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Abstract

A set of Fortran-77 subroutines is presented for generalized cross validation calculations in
semiparametric generalized linear models. These routines build on GCVPACK (Bates et al.,
1987). We outline the penalized likelihood structure and iteratively reweighted least squares solu-
tions for these and related models. Timing tests and the structure of the routines are also

presented.

Purpose and Description

Purpose

These Fortran-77 subroutines provide tools for penalized
likelihood estimation and model checking for generalized linear
models (GLMs) in which the model has a semi-parametric form.
The routines build on GCVPACK (Bates et al., 1987) and are
designed to use the generalized cross-validation criteria (Craven
and Wahba, 1979) to determine the degree of data smoothing,
These problems include smoothed GLMs (O'Sullivan, Yandell
and Raynor, 1986), iteratively reweighted least squares (Green,
1984), and general nonlinear problems. We present some of the
problems PGLMPACK is designed for and describe the struc-
ture of the routines.

General Problem: A variety of penalized nonlinear prob-
lems can be solved by an iterative scheme in which the inner
step invoives a linear model approximation,

Yi=0;+g,i=1,--,n,

with y = (y;, - ** ,y.)" the working values, 8 = (6, - - - ,0,)T
the linearized model and € = (g;, - - ,&,)" a random vector
with zero mean and covariance W2, which is often diagonal.
(The matrix W is referred to as the working weights.) In many
situation, a semiparametric model is appropriate, such as

0, =sfa+f(x),i=1-,n, (1.1)

in which s; is a c-vector of covariates with comresponding
parameter vector o, X; is a d-vector of variates and f (o) is
some ‘‘smooth’’ function. Smoothness can be enforced by a
*‘roughness penalty’’, J(f), with a common choice being the
integrated squared mth derivative (cf. Bates et al., 1987). The

solution to such a penalized linear model minimizes
% W (y-6)l12+AJ(f) (1.2)

for some fixed A, leading to a solution of the linear model as &
= WIA\)Wy, with A(A) the ‘‘hat”” matrix. One can then
iterate on the nonlinear problem to convergence.

The choice of the tuning constant A has been a subject of
considerable discussion (Rice, 1984; Hirdle and Marron, 1985
a,b). We limit discussion to choices based on minimizing ihe
generalized cross validation (GCV) criterion (Craven and
Wahba, 1979)

n la-ao)wyll?
[or @-AQ)P
However, our development could be easily modified for any
data-driven criterion based on A(X). What we propose to do is
to iterate on both 6 and A to find the A which minimizes (1.3)
with © minimizing (1.2). It is not known whether such a pro-
cedure will converge, but we conjecture that, if the GCV minim-
izer is bounded away from 0 and e and the nonlinear problem is

suitably convex, then it does converge.

V)= 1.3

If the penalty is chosen so that the estimate of f is a
member of a reproducing kernel Hilbert space then the penaity,
and hence (1.2), can be expressed in a quadratic form
(Aronszajn, 1950). Such a space can be partitioned into a
“‘smooth’’ space which is defined by the penalty, and a *‘null’’
space which is annihilated by the penalty. The semiparametric
model (1.1) can be written in matrix form as

0=Sa+Tp+K3d ,

with S the n Xc¢ covariate matrix with rows s, T an n x¢
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matrix whose columns span the null space, and K an n xk
matrix spanning the smooth space. If J penalizes the integrated
squared mth derivative, then the ith column of T contains the
low order polynomials in x; of total order at most m —1 and
the ijth entry of K is proportional to Ilx; —x; 1P2% (o
Bates er al., 1987).

Let Ky be the k xk matrix corresponding to the qua-
dratic penalty for J and let Ty be the k Xt matrix spanning
the null space. Typically Ky and Ty are either derived from
the unique design points or from a set of user-supplied basis
nodes (see Appendix 2 of Bates et al. (1987)). The objective
function (1.2) can be expressed as

2 IW(y-Sa-TB-K8) 1>+ A6TKy5  (14)
subject to T/8=0. We propose computational solutions when
matrices and working vectors in (1.4) may depend on the unk-
nown parameters. Some problems of interest include: (a) semi-
parametric generalized linear models, in which the matrices S,
T, K and K are constant while the working values W and y
may change with each iteration; (b) iteratively reweighied least
squares, in which only Ky remains constant; and (c) general
nonlinear problems (remote sensing, for example), in which all
matrices may change with each iteration.

One would like to decompose any constant matrices
exactly once and to keep decompositions of the changing
matrices as cheap as possible. The method proposed here com-
bines the advantages of the singular value decomposition (SVD)
(Dongarra et al., 1979, chapter 10) in locating the GCV choice
of A with Cholesky decompositions (CDs) (Dongarra et al.,
1979, chapter 8) which are relatively cheap once A is fixed.
While the decompositions suggesied are not new, the combina-
tion of approaches appears to be an unexplored area. The basic
sirategy is as follows:

(1) choose an initial guess of A, e.g., A=o0

(2) find estimates of (B, @, 8) by iteration using CDs;
(3) linearize the problem based on the iterated solution;
(4) use SVD to diagonalize A()):

(5) choose new A using GCV or another method;

(6) interate through (2)—(5) until convergence.

Convergence criteria can include absolute or relative conver-
gence of the regularization functional and/or the parameter esti-
mates, and absolute convergence of log(nA). The number of
iterations in (2) may be restricted, leading to rough estimates
which are fed into (3).

We do not assume any special structure to the design or
the matrices, except that we suppose that W is of full rank, sym-
metric and computationally invertible. In many cases, W is
actually diagonal, but this will not be explicitly used in the
linear algebra. The algorithms below are extensions of Bates et

al. (1987), building on their Fortran77 package, GCVPACK.

Semiparametric Generalized Linear Models: Semi-
parametric generalized linear model parameter estimation can
be formulated as the problem of minimizing, for fixed A,

§2(0) =—2L(8) + AJ () . @.1)

in which @ is of the form (1.1), L(0) is the log likelihood and
J is the smoothing penalty (see O’Sullivan, Yandell and Raynor,
1986; Green and Yandell, 1985). If L (0) is suitably convex and
J(9) has a quadratic form, then §(0) has a unique minimum for
each A. These conditions appear to hold for many generalized
linear models.

The log likelihood can be written in an iterative form
using the score vecior w, the working-weights W and the
working-values y,

: [a_L_,
eﬂ

20
2

weg| - 2L
260

]e. s
=0°+WZn

based on ©° from the previous iteration. Note that for ihe
independent normal model, W' is a diagonal matrix of the stan-
dard deviations and y is the vector of observed responses. The
log likelihood is approximated by a quadratic based on a iwo-
term Taylor series expansion (¢f. Yandell and Hogg, 1987),

L(®)~L©%)+% I Wlall*~1 l W(y-0)ll*

This allows one to locally approximate the penalized likelihood
by (1.2). It is well known (Green, 1984) that under regularity
conditions the iteratively reweighted least squares solution
based on (1.2) is the same as the maximizer of (2.1).

We first decompose the constant matrices. Locating the
unique design points Ty and the corresponding unique covari-
ates 8,y (if any) we form a QR decomposition (Dongarra et al.,
1979, chapter 9)

2.2)

[TU:S”;]=FG=[F12F2] ‘=F1(-}1 .

From this we construct the (unweighted) design

X =[T:S:KF,] (2.3)
and penalty
0 0
= [o nguiz] (=9)

We decompose I using a pivoted Cholesky followed by a QR
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decomposition,
E'ZE=L'L and LT=QR=QR, , 2.5
and construct
R;T
Z=(Z,:Z,]=XEQ| , -11] : (2.6)

Note that F7Ky F, is of rank ¢ <k —¢,and LT, Q;, R; and

Z, all have ¢q columns. The original parameters are
transformed to
a | =EQ [ ] (2.7)

with ¥ of length ¢ and ® of length ¢ +¢ . The objective func-
tion becomes

% IW( -Z0-Zep) 12+ My . 2.8)

At this point, we have done all the “‘one-time’* decompo-
sitions. The following steps must be redone each time W and y
change. We form a QR decomposition of

WZQ= FG= FlGl .

.

with J; being (r +c)xqg and J; being (n —t—c)xq . This
leads to the final form of the objective function,

and create

J

3 -[o

FT
F‘T} Wz, ,

% | FfWy - Go—Jyyll >+
1 ’ 29)
2 IFTWy-Jyll "+ vy ,
in which the first term can be made zero by solving for ®, with
any given ¥,
Glm = F;rWy—Jﬁ S (2,10)

The latter two terms of (2.9) comprise a ridge regression
(Golub, Heath, and Wahba, 1979), with the estimate of 7y found
by solving

My=JFiWy , (2.11)
where

M=JJ,+nAl .

The *‘hat’* matrix can be formally written as

(2.12)

. I 0 -
AW =¥ 0 JzM-IJg
Naturally, one would iterate to new working-values and
working-weights using (2.2) and repeat the minimization of the
objective function (2.8). At convergence, one can obtain the
estimates of the original parameters via (2.7).

Singular Value or Cholesky Decomposition?: One may
approach the solution of (2.11) for y and the hat matrix (2.12) in
different ways, depending on whether one wishes to select a
new A or whether one wishes to leave A fixed. One way to auto-
mate choice of a new A is based on GCV for the linearized
problem (2.9). We can diagonalize A(A) with a singular value
decomposition (SVD) to simplify the search (Golub, Heath, and
Wahba, 1979). Decompose

J,=UDVT ,

where D is diagonal of size a = min(g,n—t—c) and U and V
are orthogonal of sizes (n —t —c)xa and a xgq , respectively.
The parameter estimates are

7 ¥=V(D2+n Al 'DUTFI Wy ,
with @ determined by (2.10). The hat matrix is diagonalized as
I 0
A= F[o UD’(D2+n AU

These leads to a rational polynomial representation of the GCV
criterion (1.3), which can easily by minimized by a golden sec-
tion search, as in GCVPACK.

If instead A is fixed, one can take the cheaper approach of
a Cholesky decomposition (CD) of

M=CTC ,
leading to the estimate of y by solving
C'Cy=JJFIWy .

| FT

The hat matrix becomes
A ; , FT 213
AM=F|, | Romlogn £ L (2.13)
Diagnostics: The diagonal elements of the hat matrix have

been used for diagnostics in GLMs (Pregibon, 1981) as well as
in smoothing spline models (Eubank 1984, 1985). Recently
they have been extended to semiparametric GLMs (Yandell and
Green, 1986). The diagonal elements of (2.12) can be computed
formally as

(A} = I FTe; 112+ IM23TF e, I

in which e; is the n-vector with a 1 in the i -th position and 0’s
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elsewhere. For the SVD approach this is simply
(A} = 1FTe, 12+ 1D +n AD)*UTFTe, I,
and for the Cholesky approach (¢f. O’Sullivan (1985)),
Ay = IFTe; 11>+ 1 C-T3FFTe, 12 .

The trace of A(A) can be quickly computed if one is not
interested in the diagonal entries by noting that

tr(AA) =t+c+ir(JFIM D) =g+t+c—nhrM™) .
For the SVD approach (see Bates et al. (1987)) this is

tT(A(l)) =t+c+ id,-zl(d;2+n l)
i=1

=a+t+c— f‘,(1+d,.2/(n ANEE .

i=1
For the CD approach we have
r(AM))=q +t +c —nkr (CICT)
q
=g+t+c-nA\3 IICTe; I,
i=l -
in which e; here is of length g.

Covariance matrices can be computed by noting that
COV (y)=W2. Considering first the linear model estimates of
(1.1), we find from (2.12) that

cov ()= W“F[: M J;levr‘ 121.] F'w! |
Hence, the variances are
VAR (0;) = I FTW e, 12+ | LM JTFTW e, 1% .
For the SVD approach, this becomes
VAR (9,) = IFTW-le; 1>+ IDX(D?+ n AL 'UTFFWle, 1% .
Noting that
MIJJILM =M1-nAM2 (3.1)
the variances under the Cholesky approach can be written as
VAR (6;) = IFTW e, 12 + I CTIFFFW e, 112
—nAllC IR W le, 11 .
The covariance among the coefficients can be derived,
using (2.7), (2.10) and (2.11) as

B
CovV| a

=EQ,G{'G{"QJE" +
F1o

R;T
-GlJ

R;T

M3 M -G

EQ

T
] QTET .
1

1

In many situations we may be only interested in COV (o).
Further, if the penalty X is of the proper rank, then (2.7) essen-
tially permutes and rotates the coefficients & and B into @. Let
& = G;"QJE"e,,;,i=1,---,c, be the transformed index for
o; . For the SVD approach,

VAR (o) = 11§ 11+ I D2+ A1 VT3 TG, 112
For the Cholesky approach, using (3.1),

VAR (o) = I1&; I1*+ 1 CT37&, 12 = nAll CLCTJ T8, 112

Tests: One may test parameters using the covariance matrix
given above. One can perform stepwise tests in nested semi-
parametric GLMs using score tests which are computationally
more appealing than tests based on deviances (Pregibon, 1982,
Yandell and Green, 1986). One can also test whether the [ is
parametric using analogues to recent resulis of Cox et al. (1987).

. Consider iesting a full model
6 =sfa+§ a+f (x;)
against the reduced model
8, =sTa+f(x;) .

In other words, one tesis whether the 7 -vector a=0. The score
statistic is

|

The score test for @ is
T = u"S(STHS)'§™a
= y"HS(STHS)'S"Hy ,
with § the n xr matrix with rows § . This test is conjectured
to have approximately a % distribution with » degrees of free-

dom when a=0. For the SVD approach define the g xr
marix

a—L] =WXy-0)= WI-A)Wy
20 | 5

= WF,(I-J,MJ])F]Wy =Hy .

(3.2)

B = (I+D?%/ (nA)™“UTFIWS
and transformed working values
§=@+D%/ (n ) UTF; Wy .

Form the QR decomposition of B = QR = Q,R,. The score test
(3.2) can then be writien as
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T =§B®B™B)'B"y= IQyIl”.
For the CD approach,
H=WF,I-J,C'CTJ)FTW .
Forming the Cholesky decomposition of
STHS=L"L ,
the score test (3.2) becomes
§ = ILT§THy II* .

Note that when r =1, calculations for both the SVD and the CD
approaches simplify greatly, obviating the need for the extra
decomposition in either case.

Cox and Koh (1986) proposed a test for f parametric in
the simple spline model, which was later extended to partial and
generalized spline models by Cox et al. (1987). One can readily
show that the nonlinear analogue of that test is

T = |DUTFIwWy 2= | JTFTWy %

This can be easily computed after convergence is reached. In
fact, the computation overlap with some of those needed for the
score test, which can lead to some time savings. Unfortunately,
the distribution of T is a weighted sum of % statistics which
has no closed form (Cox and Koh, 1986).

Other Nonlinear Models: Iteratively reweighted least
squares (IRLS) models differ from semiparametric GLMs in that
only the penalty matrix remains fixed (Green, 1984). The likeli-
hood parameter © can be locally linearized, but the S, T, and K
matrices are no longer fixed. For instance, with a penalized
likelihood of the form (2.1),

oL dL oL

Ja e

which may depend on the unknown parameters. We still only
need form and decompose I as in (2.4) and (2.5) exactly once.
However, the (unweighted) design (2.3) may change with each
iteration. Hence, the remaining computations need to be done at
each iteration. One could proceed in the same manner as for the
generalized linear models, but reconstructing X, and hence Z
and J, each time.

S=

General nonlinear problems could proceed in the same
manner as for IRLS, except that Ky changes each time. Thus
most computations need to be redone. It may be possible for
some nonlinear problems to reparameterize them as SGLM or
IRLS problems to eliminate this difficulty.

Description

The package has one main driver, dpgim, for penalized
general linear models. The subroutine dpgim calls dmksx to

make the penalty £ and the design matrix X using GCVPACK
routines dmaket, dmakek and dctsx. The penalty £ is decom-
posed by a call to the GCVPACK routine dsgdc. Then the
matrix Z is created by the GCVPACK routine dertz.

The routine dnrfs handles all computations for the itera-
tions. The model is initialized by a call to dmodel, which is one
of dbin, dpois or dnorm, depending on the model selected: bino-
mial, poisson or normal. This routine handles evaluation of the
likelihood and updating of working-values. The algorithms are
set up for a diagonal W matrix, and would have to be slightly
modified for more general working-weights. At each iteration
for either the CD or the SVD approach, dmodel is called to
update working values, and dcheck is called at the end to check
the convergence criteria. For the SVD approach, the GCVPACK
routines dzdc and dgcv are called to decompose Z and to locate
anew A by GCV. For the CD approach, Z is decomposed in
the routine dchrr.

Once convergence is established, dnrfs computes the
predictive MSE (if requested) and back-transforms the predicted
values to the original units. It computes the diagonal of the hat
matrix (if requested) by dcdiag for the CD approach or by the
GCVPACK routine ddiag for the SVD approach. The variances
of the parameter estimates (if requested) are computed in dvar
for both the SVD and the CD approaches. The test statistic for
parametric f is then computed by dnrfs. If score tests are
requested, then dsvst or dchst computes the overall test of a.=0,
along with single tests for for each of the r elements of .
Once dnrfs retumns, dpglm does some final cleanup using LIN-
PACK routines.

The user can control whether A is to be considered fixed
or to be automatically chosen, how many CD iterations are done
each loop, and how many over CD and SVD iterations are per-
formed.

Related Algorithms

The numerical linear algebra in our routines is performed
using the LINPACK (Dongarra et al., 1979) routines. The linear
algebra for generalized cross validation is performed using
GCVPACK (Bates et al., 1987). The introductory comments of
each PGLMPACK routine list which GCVPACK, LINPACK
and BLAS (Basic Linear Algebra Subroutines) routines are
called directly or indirectly. There is one machine-dependent
constant, the relative machine precision, which is used in these
routines to determine error conditions caused by ill-
conditioning, but that constant is computed each time it is
needed.

The present work generalizes GCVPACK algorithms for
linear models of Bates et al. (1987) and references therein, It
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would also be possible to take advantage of block diagonal
forms (Yandell, 1987) to realize further savings of time and
storage space.

O’Sullivan, Yandell and Raynor (1986) developed algo-
rithms for smooth generalized linear models based on the Chole-
sky decomposition. Green (1985) and Green and Yandell
(1985) presented algorithms for penalized likelihood schemes
which include generalized linear models and other iteratively
reweighted least squares methods. Green and Yandell (1985)
present a one-dimensional algorithm based on Reinsch (1967)
and a general algorithm based on the Cholesky decomposition.
See also O’Sullivan (1985). Yandell (1985) developed an ear-
lier version of the present multidimensional algorithms, Hastie
and Tibshirani (1986) and Buja, Hastie, and Tibshirani (1987)
developed algorithms for generalized additive models using the
““backfitting algorithm’’ pioneered by Friedman and Stuetzle
(1981).

If one follows Elden (1984) to stop the singular value
decomposition after the bidiagonalization, considerable time can
be saved since the effort to diagonalize is magnified by the
number of iterations. Earlier work on GCVPACK (Bates et al.,
1987) indicated that half of the singular value decomposition
time may be spent on bidiagonalization. Of course, once con-
vergence is reached, one could complete the diagonalization,
doing this only once, to easily derive the diagonal of the *‘hat’’
matrix. Such a savings in computation would further reduce the
advantage of iterating via Cholesky with fixed A (see Test
Resulis section).

Test Results

The package and drivers have been tested for internal
consistency and for accuracy againsi other known algorithms.
Here we present some timing results to show that the methods
are feasible for relatively large data sets and to offer insight into
which portions of the code should be improved, if possible.

All timing runs were performed on a Vax-11/750 com-
puter with a floating point accelerator and running the 4.2 BSD
UNIX™ operating system. All timing was performed using
GCVPACK with the standard BLAS of LINPACK (Dongarra et
al., 1979).

We focus our investigations upon the Poisson and bino-
mial special cases of the semi-parametric generalized linear
model as these are potentially of wide interest and easy to for-
mulate. We allowed up to ¢ initial iterations of the Cholesky
decomposition (CD) for A= (perfectly smooth case), and up to
¢ CDs following each SVD, where ¢ was 1, 2, or 10. No case

UNIX is a trademark of AT&T Bell Laboratories

required more than 7 CD following an SVD, or more than 7
SVD overall.

We simulated data which we thought might be ‘‘cumber-
some’’ for the numerical algorithms. Simulations were con-
ducted for n =50 and 100. The simulations were Poisson with a
normal shaped curve of 6 = log(mean value), with peak height
of between 6=1.5 and 20. Binomial simulations used a similar
normal shaped curve for 6 = logit(mean value), with peak height
of between 0=Ilogit(.05) and logit(.3) for n =50 and between.
6=1ogit(.005) and logit(.3) for n =100.

The simulations showed that when the “‘signal’’ is small
relative to the ‘“‘noise’’, the CDs seem to stabilize the minimiza-
tion problem, reducing the number of SVDs required and cutting
the run time. Table 1(a) present the combined CD and SVD run
times, while Table 1(c) present the numbers of SVDs and CDs.
As the height of the Poisson peak rises, the CD iterations have a
reduced impact on convergence. However, note that on several
occassions iteration with only one CD increased the number of
SVDs required. Allowing more than 2 CD steps only seemed io
increase the overall run time; the number of SVDs was reduced
in only a few instances. In addition, a few simulations, not
shown here, converged when up to 2 CDs per SVD were
allowed, but did not converge when 0 or up to 10 were allowed.
Similar statements can be made about the binomial simulations
(Table 2).

Since we know that the estimates converge for fixed 2
(O’Sullivan, Yandell, and Raynor, Jr., 1986), a few iterations for
fixed A may guard against nonlinearity in the penalized likeli-
hood. It is not known at this time what conditions are required
on the penalized likelihood, as a function of A, to insure convey-
gence in the SVD-only approach.
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