for

this example since it executes approximately 3 times faster. In general, if dtpss can solve the

problem, it will do so more quickly. Also, the Assembler BLAS speed things up considerably

with most of the gain being in the call to the Linpack SVD routine drvdc.

We have divided the time for dsvdc into two subsections, bidiag and diag. Elden (1984)

gave a method of expressing the GCV function V(X) avoiding the diag step. This would result in

considerable savings in the drgdcl or ddcom routines. This savings is offset by the calculations in

dgcvl or dgcv becoming more complicated and, possibly, taking longer. However, since those

routines take up much less time than diag, we would expect that the overall savings would be

worthwhile.

Notice that the calculation of the diagonal of A(X) in ddiag is comparatively expensive -

usually around 15% of the total execution time. If this optional information is not going to be

used, it should not be calculated.

In circumstances where there are multiple y vectors being analysed for the same design and

penalty mattices, such as in Monte-Carlo runs, the decomposition portion, dsgdcl or ddcom,

should be called only once while the analysis portion, dgcvl or dgcv, called for each y. The

analysis portion represents less than 5% of the total time if the calculation of the diagonal of ~ (2)
is not undertaken.

The sorting method used in dreps is a comparatively primitive sort (a modification of the

bubble sort) but, even so, the time taken by dreps is a small percentage of the total time. It would

be possible to speed up this step by using a more sophisticated sort, but it doesn't appear

worthwhile. Also, the evaluation of V(X) after the matrices are decomposed is very quick. In

these runs the variable nrbl was set to 200 so both V(h) and the mean squared error of prediction

(since the data were simulated) were evaluated at 200 different values of X. Even with 200

evaluations dvlop and dpmse each represented, at most, 2% of the execution time.

Appendix 1. - replicates and rank-deficient penalty matrices

Because the functions Em defined in (2.3) are increasing functions of the length of their

argument, the matrix K defined in (2.4) will be close to singular if 11 xi -x j 11 is very small for
some i + j . To avoid an indeterminacy in the parameters of the thin-plate spline, we determine

replicates by comparing 11 xi -x i 11 to a tolerance level rather than checking for xi = x i . The

tolerance level is calculated as 100 times the relative machine precision times the length of the

diagonal of the smallest rectangle which encloses the x i , i = 1,. . . , n . In all our test cases, this

check has been adequate to ensure that the matrix F!KF2 is computationally positive definite.

It is important to note that the determination of replicates involves sorting the

xi , i = 1 , n , in increasing lexicographic order. That is,

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

the rows of would be re-ordered

As mentioned in the Test Results section, the sorting algorithm is comparatively primitive (a

modification of a bubble sort) and, even though it does not take a substantial percentage of the

total execution time, it is to the user's advantage to pass the argument des to dtpss or dptpss with

the rows in increasing lexicographic order, if possible, as the sorting time will be minimized.

Replicates are determined in such a way as to avoid a singular penalty matrix because a

singular penalty matrix has a different effect for the thin-plate smoothing spline (or partial spline)

than it does for the case of a general design matrix with a semi-norm penalty. In the general case,

we determine the null space of the penalty so unexpected singularities simply increase the dimen-

sion of the null space and that part of the parameter vector is incorporated into the P. Ordinary

regression is used to determine p and we assume (and check) that the part of the design matrix

corresponding to j3 is non-singular. Unless the singularity in the penalty corresponds to a singu-

laxity in the design, everything works well.

In the case of a thin-plate smoothing spline the least squares part of the objective function

(2.6) uses the same matrix (F~KF,) as the penalty part. Thus, when the penalty is rank-deficient,

the "design" matrix (in the regression sense) is also rank deficient and the parameters which lie in

the extended null space of the penalty are indeterminant. This can be seen from the form of (2.6).

If there are singular values of zero, the corresponding parameters have no effect on the predictions

and thus do not enter into the objective function Ss(P,6). There is a parameter vector which can

be calculated using (2.9) even with some zero singular values but the part corresponding to the

zero singular values can be changed to an arbitrary value without affecting the predictions so, in

particular, it could be set to zero. More specifically, consider the last two terms in the last line of

(2.6), after the Cholesky decomposition:

If L is not of full row rank, any 6 satisfying

minimizes (Al.l), and in particular we could take

However, we have chosen not to write the special code that would be required to handle this case.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

282 BATES ET AL.

We have eliminated one source of a computationally singular penalty matrix for the thin plate

spline by merging nearly replicated data points. If the computational singularity of FTKF2 is due

to other than nearly replicated data points, i.e., due to very large sets of highly irregularly spaced

data, the user should consider using thin plate basis functions as described in Appendix 2.

Appendix 2. - partial splines with basis functions

One can use the algorithm for a general design matrix with semi-norm penalty to find partial

thin-plate smoothing splines determined by basis functions centered at specified nodes. See Shiau,

Wahba, and Johnson (1985). For example, consider the model

yi = j . . . j ~ (x ~ , x) f (x) d x + ~ ~

The estimate f h off is the minimizer, in an appropriate space, of

where J (f) is an appropriate (quadratic) roughness penalty. If we can approximate f ;, by

where {Bi} are suitably chosen basis functions, then we can define the ij'th entry of X as LiBj

and the matrix C by J(zOjBj) - C J T ~ C J .

'The thin plate basis functions were proposed for this purpose by Wahba (1980a). Starting

with a set of suitably distributed distinct nodes tl, tz , . . . , tb , the approximation is

b
xSiq (t i)=O , j=1,. t .
i= l

Iff a is required to be of the form (A2.2), then (A2.1) becomes

Here, T is n x t and K is n x b , with entries

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

Plij =Li@j 9

mi, =L;E,(m-t ,) ,

and K g is b x b with entries

&)ij =Em (ti - t j .
If we are interested simply in evaluation functionals, then Li f = f (xi). The matrices TB and KB
remain the same, but the matrices T and K have entries

and use this to construct the parameter vector

and to create the design matrix

and penalty matrix

We then proceed as in the case of a general design matrix with a semi-norm penalty as described

earlier.

Hutchinson's (1984) code implements thin plate basis functions for the case L; f = f (x i) ,

where b is chosen to be much less than n when n is large. Hutchinson's code, or the partial thin

plate smoothing spline code described here, should be considered in the case that n is very large

or FTKF, of (2.6) is computationally singular.

Covariates and replicates are handled as before and enter in the same way as for partial

spline models. Considering here only the case of no replicates, the model with covariates is

The objective function for a fixed h becomes

1 SL(a,!3,S)= - 1 1 j - ~ a - T ~ - ~ 6 1 1 ~ + h ~ ~ K ~ 8

subject to T i 6 = 0, in which S is n x c with entries

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET AL.

or, for evaluation functionals,

The design matrix becomes

with parameter vector

The penalty Z has the same form, with the addition of rows and columns of zeroes corresponding

to a. One would then proceed with the general design matrix with semi-norm penalty.

Appendix 3. - the truncated singular value decomposition

The following theorem of Mirsky (1960) provides a bound for the error in the singular

values when using an approximation to a matrix.

Theorem 1: Let X and Y be n xp (n > p) matrices with singular value decompositions UDVT and

RSWT respectively. Denote the ordered singular values of X as { d i } , i = l , . . . , p with

d Sd2 > . . . 2 dp and the ordered singular values of Y as Isi}, i = l , p . Then

We will take advantage of this theorem to calculate the SVD of a matrix X,. which is close

to X in the sense that 11 X-X,, 11 is small but is better conditioned than is X so the iterative por-

tion of the SVD tends to converge faster and the computational burden is reduced. First, we take a

pivoted QR decomposition of X using the pivoting scheme from LWPACK (Dongarra et al.,

1979). That is, we &tennine Q, n xn orthogonal, R, n x p and zero below the main diagonal, and

E, a p xp permutation matrix, such that

and R has the property that

j
r$,,, 2 r3 (j' =a* ,a*+l,..., p).

i=a*

If we take the SVD of Rp, the triangular matrix composed of the firstp rows of R, as

R, = K D L ~

we can produce the SVD of X as

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 285

where Qp is the nxp matrix composed of the first p columns of Q and U = QpK is nxp while

V = EL is p xp and orthogonal. This method would not, however, produce better conditioning for

the SVD algorithm since the singular values of Rp are the same as the singular values of X.

To provide better conditioning, we truncate the matrix Rp after the a* 'th row and take the

SVD of the resulting nxa* matrix R,. (a* I p) as

Rae = K,. D,. La* (A3.5)

where K,. is a* xa* and La, is a* x p . The diagonal elements of D,. are no longer the singular

values of X but now represent the singular values of a matrix

which is different from X. However,

so we can choose a* to be as small as possible subject to the constraint that

where p is the relative machine precision (the smallest number such that 1 + p 1 in floating point

arithmetic) and z is a small multiplier.

We initially choose z as unity but increase it if the LNPACK singular value decomposition

routine (dsvdc) fails to converge. When such a convergence failure occurs, the user can either

increase the number of iterations per singular value allowed in dsvdc (we increase this from 30 to

90) or increase z or both. To increase the maximum allowable number of iterations, change the

value of MAXIT in dsvdc .
Allowing z to get too large can result in inaccuracies in the calculation of V. The effect of

the truncation is measured by the diagnostic ratio defined in (5.7). In general, values of z above

100 are not recommended.

The double sum on the right of (A3.7) is easily evaluated a row at a time starting at the p 'th

row until the constraint (A3.8) is violated and the smallest a* is determined.

By theorem 1, if {d; 1, i=l, ..., p are the ordered singular values of X and {d;,,, }, i=l, ..., p are

the ordered singular values of X,. , then

If n I p , the same procedure is applied to xT.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

Acknowledgements

BATES E T AL.

This research has been supported in part by National Science Foundation grants DMS-

8404970 and ATM-8410373, United States Department of Agriculture CSRS grant 511-100,

NASA grant NAG5-316 and ONR contract N00014-77-C-0675, Computing was performed on

the UW-Madison Statistics Research Computer. We wish to thank Mr. Shee Ham, Dept. of

Economics, UW-Madison, for helping us debug early drafts of the code and document.

Bibliography

Bates, D.M., and Wahba, G. (1982), "Computational Methods for Generalized Cross Validation

with Large Data Sets," in Treatment of Integral Equations by Nwnerical Methods, eds.

C. T . H. Baker, and G. F. Miller, New York: Academic Press.

Craven, P., and Wahba, G. (1979), "Smoothing Noisy Data with Spline Functions: Estimating the

Correct Degree of Smoothing by the Method of Generalized Cross-Validation," Numer-

ische Mathematik, 31, 377-403.

de Boor, C. (1978), A Practical Guide to Splines, New York: Springer.

Dongarra, J. J., Bunch, J.R., Moler, C.B., and Stewart, G. W. (1979), Linpack Users' Guide, Phi-

ladelphia: SIAM.

Duchon T (1976). "Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces," in

Constructive Theory of Functions of Several Variables, eds. W. Schempp, and K. Zeller,

85-100.

Elden, L. (1977), "Algorithms for the Regularization of Ill-Conditioned Least Squares Prob-

lems," BIT, 17, 134-145.

Elden, L. (1984), "A Note on the Computation of the Generalized Cross-Validation Function for

Ill-Conditioned Least Squares hoblems," BIT, 24,467-472.

Eubank, R.L. (1984), "The Hat Mahix for Smoothing Splines," Statistics & Probability Letters,

2,9-14.

Golub, G. H., Heath, M., and Wahba, G. (1979), "Generalised Cross Validation as a Method for

Choosing a Good Ridge Parameter," Technometrics, 21, 215-224.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 287

Green, P. J. (1984), "Iteratively Reweighted Least Squares for Maximum Likelihood Estimation,

and Some Robust and Resistant Alternatives," Journal of the Royal Statistical Society, Ser.

B, 46, 149-170. (Discussion 171-192)

Green, P. J. (1985) "Penalized Likelihood for General Semi-parametric Regression Models."

Technical Report #2819, Mathematics Research Center, Univ. of Wisconsin-Madison.

Green, P. J., and Yandell, B.S. (1985), "Semi-Parametric Generalized Linear Models," in

GLIM85: Proceedings of the International Conference on Generalized Linear Models, Sep-

tember 1985, ed. R. Gilchrist Lecture Notes in Statistics, Springer-Verlag. (Technical

Report#2847, Math. Res. Cen., U. of Wisconsin)

Hutchinson, M.F. (1984) "A Summary of Some Surface Fining and Contouring Programs for

Noisy Data." Technical Report #ACT84/6, Div. Math. and Stat., CSIRO.

Hutchinson, M.F., and de Hoog, F.R. (1985) "Smoothing Noisy Data with Spline Functions."

Numerische Mathematik, . (to appear)

Mirsky, L. (1960), "Symmetric Gauge Functions and Unitarily Invariant Norms," Quart. J. Math.

Oxford, 11, 50-59.

Nychka, D., Wahba, G., Goldfarb, S., and Pugh, T. (1984), "Cross-Validated Spline Methods for

the Estimation of Three Dimensional Tumor Size Distributions from Observations on Two

Dimensional Cross Sections," J. Am. Stat. Assoc., 79, 832-846.

O'Sullivan, F. (1983) "The Analysis of Some Penalized Likelihood Estimation Schemes."

Technical Report #726, Department of Statistics, University of Wisconsin-Madison.

O'Sullivan, F. (1985), "Discussion of Dr. Silverman's Paper," Journal of the Royal Statistical

Society, s i r . B, 47, 39-40.

O'Sullivan, F., and Wahba, G. (1985), "A Cross Validated Bayesian Retrieval Algorithm for

Non-Linear Remote Sensing Experiments," Journal of Computational Physics, 59,441-.

C'Sullivan, F., Yandell, B. S., and Raynor, Jr., W. J. (1986), "Automatic Smoothing of Regression

Functions in Generalized Linear Models," Journal of the American Statistical Association,

81,96-103. (to appear)

Reinsch, C.H. (1967), "Smoothing by Spline Functions," Numerische Mathematik, 10, 177-183.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

288 BATES ET AL.

Shiau, J. (1985) "Smoothing Spline Estimation of Functions with Discontinuities." Technical

Report #768, Department of Statistics, University of Wisconsin-Madison.

Shiau, J., Wahba, G., and Johnson, D.R. (1985) "Partial Spline Models for the Inclusion of the

Tropopause and Frontal Boundary Information in Otherwise Smooth Two- and Three-

Dimensional Objective Analysis." Technical Report, Department of Statistics, University

of Wisconsin -Madison.

Wahba, G. (1980a) "IU-Posed Problems: Numerical and Statistical Methods for Mildly,

Moderately and Severly Ill-Posed Problems with Noisy Data." Technical Report #595,

Department of Statistics, University of Wisconsin-Madison. (to appear in Proceedings of

the Inrernational Conference on Ill-Posed Problems, M . Z . Nashed, ed.)

Wahba, G. (1980b), "Spline Bases, Regularization, and Generalized Cross Validation for Solving

Approximation Problems with Large Quantities of Noisy Data," in Approximation Theory

III, ed. W. Cheney Academic Press, 905-912.

Wahba, G. (1981), "Spline Interpolation and Smoothing on the Sphere.," SIAM Journal of

Scientific and Statistical Computing, 2, 5-16.

Wahba, G. (1982a), "Vector Splines on the Sphere, with Application to the Estimation of

Vorticity and Divergence from Discrete, Noisy Data," in Multivariate Approximation

Theory, Vol. 2 , eds. W. Schempp, and K. Zeller Birkhauser Verlag, 407-429.

Wahba, G. (1982b), "Erratum: Spline Interpolation and Smoothing on the Sphere," SIAM Jour-

nal of Scientijc and Statistical Computing, 3, 385-386.

Wahba, G. (1982c), "Variational Methods in Simultaneous Optimum Interpolation and Initializa-

tion,'' in The Interaction Between Objective Analysis and Investigation, ed. D. Williamson,

Boulder, CO: NCAR, 178-185.

Wahba, G. (1982d), "Constrained Regularization for Ill Posed Linear Operator Equations, with

Applications in Meteorology and Medicine," in Statistical Decision Theory and Related

Topics III, Vol. 2, eds. S . S. Gupta, and J.O. Berger Academic Press, 383-418.

Wahba, G. (1984a), "Surface Fitting with Scattered, Noisy Data on Euclidean D-Spaces and on

the Sphere," Rocky Mountain J . Math., 14,281-299.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 289

Wahba, G. (1984b), "Cross Validated Spline Methods for the Estimation of Multivariate Func-

tions from Data on Functionals," in Statistics: An Appraisal, Proceedings 50th Anniversary

Conference Iowa Stcte Statistical Laboratory, eds. H. A. David, and H.T. David, Ames,

Iowa: Iowa State University Press.

Wahba, G. (1985), "Comments on "Projection Pursuit" by Peter J. Huber," Annals of Statistics,

13,518-521.

Wahba, G., and Wendelberger, J. (1980), "Some New Mathematical Methods for Variational

Objective Analysis Using Splines and Cross-Validation," Monthly Weather Review, 108,

36-57.

Wendelberger, J. G. (1981) "The Computation of Laplacian Smoothing Splines with Examples."

Technical Repxt#648, Dept. of Statistics, U. of Wisconsin.

Received by Coeditoh.

Recommended by WdLiam J . Kennedy.

Table 3. GCVPACK notation correspondence
integer constants

n nobs number of observations
d dim dimension of polynomial space
m m order of derivatives of penalty
c ncov number of covariates

C 1 ncovl number of covariates in S replicating structure of T
c - c l ncov2 ncov-ncovl

a nuobs iout[4] = number of unique obs. (dtpss & dptpss)
a npsing iout[l] = number of positive singular values
t mkpoly(m,dim) dimension of polynomial space

h=t+c nnull iout[3] = size of null space of Z
p=a+t+c npar iout[2] = number of parameters

t+c l ncts 1 number of columns in [T : S1]
P -h ~ m h npar - mull
n -h nmh nobs - nnull

data and parameter vectors
J Y response vector
$ beta coefficients for covariates
a alpha coefficients for polynomial
6 delta coefficients for smooth
Y coef coefficients for well-defined smooth basis
e coef coefficients (in several forms)

(c o n t i n u e d)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

 BATES ET AL.

Table 3 continued.

matrices
X des design matrix for splined variables

IT : S,1 tsl polynomials and replicated covariates
LTu : SlU] tbsbl unique polynomials and replicated covariates

S s2 unreplicated covariates
{A($))~; adiag[il diagonal of hat matrix
iD) ii svals[i] singular values

Z sigma penalty matrix
F,G fg & fgaux QR decomposition of [T : Sll

E %Pvt permutation for pivoted Cholesky of C
Q , R qr & qraux QR decomposition of Cholesky factor of C
{ G I i i clril square root of number of replicates of i 'th unique x

double precision summaries
1; lamhat dout[l] = GCV estimate of lambda

J(f 1 penlty dout[2] = smoothing penalty
I I- I rss dout[3] = residual sum of squares
rr (I- A(h2) - dout[4] = trace of I - A

I I B ~ I I WreP dout[S] = sum of squares for replication (dpss)
P machep relative machine precision
7 tau small multiple
7 p minrat machine tolerance

Code for Driver Routines
..............
dptpss.com

subroutine dptpss (des, lddes, nobs, dim, m, s, lds, ncovl, ncov2, y, ntbl,
* adiag,lamlim,dout,iout,coef,svals,tbl,ldtbl,auxtbl,work,
* lwa,iwork,liwa,job,info)
integer lddes,nobs,dim,m,lds,ncovl,ncov2,ntbl,iout(4),ldtbl,lwa,

* liwa,iwork(liwa),job,info
double precision des (lddes,dim) , s (lda, *) , y (nobs) , adiag (nobs) ,

* lamlim(2),dout(4),coef(*),svals(*),tbl(ldtbl,3),
* auxtbl(3,3), work (lwa)

C

c Purpose: determine the generalized cross validation estimate of the
c smoothing parameter and fit model parameters for a partial thin
c plate spline model.
C

c On Entry:
c des (lddes, dim) design for the variables to be splined
c lddes leading dimension of des as declared in the
c calling program
c nobs number of observations
c dim number of columns in des
c m order of the derivatives in the penalty
c s(lds,ncovl+ncov2) design for the covariates
c first ncovl columns contain covariates which
c duplicate the replication structure of des
c next ncov2 columns contain covariates which
c do not duplicate the replication structure of
c de s

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

Ids

ncovl

ncov2

Y bobs)
ntbl

adiag bobs)

lamlim (2)

ldtbl

job

c On Exit:
des (lddes, dim)
Y bobs)
adiag (nobs)
lamlim (2)

dout (4)

iout (4)

coef (npar)

svals (npsing)

tbl (ldtbl, 3)

leading dimension of s as declared in the
calling program
number of covariates which duplicate the
replication structure of des
number of covariates which do not duplicate the
replication structure of des
response vector
number of evenly spaced values for
loglO(nobs*lambda) to be used in the initial
grid search for lambda hat
if ntbl = 0 only a golden ratio search will be
done and tbl is not referenced, if ntbl > 0
there will be ntbl rows returned in tbl
"true" y values on entry if predictive mse is
requested
limits on lambda hat search (in loglO(nobs*
lambda) scale) if user input limits are
requested. if lamlim(1) - lamlim(2) then lamhat
is set to (lO**lamlirn(l)) /nobs
leading dimension of tbl as declared in the
calling program
integer with decimal expansion abc
if a is nonzero then predictive mse is computed

using adiag as true y
if b is nonzero then user input limits on search

for lambda hat are used
if c is nonzero then adiag will be calculated

unique rows of des
predicted values
diagonal elements of the hat matrix if requested
limits on lambda hat search
(in log10 (nobs*lambda) scale)
contains :
1 lamhat generalized cross validation

estimate of the smoothing parameter
2 penlty smoothing penalty
3 rss residual sum of squares
4 tr (I-A) trace of I - A
contains :
1 npsing number of positive singular values

if info indicates nonzero info
from dsvdc then npsing contains
info as it was returned from dsvdc

2 npar number of parameters
(npar - nuobs + nnull)

3 nnull size of the null space of sigma
(m+dim-1 choose dim)+ncovl+ncov2

4 nuobs number of unique rows in des
coefficient estimates [beta':alpha':deltafl'
coef must have a dimension of at least
nuobs+nnull
singular values, svals must have a dimension,
of at least nuobs-nnull.
if info indicates nonzero info in dsvdc then
svals is as returned from dsvdc.
column contains
1 grid of log10 (nobs*lambda)
2 V(1ambda)
3 R(1ambda) if requested

auxiliary table

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

292 BATES ET AL.

info

1st row contains:
log10 (nobs*lamhat) , V(1amhat) and
R (lamhat) if requested
where lamhat is the gcv estimate of lambda

2nd row contains:
0, V(0) and R(0) if requested

3rd row contains:
0, V(infinity) and R(infinity) if requested

error indicator
0 : successful completion
-1 : loglO(nobs*lamhat) <- lamlim(1)

(not fatal)
-2 : log10 (nobs*lamhat) >= lamlim(2)

(not fatal)
1 : dimension error
2 : error in dreps, the first ncovl columns

of s do not duplicate the replication
structure of des

3 : lwa (length of work) is too small
4 : liwa (length of iwork) is too small
5 : error in dmaket
6 : sigma is rank deficient
1000< info : 1000 + nonzero info returned from

dsnsm

c Working Storage:
c work (lwa) double precision work vector
c lwa length of work as declared in the calling
c program
c must be at least lwal + lwa2 where
c lwal = (nnull-ncov2) * (nobs+nuobs+l)
c +npar* (nobs+npar)
c lwa2 - (npar-nnull) * (npar-2*nnull+2+nobs)
c +npar+nobs
C

C

c iwork (liwa) integer work vector
c liwa length of the iwork as declared in the calling
c program
c must be at least 3*nobs - (nnull - ncov2)
C

c Subprograms Called Directly:
c Gcvpack - dreps dmaket duni dmakek dctsx dsnsm
c inp pack - dqrdc dqrsl
c Blas - dcopy
c Other - dprmut dset prmut mkpoly
C

c Subprograms Called Indirectly:
c Gcvpack - dcrtz ddcom dgcv dsgdc dtsvdc
c dvlop dvlop dpmse dcfcr dpdcr
c Linpack - dchdc dqrdc dqral dtrsl dsvdc
c Blas - dcopy ddot dgemv dswap
c Other - dcpmut dprmut dset dftkf fact
C
dsnsm.com

drsap ddiag
dvmin dvl dzdc
dtrco

subroutine dsnsm (x,ldx,y,sigma,ldsigm,nobs,npar,nnull,adiag,
* tau,lamlim,ntbl,dout,iout,coef,svals,tbl,ldtbl,auxtbl,
* iwork,liwa,work,lwa,job,info)
Integer ldx,ldsigm,nobs,npar,nnull,ntbl,iout(3),ldtbl,liwa,

* iwork (liwa) , lwa, job, info
double precision x (ldx, npar) , y (nobs) , sigma (ldsigm,npar) ,

* adiag (nobs) ,tau, lamlim(2), dout (5), coef (npar) , svals (*) ,
* tbl (ldtbl, 3) ,auxtbl(3,3) ,work(lwa)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

C

c Purpose: determine t h e general ized c ross v a l i d a t i o n e s t ima te of t h e
c smoothing parameter and f i t model parameters f o r a penal ized
c l e a s t squares problem with a semi-norm smoothing matr ix .
C

c On Entry:
x (ldx, npar)
ldx

Y b o b s)
sigma (ldsigm, npar)
ldsigm

nobs
npar
nnu l l
adiag (nobs)

lamlim (2)

t a u

n t b l

l d t b l

job

c On Ex i t :
x (ldx, npar)
Y b o b s)
sigma (ldsigm, npar)

adiag (nobs)
lamlim (2)

dout (5)

i o u t (3)

design matr ix
leading dimension of x a s declared i n t h e
c a l l i n g program, must be a t l e a s t max(nobs,npar)
response vec to r
symmetric matr ix t h a t def ines t h e semi-norm
leading dimension of sigma a s declared
i n t h e c a l l i n g program
number of observat ions
number of parameters
dimension of t h e n u l l space of sigma
" t rue" y values on e n t r y i f computation of
p r e d i c t i v e mse i s requested
l i m i t s on lambda h a t search (i n loglO(nobs*
lambda) s c a l e) i f u se r input l i m i t s a r e
requested i f lamlim(1) - lamlim(2) then lamhat
i s s e t t o (lO**lamlim(l)) /nobs
m u l t i p l i e r con t ro l l ing t h e amount of t runca t ion
i f t runca t ion i s requested (t r y t a u = 1
t o s t a r t then t r y 10 and 100)
number of evenly spaced values f o r
loglO(nobs*lambda) t o be used i n t h e i n i t i a l
g r i d search f o r lambda h a t
i f n t b l - 0 only a golden r a t i o search w i l l be
done and t b l i s not referenced, i f n t b l > 0
t h e r e w i l l be n t b l rows re turned i n t b l
leading dimension of t b l a s declared i n t h e
c a l l i n g program
i n t e g e r with decimal expansion abcd
i f a i s nonzero then t runca t ion i s used
i f b i s nonzero then p red ic t ive mse i s computed

us ing adiag a s t r u e y
i f c i s nonzero then use r input l i m i t s on search

f o r lambda ha t a r e used
i f d i s nonzero then t h e diagonal of t h e ha t

matrix i s ca l cu la t ed

overwri t ten with many in termedia te r e s u l t s
p red ic t ed values
overwri t ten with t h e QR decomposition of t h e
Cholesky f a c t o r of sigma
diagonal elements of t h e h a t matrix i f requested
l i m i t s on lambda h a t search
(i n log10 (nobs*lambda) sca l e)
conta ins :
1 lamhat genera l ized c ross v a l i d a t i o n

e s t ima te of t h e smoothing parameter
2 pen l ty smoothing penal ty
3 r s s r e s idua l sum of squares
4 t r (I - A) t r a c e of I - A
5 t runca t ion r a t i o - l / (lt (nonnk/ (nobs*lamhat)))

where normk - norm(R - R sub k)**2
conta ins :
1 npsing number of p o s i t i v e s ingu la r

values
i f i n f o i n d i c a t e s nonzero i n f o i n

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET A L .

coef (npar)
svals (npar-nnull)

tbl (ldtbl, 3)

auxtb1(3,3)

info

c Work Arrays:
c work(1wa)
c lwa
C

C

C

c iwork (liwa)
c liwa
C

C

C

2 npar
3 nnull
coefficient

dsvdc then iout(1) contains info as
it was returned from dsvdc
number of parameters
size of the null space of sigma
estimates

first npsing entries contain singular values
of the matrix j2
if info indicates nonzero info in dsvdc then
svals is as it was returned from dsvdc
column contains
1 grid of log10 (nobs*lambda)
2 V(1ambda)
3 R(1ambda) if requested

auxiliary table
1st row contains:

log10 (nobs*lamhat) , V (lamhat) and
R (lamhat) if requested
where lamhat is the gcv estimate of lambda

2nd row contains:
0, V(0) and R(0) if requested

3rd row contains:
0, V(infinity) and R(infinity) if requested

error indicator
0 :
-3 :
-2 :

-1 :

1 :
2 :
3 :
4 :
loo<

200<

double
length

successful completion
nnull is too small (not fatal)
log10 (nobs*lamhat) >- lamlim (2)
(not fatal)
log10 (nobs*lamhat) <- lamlim(1)

(not fatal)
dimension error
lwa (length of work) is too small
liwa (length of iwork) is too small
error in ntbl or tau
info <200 : 100 + nonzero info returned

from ddcom
info <300 : 200 + nonzero info returned

from dgcv

precision work vector
of work a s declared in the calling

program
must be at least
(npar-nnull) * (npar-2*nnulle+nobs) +npar+nobs
integer work vector
length of iwork as declared in the calling
program
must be at least 2*npar - nnull

c Subprograms Called Directly:
c Gcvpack - ddcom dgcv
C

c Subprograms Called Indirectly:
c Gcvpack - dcrtz dsgdc dcfcr drsap dvlop dtsvdc
c dpmse dvmin dvl dzdc dpdcr ddiag
c Linpack - dchdc dqrdc dqrsl dtrsl dsvdc dtrco
c Blas - dcopy ddot dgemv dswap
c Other - dcpmut dprmut dset
C
dtpss. com

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

subroutine dtpss (des, lddes,nobs,dim,m, s, lds,ncov, y, ntbl,adiag,
* lamlim, dout, iout, coef, svals,tbl, ldtbl,auxtbl, work, lwa,
* iwork,liwa,job,info)
integer lddes,nobs,dim,m,lds,ncov,ntbl,iout(4),1dtbl,lwa,

* liwa, iwork (liwa) , job,info
double precision des (lddes,dim) , s (lds, *) , y (nobs) ,

* adiag (nobs) , lamlim(2), dout (5) , coef (*) , svals (*) ,
* tbl (ldtbl, 3) , auxtbl(3,3), work (lwa)

C

c Purpose: determine the generalized cross validation estimate of the
c smoothing parameter and fit model parameters for a thin plate
c smoothing spline.
C

c On Entry:
des (lddes, dim)
lddes

nobs
dim
m
s (lds, ncov)

Ids

ncov
Y (nabs)
ntbl

adiag (nobs)

lamlim (2)

ldtbl

job

c On Exit:
c des(lddes,dim)
C

c s (lds, ncov)
c y (nobs)
c adiag (nobs)
c lamlim(2)
C

c dout (5)
C

C

C

design for the variables to be splined
leading dimension of des as declared in calling
program
number of observations
number of columns in des
order of the derivatives in the penalty
design for the covariates. The covariates
must duplicate the replication structure of des.
See dptpss to handle covariates which do not.
leading dimension of s as declared in calling
program
number of covariates
response vector
number of evenly spaced values for

loglO(nobs*lambda) to be used in the initial
grid search for lambda hat
if ntbl = 0 only a golden ratio search will be
done and tbl is not referenced, if ntbl > 0
there will be ntbl rows returned in tbl
"true" y values on entry if predictive mse is
requested
limits on lambda hat search (in loglO(nobs*
lambda) scale) if user input limits are
requested if lamlim(1) = lamlim(2) then lamhat
is set to (lO**lamlim(l)) /nobs
leading dimension of tbl as declared in the
calling program
integer with decimal expansion abdc
if a is nonzero then predictive mse is computed

using adiag as true y
if b is nonzero then user input limits on search

for lambda hat are used
if c is nonzero then adiag will be calculated
if d is nonzero then there are replicates in the

design

sorted unique rows of des if job indicates that
there are replicates otherwise not changed
unique rows of s sorted to correspond to des
predicted values
diagonal elements of the hat matrix if requested
limits on lambda hat search
(in log10 (nobs*lambda) scale)
contains:
1 lamhat generalized cross validation

estimate of the smoothing parameter
2 penlty smoothing penalty

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

BATES ET AL.

iout (4)

coef (npar)

svals (npar-nnull)

tbl (ldtbl, 3)

info

c Work Arrays:
c work (lwa)
c lwa
C
C

c iwork (liwa)
c liwa
C

C
C

3 rss
4 tr(1-A)
5 ssqrep
contains:
1 npsing

2 npar

3 ncts

4 nuobs

residual sum of squares
trace of I - A
sum of squares for replication

number of positive singular
values (npsing - nuobs - ncts) .
if info indicates nonzero info in
dsvdc then npsing contains info as
it was returned from dsvdc.
number of parameters
(npar - nuobs + ncts)
dimension of the polynomial space
plus ncov
((mtdim-1 choose dim) + ncov)
number of unique rows in des

coefficient estimates [betar:alpha':delta'1'
coef must have a dimension of at least nuobs+
ncts
singular values of the matrix j2 if info - 0
if info indicates nonzero info from dsvdc then
svals is as it was returne& from dsvdc.
column contains
1 grid of log10 (nobs*lambda)
2 V(1ambda)
3 R(1ambda) if requested

auxiliary table
1st row contains:

log10 (nobs*lamhat) , V (lamhat) and
R (lamhat) if requested
where lamhat is the gcv estimate of lambda

2nd row contains:
0, V(0) and R(0) if requested

3rd row contains:
0, V(infinity) and R(infinity) if requested

error indicator
0 : successful completion
-1 : loglO(nobs*lamhat) <- lamlim(1)

(not fatal)
-2 : loglO(nobs*lamhat) >- lamlim(2)

(not fatal)
1 : dimension error
2 : error in dreps, covariates do not

duplicate the replication structure of des
3 : lwa (length of work) is too small
4 : liwa (length of iwork) is too small
10 < info < 20 : 10 + nonzero info returned

from dsetup
100< info <200 : 100 + nonzero info returned

from dsgdcl
ZOO< info <300 : 200 + nonzero info returned

from dgcvl

double precision work vector
length of work as declared in the calling
program
Must be at least nuobs(2+ncts+nuobs)+nobs
integer work vector
length of iwork as declared in the calling
program
Must be at least 2*nobs + nuobs - ncts

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t:
19

:5
4

29
 J

ul
y

20
08

GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION

c Subprograms Cal led Direct ly :
c Gcvpack - dreps duni dsuy dsetup dsgdcl dgcvl
c Other - dprmut mkpoly
C

c Subprograms Cal led I n d i r e c t l y :
c Gcvpack - d c f c r l drsap dvlop dsv tc dpdcr dpmse
c dvmin dvl dmaket dmakek ddiag
c Linpack - dchdc dqrdc d q r s l d t r s l dsvdc
c Blas - ddot dcopy dgemv
c Other - dprmut d s e t d f t k f f a c t mkpoly
C

