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Diagnostic tools are developed for generalized linear models in which the linear predictor is
semi-parametric, linear in most of the explanatory variables but with an arbitrary functional
dependence on the remaining extraneous variables. Estimation is by penalized maximum likeli-
hood. Diagnostic tools are proposed with analogy to Pregibon (1981, 1982). Data on phone own-

ership in two states is analyzed in depth.

1. Introduction

‘We consider the problem of determining what factors are
associated with the chance of owning a phone. As in many
problems, we may have a partial idea about a logistic model
describing associations, but some factors may not fit into a nice
parametric form such as a quadratic or sine curve. We allow for
this by examining models in which the linear predictor has an
additive semi-parametric form, linear in most of the explanatory
variables but with an arbitrary functional dependence on the
remainder. Estimation of the parameters and the non-parametric
curve in the model is approached by maximizing a penalized
likelihood. Emphasis is placed on development of diagnostic
tools along the lines of Pregibon (1981, 1982). We analyse data
on phone ownership in two states kindly provided by Ed
Fowlkes, AT&T Bell Laboratories.

The semi-parametric regression idea via penalty functions
has been considered by several authors in varying degrees of
generality; see for example Rice (1981), Green, Jennison and
Seheult (1983), Wahba (1984), Green (1985), Green and Yan-
dell (1985) and Wahba (1986). Another direction has been
taken by Hastie and Tibshirani (1986). While our approach fits
in a very general framework including iteratively reweighted
least squares (Green, 1984) and quasi-likelihood models (Gay
and Welsch, 1986; Nelder and Pregibon, 1986), we focus upon
the generalized linear model (GLM). We begin with the log-
likelihood, which can be written as

n
LOB =3 (26 —a®)+b@E)Ic*,

i=1
with z={z; }/; the observed responses, G- a measure of
spread (possibly 1), and @ and b known functions (Nelder
and Wedderburn (1972); McCullagh and Nelder (1983)). The
parameters ©={0;}/L, are related to the expected responses
w={y; }/2; through a link function 6 =g (L1). We suppress
explicit mention of Z in notation. We replace the familiar

linear predictors 0; = XIT B by the more general predictors
0; =x/B+t;) , 2)

with P the p-vector of parameters of interest and X; the
corresponding explanatory variables for the ith observation.
The scalar {or vector) t; consists of extraneous variables, with
Y(e) a function or curve whose form is not specified. For
instance, we may want to model the probability of a household
having a phone as a function of several socio-economic factors.
While age and income affect this probability, we may not be
interested in these, but need to allow for an arbitrary form for
such arelation. We consider this in detail in section 4.

We cannot simply maximize the log-likelihood, as this
would lead to interpolation by 7, producing an implausibly
rough fit with B non-identifiable. However, if we introduce a
suitable “‘roughness penalty”’, the problem of maximizing

n 'L (O(B,Y)) — oA J (V) 3)

is well defined. The scalar A isa tuning constant, used to regu-
late the smoothness of the fitted curve Y. The penalty func-
tional J is some numerical measure of the "roughness" of .
This might be adopted on ad-hoc grounds, such as the integrated
squared derivative which globally penalizes curvature, or it
might follow from a Bayesian argument specifying a prior dis-
tribution for ¥ (in which A is essentially a ratio of variances).
Typically we try a range of values for A in an exploratory
fashion, as well as considering an automatic choice based on the
data. Wahba’s generalized cross-validation (GCV) method
(Wahba, 1977) uses an invariant modification of a predictive
mean-squared error criterion to choose A. Other approaches to
the automatic choice of A would be possible, for example the
empirical Bayesian methods proposed by Leonard (1982).

One may use this approach to discover the form of Y in
the hope of modelling it parametrically in the future. However,
we focus instead on inference for [ in the presence of an



unknown 7Y, and develop diagnostics for generalized residuals.
The next section briefly presents the maximum penalized likeli-
hood estimates and known properties. Section 3 introduces
diagnostic tools culled from several related lines of investigation
(e.g. Pregibon (1981, 1982) and Eubank (1984,1985)). Section
4 presents a detailed analysis of the data on phones.

2. Maximum Penalized Likelihood Estimates

The maximization of (3) can be obtained by the method of
iteratively reweighted least squares (Green, 1984; O’Sullivan,
Yandell and Raynor, 1986). This scheme is based on the
Newton-Raphson method with Fisher scoring. We present the
algorithm for a chosen, fixed A. For further algorithm details
see Green and Yandell (1985) and Green (1985); see Yandell
(1986) for an alternative scheme.

We first restrict attention Y of the form
V@) =YE O (o), with O , k = *,q , prescribed basis
functions. Thus we can write Y(t;)={E&}; for an nxgq
matrix . This may limit ¥ to some smooth subspace, e.g. one
spanned by B-splines (see Green and Yandell (1985)), or may
provide no restriction. We can write 6 as

to

0=DB+EE ,
with D=(x; - - - x,,)T. Based on an initial guess of § we
create pseudo-values y = {y; }/L;,

y=Alu+0, )

with partials evaluated at © being the score vector and matrix
of pseudo-weights, respectively,

o%L
2007
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and A=

For binomial data of the kind considered here, we use
g (W) =log (W(1-n))=0, with | the probability of own-
ing a phone. The partial matrices W and A take on simple
forms, with A diagional. For each case i , suppose there are

m; individuals, with z; owning phones. Then {A}; =
m;;(1-1;) and {u}; = z; —my;|; , leading to pseudo-
values y; = 6; +(z; —myW; )/ [m; 1 (1= ;)]

The penalty can often be written in a quadratic form, for
some gXgq symmetric K satisfying certain conditions out-
lined below. Thus the problem of maximizing (3) can be
approximated by a locally linearized problem which involves
minimizing a quadratic form

(y-DB-E&)TA(y-DB-EE&) + LETKE

leading to estimates for [} and ﬁ . These estimates are used to
update ©, u and A, and hence the pseudo-values (4), with
iteration until convergence. The MPLEs have the form
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B=M;'DTAI-S)y ,
EE=S (y-Dp) ,
with DTAT-SY¥D, k=1,2. The matix

M
S= E(ETkAE +7LK)_IEF A is sometimes referred to as the
“smoother’’. The MPLE of § = G(B ct,) has the form

6=Dp + EE
=[S+ (I—S)DM{IDTA(I—S)]y
= Ay H, Ay

Note especially in the last expression that all terms may depend
on B aswellason A.

(5)

(6)

We need a few conditions to ensure that this problem is
well-defined (Green, 1985). The matrices I and EE must be
of full tank p and q , respectively. Decompose K as LTL,
where L 1s rxq of full rank r. If ¢ =r, we need
[D:EL™] of rank p+q . If g <r, asis often the case,
then there is a g X (g—r) matrix T such that LT =0 and
[LT:T] is non- singular. We then need [D:ET] of rank
DEgE=Ery

At the MPLEs we have approximate, nominal covariances
for the pseudo-values, COV (y) AL, and for the parame-
ters, COV (B)= MM ,M;T. Goodness-of-fit can be
assessed globally, as in generalized linear models, by the devi-
ance

D*(8) =2{supe L(8) —L (D)} ,

=2{L(g(#)-L®)} ,
or by the chi-square statistic
7°®) = (y-6)"Ay-6) .

For the binomial model, these are simply

%(0) = z (z; /T (1=p)]

—m; ;)%

D%@)=2 2 z;log(z;/(m; ;) + (m; —z;)log((1 —z; /m; )/(1-

i=1

The degrees-of-freedom V, generally not an integer, can
be approximated by (Green, 1985)

v=n —1r(S)—tr M{'M,) ,
—2r(S) +r (DTAT-S)D) ' DTA(I- S)gfn

which approximates the asymptotic expectation of Dz(é) and
reduces to the usual 7 —p when the non-parametric part of the
model is omitted. This V has been used informally for linear
models (Eubank, 1985; Eubank, 1984) and generalized linear
models (O’Sullivan, Yandell and Raynor, 1986; O’Sullivan,

=n-—-p
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1985; Green and Yandell, 1985; Yandell, 1985, 1986).

The parameter estimates depend on the choice of A.
While A can be picked ad-hoc for visual smoothness, we often
use an automatic choice based on generalized cross-validation
(Wahba, 1977). Choosing A to minimize

VY =nvi? |A-HYALy ||
=Hn xz(Bl) /Vl 5

comes close to minimizing the predictive mean square error for
linear models (Craven and Wahba, 1979; Speckman, 1985), and
appears to serve the same purpose for generalized linear models
(O’Sullivan, 1983). The argument has been made by several to
use instead a variant based on the likelihood,

ViAW) =nD%6,)/v} .

(8)

©

3. Theoretical Questions

We can show that the penalized likelihood estimate of ©
is its posterior mean, at least to the first two moments. Its distri-
bution is approximately normal under certain situations similar
to those for ordinary GLMs. In the process we show that the
pseudo-values are approximately normal, which in part justifies
the diagnostics proposed in the next section.

We first review results for the linear model, in which
z=y, 0= and A=1I. This is commonly called the partial
spline model (Rice (1981); Engle et al. (1986); Green, Jennison
and Seheult (1983); Wahba (1984)).

Assume that there is a reproducing kernel H11bert space

HQ of real valued functions of x& I (e.g. [ = B ), and that
Hg has an M -dimensional subspace H, spanned by
{(I)k}k —1. One may have 0;=L;0, with Q€ Hp and

iL; },=1 bounded linear functionals on HQ (Wahba, 1985),
but we leave this out below. Suppose that ¥ follows a Bayesian
model,

M
Y(x) ~ Y o (x) + o(n )2 Z(x)
k=1

with {Z(x),xe I} a family of zero-mean Gaussian random
variables with prior covariance

EZ(x)Z(x" =0 X, x°) ,
where (7 is the reproducing kernel for HQ1 , the orthocom-
plement of H,

_In the case of no parametric piece (=0), we know that
0 =1 is the best linear unbiased predictor for the model

z (X) = Y(x) + oe(x)

with £(e) a zero-mean unit variance iid process independent of
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Y (K1me1dorf and Wahba, 1970). The residuals zZ—© have
covariance O (I H)_(Wahba, 1978). Under a Bayesian prior
for 0= {Ot 01, 0 is the posterior mean of €, having
covariance O‘ I (Wahba, 1983); see also Silverman (1985)
and Wahba (1985). Cox (1983) developed strong approxima-
tions for the spline process by a Gaussian process under mild
conditions, allowing for a non-normal but homoscedastic model.
Speckman (1985) improved earlier results of Craven and Wahba
(1979), showing that the automatic choice of A via generalized
cross-validation asymptotically minimizes the predictive mean
square error. Recently, Cox and Koh (1986) developed a test
for adequacy of the polynomial part of 7, that is, whether one
could reduce the problem to a parametric problem.

For the semi-parametric linear, or partial spline, model,
Heckman (1986b) considered the explanatory variables
{x;,}/~; in (2) as iid random variables from a zero-mean
distribution with covarignce X and finite fourth moments.
Heckman showed that B is consistent prowded thdt €; have
uniformly bounded third moments and AP oo g
n —» oo If in addition either A — 0 or )(-)._O,then

D
n(B-PB) - N@©0,0=1) |

Heckman (1986b) also noted under a diffuse Bayesian prior as
in Wahba (1978), B and O are the respective posterior means.
Cox et al. (1986) extended the results of Cox and Koh (1986) to
Heckman’s model to test the adequacy of the parametric null
model in the semi-parametric linear model.

Rice (1986) considered a variation of the model used by
Heckman (1986b) 1n which the univariate explanatory Xx; has

the form xm —-xm+h(tm) with x as in Heckman

(1986b), #;, “‘regular’”’ and /i (e) cuntmuous. Rice showed
that the variance is O(n —1) , as hoped, provided
An2m/@mily8 500 gnd (roughly speaking) |h? < oo,

However, the bias is o (n_‘/z) only if A is a polynomial of
degree at most m—1. If /i is of higher order, then the bias
can be O (L), that is, decreasing at a non-parametric rate.
Heckman (1986a) has found a way to circumvent this difficulty
using a minimax procedure.

Wahba (1986) sets the partial spline model in a general
context and develops the interaction spline model of Barry
(1986). Chen (1986) provides theoretical justification for the
interaction spline model, which allows one formally to test
nested models with splines along the lines of additive models
(Stone (1985); Hastie and Tibshirani (1986)).

In the parametric GLM, B is asymptotically normal, and
the chi-square and deviance statistics are asymptotically xz
under appropriate conditions (McCullagh (1983); Jérgensen
(1986b)). Nelder and Pregibon (1986) proposed an extended
quasi-likelihood, which is asymptotically X when it
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corresponds to an exponential family distribution (Efron (1985);
Jérgensen (1986ab, 1987)).

O’Sullivan (1983) showed for the non-parametric GLM
that if (3) is convex and there is a unique MLE for (1), then
there is a unique MPLE. O’Sullivan also generalized the result
of Craven and Wahba (1979) on the automatic choice of A .

For semi-parametric GLMs, we can show following
McCullagh and Nelder (1983) that

EFu=0 and EuuT=0‘2A,

that is, u~ (0, o2 A). In most cases, U is not normal. How-
ever, suppose A is fixed and that for each i, z; tends to a
normal distribution as #2; — o=. This occurs for the binomial
model we mentioned earlier. Then if min{m;}/L;— e, u
is asymptotically normal. This follows from standard small
dispersion arguments for GLMs (Jérgensen, 1986b; McCullagh,

1983).

Let S be an nXp mauix with S;; =y;(§:s;), and
let T be nXM with Tf_k=¢k(f_,) For convenience let
X=[T:S] and 8T=(a!:BY). Let = be nxn with

entries

»

EYENX;) = 0,&X,) .
Thus if we assume O is fixed,
A"y ~ (A”X8, b A”EA" + 6M) (10)
or, if we adopt the improper prior & ~N (0, EI) with & — oo,
A%y ~ (0,EA”XXTAY+ b A”TA" +6T) . (11)

For the normal model, ¥ is asymptotically normal. Otherwise,
we can use the arguments for w given earlier to yield asymp-
totic normality for the y. Currently Dennis Cox and Yandell
are extending the Cox et al. (1986) test of the parametic null
hypothesis to semi-parametric GLMs,

4. Diagnostics

We present a variety of diagnostics in the spirit of Pregi-
bon (1981,1982). While we have not formally justified these,
they appear to be on the right track and to follow the type of
generalizations to non-parametric problems developed by
Eubank (1984,1985). It appears from work of Gay and Welsch
(1986) that one could extend these tools to semi-parametric
models arising from iteratively reweighted least squares or
quasi-likelihood in an analogous manner, although we do not
attempt this here. Throughout this section the dependence on A
is suppressed in the notation.
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4.1. Tests of parameters

We can test the parameters [3 in the same manner as Pre-
gibon (1982) and others, using the (conjectured) asymptotic nor-
mal distribution of B to posit that

A Tax Tag—1 R
(B—Bo) M M; M, (B-B,)
has approximately xpz. This can be used to ““test’” for removal

of parameters from a model, or for entering a new parameter in
the usual fashion.

We now  consider testing a  full model
0 =D B, +D,B,+EE against a reduced model
0p =DB, +EE, with D; and D, of full ranks p and r ,
respectively, and D=[D;:D,] of full rank p +r. We
could use a deviance statistic

D*@p,07)=D%0z)-D%b;) ,

or similarly use a chi-square statistic. If ¢ << n , we are prac-
tically in a parametric model, with Vp =n —p —¢q and Vp =
n—p —r —q . However, in general the degrees-of-freedom
Vp — Vg may not be near r, with possibly differing degrees
of smoothness in the two models. If the reduced model is
correct, then even keeping the same tuning constant A for the
full and reduced model fits would not rectify this. A fixed A
locally fixes A (near BR ), which in turn fixes the ‘‘smoother’’
S . However, the degrees-of-freedom in (7) depends on S and
the model design, either Dy or [D;:D,], in a complicated
way.

One natural alternative is the score test as developed by
Pregibon (1982) for the parametric generalized linear model.
The information matrix for the parametric piece is
Fo=A(I-S), with A and S evaluated at the reduced
model. The score vector for the reduced model is

u=A(y-0)
= [Fo— F¢D (D FD,)'DFyly

Following Pregibon (1982) the score statistic
S2%(6z,67) =u"D(DTF,D) DTy
can be written as
5%0z,05) =u"Dy(D,F,D,)'DJu .

The score vector for the one-step (linearized) approximation to
the full model is Fy , with

F=F,-F,D(D'F,D)'DF, .
=F, - F,D,(D,F,D,)"'DJF, .

The latter form of F' allows us to express the score statistic as
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A il T
S*Or,07) =y Fiy - y'Fy
Al A
=y A@®7 - 6p) ,

with (:]}}, =(I-A"'F)y being the one-step estimate of O .
The score test for the semi-parametric generalized linear model
does not in general reduce to a difference in chi-square statistics
as in Pregibon (1982). [Th1s can be seen by examination, noting

that (I—8)# (I—S)%.] However, it has a very simple form
and is easily computed.

4.2. Generalized Residuals

Following Pregibon (1981) and Eubank (1984, 1985), we
propose examining diagnostics based on generalized chi-square
and deviance residuals, i.e.,

ri=ai'e = 6;) and & =+2"L(g () -LE)) |

in which L (8;) is the i th term of the log-likelihood (1). The
matrix H of (6) is the “‘hat matrix’’, with diagonal elements
hﬁ being the leverage values. Eubank (1984) showed that for
the non-parametric linear (normal) model, H shares many of
the properties of the least-squares ‘‘hat matrix’’. Pregibon
(1981) identified this matrix for the parametric GLM. One can
investigate the leverage values directly, or use them in conjunc-
tion with the ordinary residuals to develop cross-validated resi-
duals. For instance, standardized chi-square residuals

T =0 L)

can be plotted against i or one of the predictor vanables The
dispersion O is commonly estimated by D (G)N With
o-=1, 1:1-2 is approximately the decrease in ¥“(0) due to
deleting the ith observation, which is Pregibon’s ‘‘goodness-
of-fit sensitivity’’. The deviance goodness-of-fit sensitivity is
approximated by d +h;t 12. Pregibon (1981) suggested a
normal probablhtg plot of the square root of this, or plotting
d; 2 against h;ti.

Cross-validated residuals arise from fitting the model
using all points but the point of interest, and may provide a more
accurate measure of the fit at each point (Craven and Wahba
(1979); Eubank (1985)). The cross-validated (CV) estimate of
0; is to first order

Oy = @i +huyi) I (1-hy) . (12)
This can be used to construct CV residuals r y=r; /(1 —hy;)
which are equivalent to Pregibon’s (1981) ‘‘coeflicient sensi-
tivity’’. For plotting, one may Prefer the standardized CV resi-
dual T = ri)ouy(1— hu) , with CV dispersion 0(2[)
given in (13) below. Eubank (1985) showed through Monte
Carlo studies that, for the linear non-parametric model, T; and

T(;) have the right level for the NV (0,1) approximation. Note
that deviance analogues to T; and T;y may be constructed
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since r; and d; allegedly have the same asymptotic distribu-
tion.
Influence measures can be developed to compare the fit

with and without a particular point (Velleman and Welsch,
1981). In other words, we examine

DFIT;(¢;) = (6; =6/ c;

for some c¢; . Noting (12), we have (Eubank, 1985) among
other possibilities,

DFITS; = T h{*(1=hy)™ and DFITS ;)= 1)hi/"(1 - hy;

The first is approximately the confidence interval displacement
diagnostic of Pregibon (1981), which measures the effect of
deleting the Z th datum on the chi-square fit for all points.

Pregibon (1981) suggested examining the change in the
J th contribution to deviance due to the deletion of the i th obser-
vation as a means to assess the effect of an influential point on
fits at neighboring points. If we define

r(]“) r +hljr(1) ¥

then to first order the chan§e in deviance from deleting the i th
observation is ra”) . This is exactly the change in the
chi-square for the linear model.

Gunst and Eubank (1983) gave an expression for the CV
dispersion G (% y» for the linear model case using the chi-square,
which we write as

2 _ -1 2
O =Vi) X7 (i) (13)
J#i
in which the the CV degrees-of-freedom are

I
-1
7=l
with Sij =1 ifi=j, 0 if i # . Thus to first order, a CV
estimate based on the deviance rather than the chi-square would
be

;}) »

D e
o) =Vi X (@}

J#i

- +r0”))

Naturally, if the deviance and chi-square residuals are close, one
can use either form in determining standardized CV residuals.

5. Data Analysis of Household Phone Ownership

We present an exploratory analysis of data on household
phone use kindly provided by Edward Fowlkes, AT&T Bell
Laboratories. The data comes from 2134 households, 1810 in
Texas and 324 in Missouri, gathered from the 1980 census by
the National Economic Research Association (NERA). Of
these, 1605 households in Texas and 300 in Missouri had
phones. Data were collected on several socio-economic and
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family factors, as well as phone cost. Table 1 contains the prin-
cipal factors which were ultimately selected. Other factors
include use and installation rates, urban/rural, line density in the
area, and some other family and language factors. It was sug-
gested that we investigate the probability of having a phone as it
relates to income, age and the other factors. Initial examination
of histograms suggested that only income needed transformation
for symmetry. Taking the 4¢2 root made income fairly normal,
and we called the resultant new variable ‘“‘incomed’”.

The analysis presented here is not intended to be com-
plete, but to illustrate the use of the diagnostic methods
developed in this paper. One might want to carry out a stepwise
procedure to determine what factors should be modeled
parametrically. However, two basic realities confronted us.
First, most people have phones, and many subsets of the data
had practically 100% phone ownership. Efforts to look at sub-
sets or interactions frequently led to instability of the algorithm.
Second, and somewhat related, such an effort on even a subset
of the data requires days on a VAX. Yandell is currently
exploring improvements of algorithms for multi-dimensional
nonparametric piece and the use of supercomputers for this
problem. We focus here on semi-parametric logistic regressions
of phone use with age or income4 being non-parametric and
other socio-economic factors entering in a parametric fashion.
Another factor of known importance which could be handled
similarly is educ. This data has been analyzed independently by
Ed Fowlkes (personal communication) and Trevor Hastie
(1986).

We took a step-wise forward selection approach to adding
variables one at a time after the non-parametric piece was in the
model. We considered as criteria the largest reduction in GCV
(9) and the largest score statistic for adding a single variable,
which lead to essentially the same sequence. The semi-
parametric ‘‘age model’” entered 8 variables at a 90%
confidence level, or only 7 at a 95% or 99% level, based on the
score statistics and an (assumed) asymptotic xlz distribution
(Table 1 has score statistics for factors as they were entered).
The semi-parametric ‘‘income4 model’’ allowed 10 variables at
a 90% level, 9 at a 95% level, and only 6 at a 99% level. It is
reassuring that the same variables emerged in roughly the same
signed order (see Table 2) for both models. Age was the first
variable to be added into the “‘incomed model’’, while income4
entered after educ in the *‘age model’*. This is not surprising
when one views the non-parametric curves (Figure 1). The
non-parametric incomed4 curve Y;,. is very smooth, but *“J”’
shaped, while the non-parametric 7,,, is very rough but tracks
a near-straight line except at the extremes. The roughness of
Yage ™ay be due in part to having only 74 unique ages while
there are 1557 unique income values.
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Certain changes in parameter estimates when new factors
were added (Table 2) and correlations among parameters (Table
3) were predictable from the choice of factors. For instance, the
family size factors which were included in the ‘‘income4
model’’, person, pchl and pch2, were highly correlated, as were
nonf and nonff in both models; nonf and the family size factors
were also naturally correlated. We note in addition that educ
and olang parameters were highly correlated in both models,
leading to noticeable changes in the educ parameter values when
olang was added. Similarly educ was highly correlated with age
and slightly less so with incomed. Noticeable but non-
significant changes occurred in the slope of income4 in the “‘age
model”” when nonf and nonff were added, reflecting a correla-
tion seen in Table 3a. The olang coefficient was correlated with
that for black in both models, probably reflecting the fact that
98% of the blacks surveyed spoke English, while only 81% of
the non-blacks had English as their primary language. Other
interesting relations can probably be found, but were not pur-
sued in the interests of time.

The model fits were achieved to minimize the GCV (9).
The GCV decreased with increasing number of model parame-
ters, as expected (see Table 4). However, while the deviance
decreased in a similar manner, the chi-square did not. This may
be due in part to using the deviance instead of the chi-square in
(8), and requires further study. However, there is no guarantee
that either the deviance or chi-square should decrease, as optim-
ization, i.e. the choice of A, is based on the GCV. The
degrees-of-freedom difference between models is rarely close to
1; in fact it increased for the ‘‘income4 model’” when age was
added, which could possibly be explained by the increase in A .
This argues against a naive comparison of model fits without
controling the tuning constant.

5.1. Diagnostics

In this section we graphically analyse the data using diag-
nostics. All plots and discussion in this section refer to the
“full’” semi-parametric age and income4 models. While the
diagnostics are justified by small dispersion results, requiring
min{m; }{_; —> oo, we choose here to examine individual
cases. One may want to group cases by similar 85 to ensure
expected counts of 1 or 5 as in the classical categorical data set-
tings.

The leverage values /; were generally very small for
the income4 model, with none above .08. However for the age
model several values were over .3 (Figure 2). Most of these
were for household heads over age 80, with a few under age 20.
This could reflect the age and income4 pattern of phone use dis-
cussed earlier.
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The different types of residuals gave essentially the same
scatter plots. The ranges were remarkable constant for the two
models, reflecting the fact that points of relatively high leverage
probably had small simple residuals (see Table 5). We present
only the standardized CV deviance residuals T(i)» which meas-
ure something like Pregibon’s “‘coefficient sensitivity’’, in Fig-
ure 3. None of the cases seem to have a great influence on the
fit for the 1-D models (see Table 5).

Goodness-of-fit sensitivity appears to be a useful tool here
to ferret out points which have a large influence on the deviance
(Figure 4). For the two models, deviance changes of 55 (5.4%)
for the age model and 44 (3.5%) for the income4 niodel
occurred when certain points were deleted.

We now highlight several of the points which stand out
via the diagnostics for the age model (Table 6). Case 1106 had
the highest leverage, while cases 1305 and 1679 had large nega-
tive deviances and high goodness-of-fit sensitivity. As one can
see, these are near the extremes of education level, have low
incomes, and are single-persons. The high leverage case is male
with no education, while the other two are female with 17 years
education. For the age model, the point with high leverage has a
small deviance, and the points with large deviance and sensi-
tivity have small leverage.

6. Conclusions and Future Work

We have presented a collection of tools for semi-
parametric generalized linear models and have demonstrated
their value in understanding the preference for household
phones. The picture that emerges is not simple and illustrates
some of the flexibility of these tools. It appears that the diagnos-
tics can pick out interesting cases, although the statistical pro-
perties of these diagnostic tools remain to be determined.

Future work will follow several lines. First, we wish to
ascertain the properties of these diagnostic tools. Second, we
would like to further investigate this data set, fitting 2-D and 3-
D (with education) semi-parametric models. We also would like
to explore fitting of subsets of the data to substantiate the pat-
terns observed. It appears from initial investigation of 2-D
models that a separate analyses may be fruitful for the lower
income group, the lower income 20-60 age group, and for those
over 65. It became clear during analysis that the computational
tools are quite handy, but are slow for large problems when the
non-parametric piece is multi-dimensional. We plan to address
this by trying to improve some algorithms, and by obtaining
access to a supercomputer for larger analyses.
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Figure Captions

1. Non-parametric curve 7y for full semi-parametric model: (a)
age model, (b) income4 model.

Yandell & Green

2. Leverage values for age model.

3. Standardized CV deviance residuals T(i)» with o=1:(a)
age model, (b) income4 model.

4. Goodness-of-fit sensitivity: (a) age model, (b) incomed
model.
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Table 1. Data Description and Score Statistics

score for model

namc range description age incomed
phone 0,1 1=houschold has phone
income  .145-70  in thousands of dollars 119.96 -
age 17-90 in years (household head) - 67.33
educ 0-20 education in years 57.36 70.85

| black 0,1 I=black, O=non-black 23 R 16.58 |
nonf 0,1 1=non-family houschold 14.11 16.65
nonff 0,1 1=nonf with female head 25.74 21.23
olang 0,1 1=English is not primary 11.19 8.52
person 1-13 number in houschold 8.48 446
pchl 0-6 number of young children (2.18) 4.49
pch2 0-5 number of mid-age children (0.44) 3.95
spff 0,1 single person female family 2.89 291
. (10 variables not selected) (2.09) (2:31)

Table 2a. AGE model Parameters and SEs

educ  income4  black nonf nonff olang pchl  spff
0.236

0.023

0.199 1.71

0.024 0.23

0.208 1.60 -1.05

0.024 0.24 0.23

0.230 1.33 -1.09  -0.77

0.025 025 024 021

0.226 1.53 -105  -143 178

0.026 0.25 024 024 036

0.188 148 -1.24 -1.50 179 -0.72

0.027 0.25 025 024 036 022

0.183 1.46 -1.17  -1.71 1.90 -067  -0.31
0.028 0.25 025 025 036 022 011

0.182 1.56 -124 -164 193 068  -030 058
0.028 0.26 025 025 037 022 011 035
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