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Purpose and Description 

Purpose 

These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation 

(GCV) (Craven and Wahba, 1979) calculations in data analysis and data smoothing including 

ridge regression (Golub, Heath, and Wahba, 1979). thin plate smoothing splines (Wahba and 

Wendelberger, 1980), deconvolution (Wahba, 1982d), smoothing of generalized linear models 

(O'Sullivan, Yandell and Raynor (1986), Green (1984) and Green and Yandell (1985)), and ill- 

posed problems (Nychka et al., 1984, O'Sullivan and Wahba, 1985). We present some of the 

types of problems for which GCV is a useful method of choosing a smoothing or regularization 

parameter and we describe the structure of the subroutines. 

Ridge Regression: A familiar example of a smoothing parameter is the ridge parameter h in 

the ridge regression problem which we write as 

where 7 is a p-dimensional parameter vector, y is an n-dimensional response vector and X is an 

n x p  design matrix. 

Copyright O 1987 by Marcel Dekker, Inc. 
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 264 BATES ET AL. 

For any positive h, an optimal y,, can be easily calculated Unfortunately, this leaves the 

question of which value of h to use. Golub, Heath, and Wahba (1979) demonstrated that minimi- 

zation of the GCV function V(h)  is a powerful criterion for the choice of an optimal h, where 

and A(h) is the n x  n "hat" matrix of the ridge regression 

A(h) = X ( X ~ X  + n  hI)-'xT . 

At first glance, optimization of V(h)  seems a formidable computational problem since each 

value of h has its corresponding A@). However, Golub, Heath, and Wahba (1979) gave a method 

of expressing V(h)  as an easily-calculated rational function based on the singular value decompo- 

sition (SVD) (Dongarra et al., 1979, chapter 10) 

where U is n  x p  with orthonormal columns, V is p x p  and orthogonal, and D is pxp and diago- 

nal with diagonal elements 

d 1 2 d 2 T  - . .  Zd, TO 

which are the nonnegative square roots of the eigenvalues of XTX. The "hat" matrix can then be 

written as 

and using 

z = uTy 
we can write 

Once the S M  of X is computed, it is trivial to evaluate V(h)  for a wide range of values of h and 

determine the optimum value of h. Equation (1.1) indicates that, for most problems, 

d; < n  fi  < d:  . After an optimal h is chosen, the corresponding n is calculated as 

% = V ( D ~  + n  M ) - ~ D Z  . (1.2) 

Multivariate data smoothing with thin-plate splines: A more important application of 

GCV is determining smooth representations of an underlying multivariate function from which 

noisy data is observed. The ridge regression problem serves as an introduction to the idea of GCV 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 265 

and the computational steps for efficient evaluation of the GCV function but data smoothing using 

thin-plate smoothing splines (TPSS) is a much more common application of GCV. These methods 

extend the computational methods derived in Wahba and Wendelberger (1980), Wendelberger 

(1981), and Wahba (1984a). 

For convenience we first describe the calculations for a two-dimensional "independent" 

variable x but the software is designed for the general case. The data model for TPSS is 

where the (xi ,yi), i = 1,2, . . . , n , are observed data, f is an unknown function which is assumed 

to be reasonably smooth, and the ei, i = 1,2, . . . , n , are independent, zero-mean random vari- 

ables. 

In general we will measure smoothness o f f  by the integral over the entire plane of the 

square of the partial derivatives off of total order 2. That is, 

To allow generalizations, the software uses a smoothness penalty defined by the partial derivatives 

of total order m as 

In d dimensions, 

with the sum within the integral over xai =m. In general, one must have 2m - d > 0 with d the 

dimension of x. Using this smoothness penalty, the TPSS estimate f of f is the minimizer of 

From Duchon (1976), the minimizer f of (2.1) can be represented as 

where 

~ , ( t )  = ( - I ) ~  PZm x-l ((m-~)!)-' 11 t I( (Zm-2)In( 11 t 11 ) 

and t is the dimension of the space of polynomials on two variables of total order at most m-I, 
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BATES ET AL. 266 

A basis for this space is 

The general definition of Em, which depends on the dimension, d, of the independent vari- 

ables x is 

The dimension, t , of the polynomial space is given in general by 

A property of the TPSS representation is that both the function f evaluated at the data 

points and the smoothing penalty Jm can be expressed using the n x n  matrix K with entries 

&Ii, = E,,,(xi -x,) . (2.4) 

The function f also requires the n x t matrix T with entries 

PIij = $i (xi  ) . 
The matrix T  having full column rank guarantees a unique minimizer of (2.1). Duchon (1976) 

showed that 6  in (2.2) must satisfy 

T ~ ~ = o  . (2.5) 

Then and & are the minimizers of (2.1), which can be written as 

Note that the restriction in (2.5) is important, as K will generally have negative eigenvalues, but 

for any vectors 6  satisfying (2.5) it can be shown that 

s T ~ 6 2  0 . 

Our objective is to reduce the calculation of the parameters ps and 6n, the "hat'' matrix A&), and 

the GCV function V(h) to a simplified form as was done for the ridge regression case. 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 267 

No replicates case: When there are no replicates in the x's, we proceed by taking a QR 

decomposition (Dongarra et al., 1979, chapter 9) of T as 

T = FG = [F1:F2] = FIGl ["'I 
where F is n x n  and orthogonal while G is n x t  and zero below the main diagonal. F1 is the first 

r columns of F and F2 is the trailing n - t columns while G1 is the first t rows of G.  The columns 

of F2 provide a basis for the 6 which satisfy 

SO we can set 

6 = F2< 

where < has dimension n - t . Using 

wl = F:Y 

wz = FZy 

the objective function of the optimization becomes 

Assuming G1 is non-singular (that is, the points xi , i = 1, . . . , n , are adequately dispersed so that 

the columns of T are linearly independent) the first term in (2.6) can be made zero by solving 

clps = wl - FTKF'L 
= W, - F:KS& 

for Pi. In practice we check the condition of G1 and return an error condition if it is computation- 

ally singular, indicating that the columns of T are strongly correlated. This condition is equivalent 

to the computational singularity of the problem of least squares regression of the data onto the 

span {@,I. Singularity will rarely occur since the column dimension of T is small. 

We can now reduce the problem to a form like ridge regression by using the fact that 

F ~ K F '  is positive definite to form the Cholesky decomposition (Dongarra et al., 1979, chapter 8) 

where L is (n-r)x (n-t) and upper triangular. In practice we use a pivoted Cholesky decomposi- 

tion so we can check the conditioning of F~~KF'. If this matrix is computationally singular, which 
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268 BATES ET AL. 

can occur if 11  xi - xj 11  is very small but non-zero for some i + j ,  we return an error condition. A 

near-singular F ~ K F ,  is usually avoided since, in checking for replicates, we declare xi and xj to 

be replicates if the &stance between them is very small. See Appendix 1 for more information on 

the detection of replicates and the computational singularity of L. 

After ensuring that L is non-singular, we define 

y=LC 

and the last two terms of Sx(P,G) in (2.6) can be written as 

This has the same form as the ridge regression problem with solution 

yh = (LLT + n h l ) - ' ~ w ~  . 

We take a SVD of LT as 

and write the estimate as 

n = V(D' + n XI)-'DuTw2 

and the "hat" matrix as 

A(h) = F , F ~  + F,UD~(D~ + n XI)-'UTFz 

As in the ridge regression case, we use 

z = uTw2 

to write 

The actual calculation of the parameter &.corresponding to the Em's is performed as 

&. = F2u(D2 + n U)-'z 
(2.9) 

= F~U(D' + nu)-'UTFzTy . 

Replicated x values: Replicates of x values introduce some minor complications since we 

must define only one ai corresponding to each unique x position. The best way to handle this is to 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 269 

pre-process the data by sorting the x values to determine the unique x values and the number of 

replicates of each value. Let k be the number of unique x values. We can express the objective 

function optimized by Sx and ph as 

subject to the condition 

T@ = 0 

where T and K are of size n x t and n x k  respectively, while Tu and Ku are of size k x  r and 

k x k  respectively. These matrices are related by 

T = MTu 

K=MKu 

where M is an n x k  indicator matrix (all its enmes are ones or zeros and there is only a single one 

in each row) which, for each row, indicates the unique x that corresponds to that observation. 

If we take a QR decomposition of M as 

and pre-multiply all the vectors in the first term of (3.1) by B, (3.1) divides into 

In practice, it is not necessary to explicitly form M and take its QR decomposition since C1 is 

diagonal with cii being the square root of the number of replicates of the i 'th unique x. The ele- 

ments of the vector cilBTy are the means of the y 's at the corresponding unique x's. Further, 
2 11  BZy 11  is the sum of squares due to replication. 

With this information available we can write 

o = c iTS 

to produce 

and proceed as in the case with no replications using ClTU in place of T, and C,K"CT in place 

of K. That is, take a QR decomposition 

and form F ~ c ~ K "  clTF2 which then determines the Cholesky decomposition 

F ~ ~ K ~ c $ ~  = L ~ L  . 
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 BATES ET AL. 

and the product 

allows us to write 

Given the value of f i ,  the calculation of and PI  follow as in the no-replicates case. That 

is, 

8~ = c ? F ~ u ( D ~ + ~  ~I)-'U~F:B:~ 

Partial spline models: These are an extension to the thin-plate smoothing spline model in 

which some of the coordinates of x, the "covariates", do not enter into the thin-plate spline. See 

Wahba (1984b, 1985) and Shiau, Wahba, and Johnson (1985). The model is 

in which si are the "covariates" and {viJ are c given functions. For convenience, we will con- 

sider these variables as forming another matrix S of size n x c .  The partial spline estimates off 

and a are the minimizers of 

and it is known that the minimizing f has a representation of the form (2.2). Let S be the n x c  

matrix with ij'th entry yrj(xi, si). The matrix [T:S] must be of full column rank. The objective 

function for a fixed X becomes 

When determining replicates, we only consider the d variables which determine the spline. When 

there are no replicates, we proceed as in the basic TPSS case except that we take the initial QR 

decomposition as 
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 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

L J  

so V ( h )  is calculated as in (2.8) with all summations running to n - t - c . That is, after the Chole- 

sky decomposition of ~ z i ~ i ; ,  &-d the SVD of the transpose of the Cholesky factor, we have 

The calculation of Cb and proceeds as in the basic TPSS case. With these available, we solve 

for ax and Bb simultaneously. In other words, we have simply replaced Tp in (2.6) by 

It can be shown that the implied constraint s T 6 =  0 does not change the solution. 

When we have covariates as well as some replications in the d coordinates of the x's, we 

have to distinguish between those columns of S which follow the replication pattem of the x's and 

those which do not. If all the columns of S follow the replication pattem, we have an indicator 

matrix M for which 

Taking the QR decomposition of M as M = B C ,  we then take a QR decomposition of C1[Tu:Sul  

and proceed as above. 

If there are columns of S which do not follow the replication pattern of the design, we need 

a more general approach. The covariate matrix is divided into S = [S1:S2] in which the columns 

of S1 have the same replication structure as the design points xi, i = 1, . . . , n . We have an indica- 

tor matrix M for which 

and a QR decomposition of M = B C  as above. However, we cannot easily reduce the objective 

function to a form such as (3.2) by premultiplying by B, as B ~ S ~  is not annihilated. Instead we 

choose to take a QR decomposition of 

which is used to reduce the parameter vector and penalty maaix. We proceed as in the case of a 

general design matrix with a semi-norm penalty as described in the next section by creating the 

parameter vector 
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BATES ET A L .  

0 = a , with 6 = CTF2< , [ "3 
and the design matrix 

The penalty becomes eTz 0, with 

Partial spline models with nodes at selected points, which may not actually correspond to 

data points, are discussed in Appendi 2. 

General design matrix with a semi-norm penalty: The ridge regression case and the 

TPSS cases which we have considered both have some special structure. In the ridge regression 

case, the design matrix, X, is general but the penalty term, yTy, has a special form so we can 

streamline the calculations. In the TPSS cases, the penalty term, 6 T ~ 6  subject to ~~6 = 0, is more 

general but the design matrix, [T:Kl is related to the penalty so, again, we can exploit this special 

structure to provide faster algorithms. Even in the case with both a general design and a general 

penalty, though, we can still form efficient computational methods for GCV. 

The most general GCV calculation we consider is the penalized least squares problem with 

an objective function 

where 0 is a p  -dimensional parameter vector, y is an n-dimensional response vector, X is an n xp 
design matrix, and Z is a pxp positive semi-definite symmetric matrix defining the smoothness 

penalty. Note that partial splines can be written in this form as a special case. 

A partial spline model with discontinuities in the {yj}  of (4.1) which fits in the context of 

(5.1) is described in Shiau, Wahba, and Johnson (1985). Other special cases included splines and 

vector splines on the sphere (Wahba (1981), Wahba (1982% 1982b, 1982~)) and remote sensing 

problems (Wahba (1980a)). Appendix 2 presents some examples and the algebra needed for a 

partial spline model with basis functions. 

The minimization of (5.1) can also be used as a step in the iterative solution of penalized 

GLIM models (O'Sullivan (1983), O'Sullivan, Yandell and Raynor (1986)), nonlinear regulariza- 

tion problems (O'Sullivan (1983) and O'Sullivan and Wahba (1985)) and iteratively reweighted 

least squares problems (Green (1984), Green (1985) and Green and Yandell(1985)). 

We can find the GCV estimate of h in the general case by using a series of matrix decompo- 

sitions to reduce (5.1) to the form of the ridge regression calculation as was done in the TPSS 

case. First we must isolate the null-space of the semi-norm defined by Z. That is, we must 

describe the set of 0's for which 
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 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

We assume the dimension, h, of this space is known and take a pivoted Cholesky decomposition 

(Dongarra et al., 1979, chapter 8) 

where E is a p x p  permutation matrix and L is @-h)xp with zeros below the main diagonal. 

The conditioning of L is evaluated to ensure that L actually has computational rankp-h. If L is 

rank deficient, we increase h until the resulting @-h)xp matrix L is of full row rank and return a 

non-fatal error code. If the user's value of h was too large, we return a fatal error code as this 

indicates that the null space of Z is smaller than expected. As described in Appendix 1, the tech- 

nique of increasing h until L is of full row rank is incompatible with the partial spline code as 

written here. 

A QR decomposition of L~ as 

provides the h x p  matrix Qz which is an orthogonal basis for the null space of the semi-norm 

defined by Z. We can now transform to parameters 7 and fl of dimension p - h and h , respec- 

tively, as 

where B lies in the null space and SI@) from (5.1) can be written 

with 

This provides the desired form of the penalty term. We must now divide the least squares 

term into a part that can be made zero by an appropriate choice of fl and a part that depends only 

on 7. Another QR decomposition, this time as 

is used to form 
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where 

and 

After checking that G1 is non-singular, the first term in (5.2) can be made zero for any value 

of y by solving 

W = w l - J i y  (5.3) 

for p. This reduces the general penalized least squares to the same form as the ridge regression. 

A singular value decomposition 

Jz = UDVT (5.4) 

produces the representation of the "hat" matrix as 

The matrix D is a x a ,  with a  = min(n,p)- h ,  and the matrices U and V are rectangular of sizes 

(n- h ) xa and @- h )  x a ,  respectively. Again, using 

z = uTw2 (5.5) 

the GCV function can be expressed as 

and the parameters vectors yh, and 0, are determined in the usual way given 2, with (5.3) and 

y, = V(D2 + n hI)-'DUTw2 , 

yielding 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 275 

The biggest computational bottleneck is the SVD of J2 when n andp are large, particularly 

since J2 is often ill-conditioned. We can accelerate the SVD calculation by using a truncated ver- 

sion of the singular value decomposition (Bates and Wahba, 1982). Notice that, in (5.6) and the 

solution of n, values of dj such that 

can be set to zero without significantly changing the results. Starting with a tolerance zp, usually 

a small multiple (z) of the relative machine precision (p), the truncated SVD algorithm finds a 

matrix j2 which has a '  < a  positive singular values and satisfies 

in which 1 1  11  F is the Frobenius norm. For details of the truncated SVD algorithm, see Appendix 

3. We replace J2 by j2 in (5.4), thereby reducing the effective number of parameters to a'. With 

the truncation we only calculate an (n- h ) x a *  matrix U and a @- h)  xu*  matrix V so the vector 

z defined in (5.5) will be a*-dimensional, with a replaced by a * .  When J2 is ill-conditioned, we 

get a '  considerably less than a and, since the calculation of the SVD is of order 0 (nu2), this can 

create substantial savings in computing time. However, V is sensitive to z for small h. To check 

on the effect of the truncation on the value of V(h) and hence the calculation of fi we return the 

diagnostic quantity 

This is a lower bound on each of the quantities nfi/(d;+nd) in (5.6) which are replaced by 1 

when d, is set to zero. Preliminary tests indicate that if the diagnostic quantity is above 0.999 then 

the truncation has negligible effect on V. 

Another important method of accelerating the GCV calculations by avoiding the final reduc- 

tion to diagonal form in the SVD was given by Elden (1984 ). This involves stopping the evalua- 

tion of the singular value decomposition at the intermediate step of the reduction of J2 to a 

bidiagonal form, then forming an expression for V(h). 

Description 

The package has three main subroutine drivers. The first driver, dtpss for thin plate smooth- 

ing splines, is the most efficient and the most restrictive, allowing covariates only in the case 

where the replication pattern is the same as that found in the design. The second driver, dptpss for 

partial thin plate smoothing splines, handles general covariates and in turn calls the third driver, 

dsnsm which handles penalized least squares problems with a semi-norm penalty. After a call to 

dtpss or dptpss the subroutine dpred can be called to evaluate predicted values for additional 

points not in the design. 
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2 7 6  BATES ET AL. 

Replicates are handled in drpss and dptpss using the following routines. The subroutine 

dreps sorts the x vectors and returns C1 and the information necessary for the routines duni and 

dsuy (used only in dtpss ). Subroutine duni reduces a matrix (T or K) to the corresponding matrix 

with unique entries (TU or KU). The routine dsuy sorts y and computes B:y and the sum of 

squares due to replication. 

The subroutine dtpss, the thin plate spline driver, calls the routine dsetup to create the 

matrices C l ~ u c :  and C1[Tu:SIU] from the design points xi , i = 1,2, . . . , n using the routines 

dmakek and dmaket. The LINPACK routine dqrdc is called to decompose C2[TU:SIu] into its 

QR decomposition FG, followed by the routine dftrkfto calculate F T ~ l K u C : ~ .  Dsgdcl does the 

Cholesky decomposition of F2T~1KuC:~2 and the singular value decomposition of the Cholesky 

factor. Dgcvl uses these results to compute the generalized cross validation estimate of h and the 

corresponding estimates of the other parameters. The work in dgcvl is divided into application of 

the rotations by FT in drsap, optimization of the V(h) function in dvlop, computation of predictive 

mean square error (if requested) in dpmse, creation of the coefficient vector in dcfcrl, creation of 

the predicted values in dpdcr, and creation of the diagonal of A(Z) in ddiag. Subroutine dvlop 

calls dvmin to minimize V(h) by repeated calls to dvl. The minimization is done by an initial grid 

search in the ln(n h) scale followed by a golden ratio search in the neighborhood of the minimiz- 

ing grid point. The input variable ntbl controls the resolution of the initial grid search. A value for 

ntbl of 100 or greater is recommended to ensure that the global optimum is located. If a plot of 

V(h) versus ln(n h) indicates that a local optimum has been obtained the user may either increase 

the value of ntbl or use the option to specify a reduced range for the search. The grid of ln(n h) 

values is returned along with the corresponding V(h) values in the variable tbl. The variable 

auxtbl is returned containing x, ~(f.), V(0) and V(-). 

The driver dptpss for partial thin plate splines calls routines dreps, dmaket, duni, and 

dmakek to set up [T:SJ, [Tu:Slvl and Ku.  These are fed to dctsx to create the matrices C and X 

which are used by the driver dsnsm. 

The subroutine dsnsm is a general driver for penalized least squares problems with a semi- 

norm penalty. It calls ddcom which decomposes C and X and returns information used by dgcv to 

find & &, and other results. The work in ddcom is split into the decomposition of Z in a call to 

dsgdc and the @ansformation and decomposition of the design in dcrtz and dzdc which in turn 

calls dtsvdc or dsvdc to perform the singular value decomposition. The work in dgcv is divided 

into the same subroutines as dgcvl with the exception that dcfcrl is replaced by dcfcr. 

In the general case, the driver dsnsm allows an option to use a truncation singular value 

decomposition through the routine drsvdc which preprocesses the design matrix Jz to reduce the 

dimensionality before invoking dsvdc (see Appendix 3). The truncation tolerance, ~ x p  is passed 

to dtsvdc as the parameter mitarat. The drivers dtpss and dptpss would not benefit from truncation 

in the SVD calculation so they use the LINPACK routine dsvdc. 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 277 

Simulation Applications: When GCVPACK is used for simulation studies the option to com- 

pute the predictive mean square error should be used. The known "true" response is input in the 

variable adiag and the predictive mean square error, R (h), is returned, along with V(h), in the 

variable rbl. It is recommended that plots of V(h) and R (1) versus ln(n h) be used to evaluate the 

success of the GCV function in finding the optimal h (the h which minimizes predictive mean 

square error). The variable auxtbl contains R ( f i ) ,  R (0) and R (m). 

The decomposition of the X matrix requires the most intensive computation. The subrou- 

tines dtpss and dptpss are both set up to take advantage of the savings in computation that exist for 

multiple response vectors with the same design. To modify dtpss to handle a problem with more 

than one response vector all code up to and including the call to dsgdcl is executed once. A loop 

can be added to execute the remaining code for each y vector. In practice this modification would 

involve adding only a few lines of code. 

To modify dptpss, or any other driver which calls dsnsm, a loop must be added in dsnsm. In 

dsnsm there are two subroutines, ddcom which needs to be executed once, and dgcv which must 

be executed once for each response vector. In dptpss, after the call to dsnsm, a transformation is 

applied to the coefficient vector. This must be done to the coefficient vector corresponding to each 

y vector. 

Related Algorithms 

The numerical linear algebra in our routines is performed using the LINPACK (Dongarra et 

al., 1979) routines. The introductory comments of each GCVPACK routine list which LINPACK 

and BLAS (Basic Linear Algebra Subroutines) routines are called directly or indirectly. There is 

one machine-dependent constant, the relative machine precision, which is used in these routines 

to determine error conditions caused by ill-conditioning, but that constant is computed each time it 

is needed. 

The present work generalizes algorithms for ridge regression of Golub, Heath, and Wahba 

(1979) and Bates and Wahba (1982) which use the singular value decomposition. Elden (1977) 

gives an algorithm which terminates the singular value decomposition at an intermediate step, 

reducing X to a bidiagonal form, thereby saving time (see the Test Results section). This could 

be incorporated into GCVPACK but we have not done so yet. 

Wendelberger (1981) implemented an algorithm for thin plate splines based on eigenvalue- 

eigenvector decompositions for one-dimensional and multi-dimensional thin plate smoothing 

splines. Hutchinson (1984) developed an algorithm for thin plate splines with large data sets using 

the thin plate basis functions of Wahba (1980b); see Appendix 2. 

Reinsch (1967) initially proposed a fast algorithm for fixed h using a Cholesky decomposi- 

tion (see De Boor (1978)). In the onedimensional case, the penalty can be written as a product of 

matrices with only 2m-1 non-zero diagonals. Hutchinson and de Hoog (1985) give an 0 (n) 
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algorithm for computing V ( h )  using a Cholesky decomposition of these matrices. See also 

O'Sullivan (1985). GCVPACK is not designed to take advantage of the unique structure of one 

dimensional polynomial smoothing splines, and runs much slower than the code of Hutchinson 

and de Hoog (1985) in this case. 

O'Sullivan, Yandell and Raynor (1986) developed algorithms for smooth generalized linear 

models based on a Cholesky decomposition of XTX + n XI. Green (1985) and Green and Yandell 

(1985) presented algorithms for penalized likelihood schemes which include generalized linear 

models and other iteratively reweighted least squares methods. They present a one-dimensional 

algorithm based on Reinsch (1967) and a general algorithm based on the Cholesky decomposition. 

They have also incorporated an iterative algorithm using the SVD to automate the choice of i ,  but 

it needs extensive testing to determine if it is stable. Shiau (1985) developed algorithms for a par- 

ticular class of partial splines consisting of discontinuities o f f  or higher order derivatives at 

known or unknown points. This includes a one-dimensional algorithm based on Hutchinson and 

de Hoog (1985) and a multidimensional algorithm based on the Cholesky decomposition. 

Test Results 

The package and drivers have been tested for internal consistency and for accuracy against 

other known algorithms. Here we present some timing results to show that the methods are feasi- 

ble for relatively large data sets and to offer insight into which portions of the code should be 

avoided, if possible. For example, the code allows the computation of the diagonal of A(X) for 

forming diagnostics (Eubank, 1984) but this calculation alone can take 15% or more of the total 

execution time. 

All timing runs were performed on a Vax-111750 computer with a floating ~ o i n t  accelerator 

and running the 4.2 BSD UNIXTM operating system. We quote two sets of times for the example: 

one using the driver dtpss and the other using dptpss. Each of the drivers was timed twice: first 

using the Fortran version of the Basic Linear Algebra Routines (BLAS) then using Assembler 

Language BLAS. As explained in Dongarra et al. (1979), the BLAS are a set of low-level rou- 

tines that perform such elementary tasks as accumulation of dot products and, by replacing them 

with Assembler language versions, the Linpack routines can be made to run faster. 

The design for the example is a 9 by 9 factorial in xl and xz with one covariate, x:. Two 

replicate observations were simulated at each of the 81 design points, Thus n = 162, k = 81, 

m = 2, d = 2 and c = 1. Our timing results are shown in Tables 1 and 2. The total times are 

slightly greater than the sum of the times spent in the lower level subroutines since the driver rou- 

tines have to do some definition of pointers, etc. 

UNfX is a Vademark of AT&T Bell Laboratories 
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dsgdc 1 
Cholesky 
bidiag. 
diag . 
dsuy 

dgcv 1 
drsap 
dvlop 
dpmse 
dcfcrl 
dpdcr 
ddiag 

Total dtpss 

Table 1: Example 1 using dtpss 

Fortran BLAS 

make K and T 14.45 

ddcom 

Assembler BLAS 
Time(Sec.) Percentage 

3.03 4 
9.42 12 

Routine 
dreps 
dsetup 

dsgdc 
Cholesky 
QR 

dcrtz 
dzdc 

bidiag. 
diag. 

dgcv 
drsap 
dvlop 
dpmse 
dcfcr 
d ~ d c r  

Fortran BLAS 
Time (sec.) Percentage 

3.07 3 
11.85 11 

dhiag 1 66.02 18 
Total dptpss 1 359.43 

Assembler BLAS 

14.62 

Table 2: Example 1 using dptpss 
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The first thing to notice from these tables is that dtpss is strongly preferred over dptpss for 

this example since it executes approximately 3 times faster. In general, if dtpss can solve the 

problem, it will do so more quickly. Also, the Assembler BLAS speed things up considerably 

with most of the gain being in the call to the Linpack SVD routine drvdc. 

We have divided the time for dsvdc into two subsections, bidiag and diag. Elden (1984 ) 

gave a method of expressing the GCV function V(X) avoiding the diag step. This would result in 

considerable savings in the drgdcl or ddcom routines. This savings is offset by the calculations in 

dgcvl or dgcv becoming more complicated and, possibly, taking longer. However, since those 

routines take up much less time than diag, we would expect that the overall savings would be 

worthwhile. 

Notice that the calculation of the diagonal of A(X) in ddiag is comparatively expensive - 

usually around 15% of the total execution time. If this optional information is not going to be 

used, it should not be calculated. 

In circumstances where there are multiple y vectors being analysed for the same design and 

penalty mattices, such as in Monte-Carlo runs, the decomposition portion, dsgdcl or ddcom, 

should be called only once while the analysis portion, dgcvl or dgcv, called for each y. The 

analysis portion represents less than 5% of the total time if the calculation of the diagonal of ~ ( 2 )  
is not undertaken. 

The sorting method used in dreps is a comparatively primitive sort (a modification of the 

bubble sort) but, even so, the time taken by dreps is a small percentage of the total time. It would 

be possible to speed up this step by using a more sophisticated sort, but it doesn't appear 

worthwhile. Also, the evaluation of V(X) after the matrices are decomposed is very quick. In 

these runs the variable nrbl was set to 200 so both V(h) and the mean squared error of prediction 

(since the data were simulated) were evaluated at 200 different values of X. Even with 200 

evaluations dvlop and dpmse each represented, at most, 2% of the execution time. 

Appendix 1. - replicates and rank-deficient penalty matrices 

Because the functions Em defined in (2.3) are increasing functions of the length of their 

argument, the matrix K defined in (2.4) will be close to singular if 11  xi -x j  11  is very small for 
some i + j .  To avoid an indeterminacy in the parameters of the thin-plate spline, we determine 

replicates by comparing 11  xi -x i  11  to a tolerance level rather than checking for xi = x i .  The 

tolerance level is calculated as 100 times the relative machine precision times the length of the 

diagonal of the smallest rectangle which encloses the x i , i  = 1,.  . . , n .  In all our test cases, this 

check has been adequate to ensure that the matrix F!KF2 is computationally positive definite. 

It is important to note that the determination of replicates involves sorting the 

xi ,  i = 1 ,  . . . . n ,  in increasing lexicographic order. That is, 
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the rows of would be re-ordered 

As mentioned in the Test Results section, the sorting algorithm is comparatively primitive (a 

modification of a bubble sort) and, even though it does not take a substantial percentage of the 

total execution time, it is to the user's advantage to pass the argument des to dtpss or dptpss with 

the rows in increasing lexicographic order, if possible, as the sorting time will be minimized. 

Replicates are determined in such a way as to avoid a singular penalty matrix because a 

singular penalty matrix has a different effect for the thin-plate smoothing spline (or partial spline) 

than it does for the case of a general design matrix with a semi-norm penalty. In the general case, 

we determine the null space of the penalty so unexpected singularities simply increase the dimen- 

sion of the null space and that part of the parameter vector is incorporated into the P. Ordinary 

regression is used to determine p and we assume (and check) that the part of the design matrix 

corresponding to j3 is non-singular. Unless the singularity in the penalty corresponds to a singu- 

laxity in the design, everything works well. 

In the case of a thin-plate smoothing spline the least squares part of the objective function 

(2.6) uses the same matrix (F~KF,) as the penalty part. Thus, when the penalty is rank-deficient, 

the "design" matrix (in the regression sense) is also rank deficient and the parameters which lie in 

the extended null space of the penalty are indeterminant. This can be seen from the form of (2.6). 

If there are singular values of zero, the corresponding parameters have no effect on the predictions 

and thus do not enter into the objective function Ss(P,6). There is a parameter vector which can 

be calculated using (2.9) even with some zero singular values but the part corresponding to the 

zero singular values can be changed to an arbitrary value without affecting the predictions so, in 

particular, it could be set to zero. More specifically, consider the last two terms in the last line of 

(2.6), after the Cholesky decomposition: 

If L is not of full row rank, any 6 satisfying 

minimizes (Al.l), and in particular we could take 

However, we have chosen not to write the special code that would be required to handle this case. 
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We have eliminated one source of a computationally singular penalty matrix for the thin plate 

spline by merging nearly replicated data points. If the computational singularity of FTKF2 is due 

to other than nearly replicated data points, i.e., due to very large sets of highly irregularly spaced 

data, the user should consider using thin plate basis functions as described in Appendix 2. 

Appendix 2. - partial splines with basis functions 

One can use the algorithm for a general design matrix with semi-norm penalty to find partial 

thin-plate smoothing splines determined by basis functions centered at specified nodes. See Shiau, 

Wahba, and Johnson (1985). For example, consider the model 

yi = j . .  . j ~ ( x ~ , x ) f ( x ) d x + ~ ~  

The estimate f h off is the minimizer, in an appropriate space, of 

where J (f ) is an appropriate (quadratic) roughness penalty. If we can approximate f ;, by 

where {Bi} are suitably chosen basis functions, then we can define the ij'th entry of X as LiBj 

and the matrix C by J(zOjBj) - C J T ~ C J .  

'The thin plate basis functions were proposed for this purpose by Wahba (1980a). Starting 

with a set of suitably distributed distinct nodes tl, tz ,  . . . , tb ,  the approximation is 

b 
xSiq ( t i )=O , j=1,. t . 
i= l  

Iff a is required to be of the form (A2.2), then (A2.1) becomes 

Here, T is n x t and K is n x b , with entries 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
19

:5
4 

29
 J

ul
y 

20
08

 GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

Plij =Li@j 9 

mi, =L;E,(m-t , )  , 

and K g  is b x b with entries 

&)ij =Em (ti - t j  . 
If we are interested simply in evaluation functionals, then Li f = f (xi). The matrices TB and KB 
remain the same, but the matrices T  and K  have entries 

and use this to construct the parameter vector 

and to create the design matrix 

and penalty matrix 

We then proceed as in the case of a general design matrix with a semi-norm penalty as described 

earlier. 

Hutchinson's (1984) code implements thin plate basis functions for the case L; f = f ( x i ) ,  

where b is chosen to be much less than n when n is large. Hutchinson's code, or the partial thin 

plate smoothing spline code described here, should be considered in the case that n is very large 

or FTKF,  of (2.6) is computationally singular. 

Covariates and replicates are handled as before and enter in the same way as for partial 

spline models. Considering here only the case of no replicates, the model with covariates is 

The objective function for a fixed h becomes 

1 SL(a,!3,S)= - 1 1  j - ~ a - T ~ - ~ 6 1 1 ~ + h ~ ~ K ~ 8  

subject to T i 6  = 0, in which S is n x c with entries 
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BATES ET AL. 

or, for evaluation functionals, 

The design matrix becomes 

with parameter vector 

The penalty Z has the same form, with the addition of rows and columns of zeroes corresponding 

to a. One would then proceed with the general design matrix with semi-norm penalty. 

Appendix 3. - the truncated singular value decomposition 

The following theorem of Mirsky (1960) provides a bound for the error in the singular 

values when using an approximation to a matrix. 

Theorem 1: Let X and Y be n xp (n  > p )  matrices with singular value decompositions UDVT and 

RSWT respectively. Denote the ordered singular values of X as { d i } ,  i = l ,  . . . , p  with 

d Sd2 > . . . 2 dp and the ordered singular values of Y as Isi}, i = l .  . . . , p  . Then 

We will take advantage of this theorem to calculate the SVD of a matrix X,. which is close 

to X in the sense that 11 X-X,, 11 is small but is better conditioned than is X so the iterative por- 

tion of the SVD tends to converge faster and the computational burden is reduced. First, we take a 

pivoted QR decomposition of X using the pivoting scheme from LWPACK (Dongarra et al., 

1979). That is, we &tennine Q, n xn orthogonal, R, n x p  and zero below the main diagonal, and 

E, a p  xp permutation matrix, such that 

and R has the property that 

j 
r$,,, 2 r3 (j' =a*  ,a*+l,..., p). 

i=a* 

If we take the SVD of Rp,  the triangular matrix composed of the firstp rows of R, as 

R, = K D L ~  

we can produce the SVD of X as 
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where Qp is the nxp matrix composed of the first p columns of Q and U = QpK is nxp while 

V = EL is p xp and orthogonal. This method would not, however, produce better conditioning for 

the SVD algorithm since the singular values of Rp are the same as the singular values of X. 

To provide better conditioning, we truncate the matrix Rp after the a* 'th row and take the 

SVD of the resulting nxa* matrix R,. (a* I p )  as 

Rae = K,. D,. La* (A3.5) 

where K,. is a* xa* and La, is a* x p .  The diagonal elements of D,. are no longer the singular 

values of X but now represent the singular values of a matrix 

which is different from X. However, 

so we can choose a* to be as small as possible subject to the constraint that 

where p is the relative machine precision (the smallest number such that 1 + p 1 in floating point 

arithmetic) and z is a small multiplier. 

We initially choose z as unity but increase it if the LNPACK singular value decomposition 

routine (dsvdc) fails to converge. When such a convergence failure occurs, the user can either 

increase the number of iterations per singular value allowed in dsvdc (we increase this from 30 to 

90) or increase z or both. To increase the maximum allowable number of iterations, change the 

value of MAXIT in dsvdc . 
Allowing z to get too large can result in inaccuracies in the calculation of V. The effect of 

the truncation is measured by the diagnostic ratio defined in (5.7). In general, values of z above 

100 are not recommended. 

The double sum on the right of (A3.7) is easily evaluated a row at a time starting at the p 'th 

row until the constraint (A3.8) is violated and the smallest a* is determined. 

By theorem 1, if {d; 1, i=l, ..., p are the ordered singular values of X and {d;,,, }, i=l, ..., p are 

the ordered singular values of X,. , then 

If n I p ,  the same procedure is applied to xT. 
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Table 3. GCVPACK notation correspondence 
integer constants 

n nobs number of observations 
d dim dimension of polynomial space 
m m order of derivatives of penalty 
c ncov number of covariates 

C 1 ncovl number of covariates in S replicating structure of T 
c - c l  ncov2 ncov-ncovl 

a nuobs iout[4] = number of unique obs. (dtpss & dptpss) 
a npsing iout[l] = number of positive singular values 
t mkpoly(m,dim) dimension of polynomial space 

h=t+c nnull iout[3] = size of null space of Z 
p=a+t+c npar iout[2] = number of parameters 

t+c l  ncts 1 number of columns in [T : S1] 
P -h ~ m h  npar - mull 
n -h nmh nobs - nnull 

data and parameter vectors 
J Y response vector 
$ beta coefficients for covariates 
a alpha coefficients for polynomial 
6 delta coefficients for smooth 
Y coef coefficients for well-defined smooth basis 
e coef coefficients (in several forms) 

( c o n t i n u e d )  
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 BATES ET AL. 

Table 3 continued. 

matrices 
X des design matrix for splined variables 

IT : S,1 tsl polynomials and replicated covariates 
LTu : SlU] tbsbl unique polynomials and replicated covariates 

S s2 unreplicated covariates 
{A($))~; adiag[il diagonal of hat matrix 
iD) ii svals[i] singular values 

Z sigma penalty matrix 
F,G fg & fgaux QR decomposition of [T : Sll 

E %Pvt permutation for pivoted Cholesky of C 
Q , R  qr & qraux QR decomposition of Cholesky factor of C 
{ G I i i  clril square root of number of replicates of i 'th unique x 

double precision summaries 
1; lamhat dout[l] = GCV estimate of lambda 

J(f 1 penlty dout[2] = smoothing penalty 
I I- I rss dout[3] = residual sum of squares 
rr (I- A(h2) - dout[4] = trace of I - A 

I I B ~ I I  WreP dout[S] = sum of squares for replication (dpss)  
P machep relative machine precision 
7 tau small multiple 
7 p minrat machine tolerance 

Code for Driver Routines 
.............. .............. 
dptpss.com .............. .............. 

subroutine dptpss (des, lddes, nobs, dim, m, s, lds, ncovl, ncov2, y, ntbl, 
* adiag,lamlim,dout,iout,coef,svals,tbl,ldtbl,auxtbl,work, 
* lwa,iwork,liwa,job,info) 
integer lddes,nobs,dim,m,lds,ncovl,ncov2,ntbl,iout(4),ldtbl,lwa, 

* liwa,iwork(liwa),job,info 
double precision des (lddes,dim) , s (lda, *) , y (nobs) , adiag (nobs) , 

* lamlim(2),dout(4),coef(*),svals(*),tbl(ldtbl,3), 
* auxtbl(3,3), work (lwa) 

C 

c Purpose: determine the generalized cross validation estimate of the 
c smoothing parameter and fit model parameters for a partial thin 
c plate spline model. 
C 

c On Entry: 
c des (lddes, dim) design for the variables to be splined 
c lddes leading dimension of des as declared in the 
c calling program 
c nobs number of observations 
c dim number of columns in des 
c m order of the derivatives in the penalty 
c s(lds,ncovl+ncov2) design for the covariates 
c first ncovl columns contain covariates which 
c duplicate the replication structure of des 
c next ncov2 columns contain covariates which 
c do not duplicate the replication structure of 
c de s 
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Ids 

ncovl 

ncov2 

Y bobs) 
ntbl 

adiag bobs) 

lamlim (2) 

ldtbl 

job 

c On Exit: 
des (lddes, dim) 
Y bobs) 
adiag (nobs) 
lamlim (2) 

dout (4) 

iout (4 ) 

coef (npar) 

svals (npsing) 

tbl (ldtbl, 3) 

leading dimension of s as declared in the 
calling program 
number of covariates which duplicate the 
replication structure of des 
number of covariates which do not duplicate the 
replication structure of des 
response vector 
number of evenly spaced values for 
loglO(nobs*lambda) to be used in the initial 
grid search for lambda hat 
if ntbl = 0 only a golden ratio search will be 
done and tbl is not referenced, if ntbl > 0 
there will be ntbl rows returned in tbl 
"true" y values on entry if predictive mse is 
requested 
limits on lambda hat search (in loglO(nobs* 
lambda) scale) if user input limits are 
requested. if lamlim(1) - lamlim(2) then lamhat 
is set to (lO**lamlirn(l) ) /nobs 
leading dimension of tbl as declared in the 
calling program 
integer with decimal expansion abc 
if a is nonzero then predictive mse is computed 

using adiag as true y 
if b is nonzero then user input limits on search 

for lambda hat are used 
if c is nonzero then adiag will be calculated 

unique rows of des 
predicted values 
diagonal elements of the hat matrix if requested 
limits on lambda hat search 
(in log10 (nobs*lambda) scale) 
contains : 
1 lamhat generalized cross validation 

estimate of the smoothing parameter 
2 penlty smoothing penalty 
3 rss residual sum of squares 
4 tr (I-A) trace of I - A 
contains : 
1 npsing number of positive singular values 

if info indicates nonzero info 
from dsvdc then npsing contains 
info as it was returned from dsvdc 

2 npar number of parameters 
(npar - nuobs + nnull) 

3 nnull size of the null space of sigma 
(m+dim-1 choose dim)+ncovl+ncov2 

4 nuobs number of unique rows in des 
coefficient estimates [beta':alpha':deltafl' 
coef must have a dimension of at least 
nuobs+nnull 
singular values, svals must have a dimension, 
of at least nuobs-nnull. 
if info indicates nonzero info in dsvdc then 
svals is as returned from dsvdc. 
column contains 
1 grid of log10 (nobs*lambda) 
2 V(1ambda) 
3 R(1ambda) if requested 

auxiliary table 
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292 BATES ET AL. 

info 

1st row contains: 
log10 (nobs*lamhat) , V(1amhat) and 
R (lamhat) if requested 
where lamhat is the gcv estimate of lambda 

2nd row contains: 
0, V(0) and R(0) if requested 

3rd row contains: 
0, V(infinity) and R(infinity) if requested 

error indicator 
0 : successful completion 
-1 : loglO(nobs*lamhat) <- lamlim(1) 

(not fatal) 
-2 : log10 (nobs*lamhat) >= lamlim(2) 

(not fatal) 
1 : dimension error 
2 : error in dreps, the first ncovl columns 

of s do not duplicate the replication 
structure of des 

3 : lwa (length of work) is too small 
4 : liwa (length of iwork) is too small 
5 : error in dmaket 
6 : sigma is rank deficient 
1000< info : 1000 + nonzero info returned from 

dsnsm 

c Working Storage: 
c work (lwa) double precision work vector 
c lwa length of work as declared in the calling 
c program 
c must be at least lwal + lwa2 where 
c lwal = (nnull-ncov2) * (nobs+nuobs+l) 
c +npar* (nobs+npar) 
c lwa2 - (npar-nnull) * (npar-2*nnull+2+nobs) 
c +npar+nobs 
C 

C 

c iwork (liwa) integer work vector 
c liwa length of the iwork as declared in the calling 
c program 
c must be at least 3*nobs - (nnull - ncov2) 
C 

c Subprograms Called Directly: 
c Gcvpack - dreps dmaket duni dmakek dctsx dsnsm 
c  inp pack - dqrdc dqrsl 
c Blas - dcopy 
c Other - dprmut dset prmut mkpoly 
C 

c Subprograms Called Indirectly: 
c Gcvpack - dcrtz ddcom dgcv dsgdc dtsvdc 
c dvlop dvlop dpmse dcfcr dpdcr 
c Linpack - dchdc dqrdc dqral dtrsl dsvdc 
c Blas - dcopy ddot dgemv dswap 
c Other - dcpmut dprmut dset dftkf fact 
C .............. .............. 
dsnsm.com .............. .............. 

drsap ddiag 
dvmin dvl dzdc 
dtrco 

subroutine dsnsm (x,ldx,y,sigma,ldsigm,nobs,npar,nnull,adiag, 
* tau,lamlim,ntbl,dout,iout,coef,svals,tbl,ldtbl,auxtbl, 
* iwork,liwa,work,lwa,job,info) 
Integer ldx,ldsigm,nobs,npar,nnull,ntbl,iout(3),ldtbl,liwa, 

* iwork (liwa) , lwa, job, info 
double precision x (ldx, npar) , y (nobs) , sigma (ldsigm,npar) , 

* adiag (nobs) ,tau, lamlim(2), dout (5), coef (npar) , svals (*)  , 
* tbl (ldtbl, 3) ,auxtbl(3,3) ,work(lwa) 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

C 

c Purpose: determine t h e  general ized c ross  v a l i d a t i o n  e s t ima te  of t h e  
c smoothing parameter and f i t  model parameters f o r  a penal ized 
c l e a s t  squares problem with a semi-norm smoothing matr ix .  
C 

c On Entry: 
x ( ldx,  npar) 
ldx 

Y b o b s )  
sigma (ldsigm, npar) 
ldsigm 

nobs 
npar 
nnu l l  
adiag (nobs) 

lamlim (2) 

t a u  

n t b l  

l d t b l  

job 

c On Ex i t :  
x ( ldx,  npar) 
Y b o b s )  
sigma (ldsigm, npar) 

adiag (nobs) 
lamlim (2) 

dout (5) 

i o u t  (3) 

design matr ix  
leading dimension of x a s  declared i n  t h e  
c a l l i n g  program, must be a t  l e a s t  max(nobs,npar) 
response vec to r  
symmetric matr ix  t h a t  def ines  t h e  semi-norm 
leading dimension of sigma a s  declared 
i n  t h e  c a l l i n g  program 
number of observat ions  
number of parameters 
dimension of t h e  n u l l  space of sigma 
" t rue"  y values  on e n t r y  i f  computation of 
p r e d i c t i v e  mse i s  requested 
l i m i t s  on lambda h a t  search ( i n  loglO(nobs* 
lambda) s c a l e )  i f  u se r  input  l i m i t s  a r e  
requested i f  lamlim(1) - lamlim(2) then lamhat 
i s  s e t  t o  (lO**lamlim(l) ) /nobs 
m u l t i p l i e r  con t ro l l ing  t h e  amount of t runca t ion  
i f  t runca t ion  i s  requested ( t r y  t a u  = 1 
t o  s t a r t  then t r y  10 and 100) 
number of evenly spaced values  f o r  
loglO(nobs*lambda) t o  be used i n  t h e  i n i t i a l  
g r i d  search f o r  lambda h a t  
i f  n t b l  - 0 only a golden r a t i o  search w i l l  be 
done and t b l  i s  not referenced,  i f  n t b l  > 0 
t h e r e  w i l l  be n t b l  rows re turned i n  t b l  
leading dimension of t b l  a s  declared i n  t h e  
c a l l i n g  program 
i n t e g e r  with decimal expansion abcd 
i f  a i s  nonzero then t runca t ion  i s  used 
i f  b i s  nonzero then p red ic t ive  mse i s  computed 

us ing adiag a s  t r u e  y 
i f  c i s  nonzero then use r  input  l i m i t s  on search 

f o r  lambda ha t  a r e  used 
i f  d i s  nonzero then t h e  diagonal of t h e  ha t  

matrix i s  ca l cu la t ed  

overwri t ten  with many in termedia te  r e s u l t s  
p red ic t ed  values  
overwri t ten  with t h e  QR decomposition of t h e  
Cholesky f a c t o r  of sigma 
diagonal elements of t h e  h a t  matrix i f  requested 
l i m i t s  on lambda h a t  search 
( i n  log10 (nobs*lambda) sca l e )  
conta ins :  
1 lamhat genera l ized c ross  v a l i d a t i o n  

e s t ima te  of t h e  smoothing parameter 
2 pen l ty  smoothing penal ty  
3 r s s  r e s idua l  sum of squares 
4 t r  ( I - A )  t r a c e  of  I - A 
5 t runca t ion  r a t i o  - l /  (lt (nonnk/ (nobs*lamhat) ) )  

where normk - norm(R - R sub k)**2 
conta ins :  
1 npsing number of p o s i t i v e  s ingu la r  

values  
i f  i n f o  i n d i c a t e s  nonzero i n f o  i n  
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BATES ET A L .  

coef (npar) 
svals (npar-nnull) 

tbl (ldtbl, 3) 

auxtb1(3,3) 

info 

c Work Arrays: 
c work(1wa) 
c lwa 
C 

C 

C 

c iwork (liwa) 
c liwa 
C 

C 

C 

2 npar 
3 nnull 
coefficient 

dsvdc then iout(1) contains info as 
it was returned from dsvdc 
number of parameters 
size of the null space of sigma 
estimates 

first npsing entries contain singular values 
of the matrix j2 
if info indicates nonzero info in dsvdc then 
svals is as it was returned from dsvdc 
column contains 
1 grid of log10 (nobs*lambda) 
2 V(1ambda) 
3 R(1ambda) if requested 

auxiliary table 
1st row contains: 

log10 (nobs*lamhat) , V (lamhat) and 
R (lamhat) if requested 
where lamhat is the gcv estimate of lambda 

2nd row contains: 
0, V(0) and R(0) if requested 

3rd row contains: 
0, V(infinity) and R(infinity) if requested 

error indicator 
0 :  
-3 : 
-2 : 

-1 : 

1 :  
2 :  
3 :  
4 :  
loo< 

200< 

double 
length 

successful completion 
nnull is too small (not fatal) 
log10 (nobs*lamhat) >- lamlim (2) 
(not fatal) 
log10 (nobs*lamhat) <- lamlim(1) 

(not fatal) 
dimension error 
lwa (length of work) is too small 
liwa (length of iwork) is too small 
error in ntbl or tau 
info <200 : 100 + nonzero info returned 

from ddcom 
info <300 : 200 + nonzero info returned 

from dgcv 

precision work vector 
of work a s  declared in the calling 

program 
must be at least 
(npar-nnull) * (npar-2*nnulle+nobs) +npar+nobs 
integer work vector 
length of iwork as declared in the calling 
program 
must be at least 2*npar - nnull 

c Subprograms Called Directly: 
c Gcvpack - ddcom dgcv 
C 

c Subprograms Called Indirectly: 
c Gcvpack - dcrtz dsgdc dcfcr drsap dvlop dtsvdc 
c dpmse dvmin dvl dzdc dpdcr ddiag 
c Linpack - dchdc dqrdc dqrsl dtrsl dsvdc dtrco 
c Blas - dcopy ddot dgemv dswap 
c Other - dcpmut dprmut dset 
C .............. .............. 
dtpss. com .............. .............. 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
19

:5
4 

29
 J

ul
y 

20
08

 
GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

subroutine dtpss (des, lddes,nobs,dim,m, s, lds,ncov, y, ntbl,adiag, 
* lamlim, dout, iout, coef, svals,tbl, ldtbl,auxtbl, work, lwa, 
* iwork,liwa,job,info) 
integer lddes,nobs,dim,m,lds,ncov,ntbl,iout(4),1dtbl,lwa, 

* liwa, iwork (liwa) , job,info 
double precision des (lddes,dim) , s (lds, * )  , y (nobs) , 

* adiag (nobs) , lamlim(2), dout (5) , coef ( * )  , svals ( * )  , 
* tbl (ldtbl, 3) , auxtbl(3,3), work (lwa) 

C 

c Purpose: determine the generalized cross validation estimate of the 
c smoothing parameter and fit model parameters for a thin plate 
c smoothing spline. 
C 

c On Entry: 
des (lddes, dim) 
lddes 

nobs 
dim 
m 
s (lds, ncov) 

Ids 

ncov 
Y (nabs) 
ntbl 

adiag (nobs) 

lamlim (2) 

ldtbl 

job 

c On Exit: 
c des(lddes,dim) 
C 

c s (lds, ncov) 
c y (nobs) 
c adiag (nobs) 
c lamlim(2) 
C 

c dout (5) 
C 

C 

C 

design for the variables to be splined 
leading dimension of des as declared in calling 
program 
number of observations 
number of columns in des 
order of the derivatives in the penalty 
design for the covariates. The covariates 
must duplicate the replication structure of des. 
See dptpss to handle covariates which do not. 
leading dimension of s as declared in calling 
program 
number of covariates 
response vector 
number of evenly spaced values for 

loglO(nobs*lambda) to be used in the initial 
grid search for lambda hat 
if ntbl = 0 only a golden ratio search will be 
done and tbl is not referenced, if ntbl > 0 
there will be ntbl rows returned in tbl 
"true" y values on entry if predictive mse is 
requested 
limits on lambda hat search (in loglO(nobs* 
lambda) scale) if user input limits are 
requested if lamlim(1) = lamlim(2) then lamhat 
is set to (lO**lamlim(l) ) /nobs 
leading dimension of tbl as declared in the 
calling program 
integer with decimal expansion abdc 
if a is nonzero then predictive mse is computed 

using adiag as true y 
if b is nonzero then user input limits on search 

for lambda hat are used 
if c is nonzero then adiag will be calculated 
if d is nonzero then there are replicates in the 

design 

sorted unique rows of des if job indicates that 
there are replicates otherwise not changed 
unique rows of s sorted to correspond to des 
predicted values 
diagonal elements of the hat matrix if requested 
limits on lambda hat search 
(in log10 (nobs*lambda) scale) 
contains: 
1 lamhat generalized cross validation 

estimate of the smoothing parameter 
2 penlty smoothing penalty 
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BATES ET AL. 

iout (4) 

coef (npar) 

svals (npar-nnull) 

tbl (ldtbl, 3) 

info 

c Work Arrays: 
c work (lwa) 
c lwa 
C 
C 

c iwork (liwa) 
c liwa 
C 

C 
C 

3 rss 
4 tr(1-A) 
5 ssqrep 
contains: 
1 npsing 

2 npar 

3 ncts 

4 nuobs 

residual sum of squares 
trace of I - A 
sum of squares for replication 

number of positive singular 
values (npsing - nuobs - ncts) . 
if info indicates nonzero info in 
dsvdc then npsing contains info as 
it was returned from dsvdc. 
number of parameters 
(npar - nuobs + ncts) 
dimension of the polynomial space 
plus ncov 
((mtdim-1 choose dim) + ncov) 
number of unique rows in des 

coefficient estimates [betar:alpha':delta'1' 
coef must have a dimension of at least nuobs+ 
ncts 
singular values of the matrix j2 if info - 0 
if info indicates nonzero info from dsvdc then 
svals is as it was returne& from dsvdc. 
column contains 
1 grid of log10 (nobs*lambda) 
2 V(1ambda) 
3 R(1ambda) if requested 

auxiliary table 
1st row contains: 

log10 (nobs*lamhat) , V (lamhat) and 
R (lamhat) if requested 
where lamhat is the gcv estimate of lambda 

2nd row contains: 
0, V(0) and R(0) if requested 

3rd row contains: 
0, V(infinity) and R(infinity) if requested 

error indicator 
0 : successful completion 
-1 : loglO(nobs*lamhat) <- lamlim(1) 

(not fatal) 
-2 : loglO(nobs*lamhat) >- lamlim(2) 

(not fatal) 
1 : dimension error 
2 : error in dreps, covariates do not 

duplicate the replication structure of des 
3 : lwa (length of work) is too small 
4 : liwa (length of iwork) is too small 
10 < info < 20 : 10 + nonzero info returned 

from dsetup 
100< info <200 : 100 + nonzero info returned 

from dsgdcl 
ZOO< info <300 : 200 + nonzero info returned 

from dgcvl 

double precision work vector 
length of work as declared in the calling 
program 
Must be at least nuobs(2+ncts+nuobs)+nobs 
integer work vector 
length of iwork as declared in the calling 
program 
Must be at least 2*nobs + nuobs - ncts 
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GCVPACK - ROUTINES FOR GENERALIZED CROSS VALIDATION 

c Subprograms Cal led  Direct ly :  
c Gcvpack - dreps duni dsuy dsetup dsgdcl dgcvl 
c Other - dprmut mkpoly 
C 

c Subprograms Cal led  I n d i r e c t l y :  
c Gcvpack - d c f c r l  drsap dvlop dsv tc  dpdcr dpmse 
c dvmin dvl  dmaket dmakek ddiag 
c Linpack - dchdc dqrdc d q r s l  d t r s l  dsvdc 
c Blas - ddot dcopy dgemv 
c Other - dprmut d s e t  d f t k f  f a c t  mkpoly 
C 




