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Abstract

We use a two-dimensional Fourier transform to diagonalize the covariance of a spatial pro-
cess. Given a finite two-dimensional lattice, the Fourier matrix exactly diagonalizes the covari-
ance when a neighborhood structure on a torus is used. When the boundary neighborhood struc-
ture is considered, the Fourier matrix approximately diagonalizes the covariance. The approxima-
tion error vanishes at a rate of 1/(width of lattice). This notion of diagonalization can then be
extended to higher dimension.

Keywords: circulant matrix, Fourier matrix, Kronecker product, absolute summability, simultane-
ous autoregressive, conditional autoregressive.

1. Introduction

The use of Fourier matrices to diagonalize the general covariance matrix of a time series has been docu-
mented in Fuller (1976), but a similar result has not been obtained for spatial series. The idea of two dimensional
spectral analysis was considered in CLiff and Ord (1981), Ripley (1981), Priestley (1984), and others. This Fourier
transform (covariance diagonalization) of lattice data yields an independent set of periodograms. The Fourier
matrix which performs the transformation comes from a eigenvalue-eigenvector decomposition of a circulant
matrix. In practice, the assumption of a circular lattice (torus) is sometimes questionable despite the fact that a torus
lattice has nice Markovian properties, (cf. Moran, 1973a,b). Our goal here is to establish the result that the discrete
Fourier transform on a circular (torus) lattice provides a close approximation to the one on a non-cirular (non-torus)
lattice.

The motivation of this work comes from three sources. First, the diagonalization of the covariance of a simul-
taneous autoregressive process on a finite torus raises the question of how to diagonalize a covariance not from a
torus neighborhood structure. Secondly, the Fourier transform on a non-circular lattice raises also the question of
independence among the periodograms. The answer to these two problems for time series can be found in Fuller
(1976, chapter 4). The last question we wish to address is how to extend this idea to higher dimensions.

This paper uses circulant matrices and Kronecker products as the building blocks to answer the above ques-
tions. In the next section, the basic definitions and notations are laid out. In section four, the two-dimensional
neighborhood matrices are defined. The third and the fifth sections study the diagonalization in one- and two-
dimensional lattices, respectively. In section six, extension to higher dimensions is considered. The last section
discusses some examples and applications of this work,

2. Notation for the Building Blocks
Let us define the following nxn matrices:

0L 2.1
B,,:[OO } 2.1)



01X,

1
=10 } =B,+B{* T 2:2)

Note that IT, is a circulant matrix as defined in Davis (1979). It has the following eigenvalue-eigenvector decompo-
sition:

II, =PA,P" and II,T=PA,"P" (2.3)
where A, is diagonal and
(Pl = =-expG2Zjk) |, (Auhs = expGEEk) , (An Jus = exp(—i2Ek)
el n Pyl ', ERERE i

J4=0,1.2, - - - n—1 (* denote conjugate transpose). Let us introduce the matrix functionals J and F,

I, #.x=0
Jx.n)=< B if x>0 2.4
BT i x <0
and
Eoocife'=10 _
Fx.n)=4 II7 if x>0 . (2.5)
N2 if 2 <0

Note some of the properties and relationships of these matrices:

B’=0, =1, , and 2.6)

[0 Taay . :
n,f,:[lj 0 } =B +B" /T for j<n .

Therefore, F in (2.5) can be written as

{ JOn) ifx=0
Fxn)=<Jxn)+Jx-nn) if x>0 Q.7
Jx.n)+Jn-x,n) if x <0

3. One Dimensional Process

Suppose that we have a sample of n observations from a stationary time series { ¥, }. We can express the
covariance matrix I" of these n observations in terms of (2.1),

I'=v0)Iy + EW)(B,{ +BIT), where Y(j)=Cov(¥,Y,;)=Cov(¥,Y,,). (3.1)
j=1

To approximately diagonalize this covariance, one uses the Fourier matrix P in (2.3). In fact, the Fourier matrix

diagonalizes IT, in (2.2) exactly. That is, P diagonalizes the circulant counterpart of I". Let us define this circular
covariance matrix I'; as

m . s
Ty = Oy + 30T + 117 (3.2)
i=1 :
where (.) is as in (3.1) and m=[n /2], with [x] being the integer part of x.
Fuller (1976) showed in Theorem 4.2.1 that with stationarity on ¥, and absolute summability on y(.),
‘ IP*(C,-DPIl -0 as n - (3.3)
for Il.1l being the matrix norm and P, " and I, as defined in (2.3), (3.1) and (3.2). We will sketch the proof by
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using the building blocks defined in the previous section.
To see that P approximately diagonalizes T, let us assume n is odd. Then
L,-T'= Y [) - vn=)IBS + BAT), (3.4)
j=1 :
and
2n ;
G )

T . i
=, exp(—i—j) if k#l
" e 2 k-1) 2

{P*BIIP)y =
-fexp (—i% B ke
LetP;" denote the [ th row of P* and let P, denote the k th column of P. Since
IP,"(T,-D)P, | < IP," ([P, | forall/, (3.5)
it suffices to show that
IP." (T,-DP, -0 as n — coforallk .

The term on the right of (3.5) can be written as

| S 0~ - N cos (ZE k)1 < 319G yin-j)1 2L 36)
j=l n n j=1 n
e e B
<Y = | — |
F2 i+ T g

and the first term on the right goes to zero because of the Kronecker Lemma (see Fuller (1976, p.138) for details of
this lemma). The second term goes to zero because of the absolute summability of Y(.).

When n is even, replace m in the equation (3.4) byAm——l, and the convergence to zero in (3.6) still holds.
Therefore, the P matrix approximately diagonalizes the covariance I in (3.1) if the sample is large.

Remark. The one dimensional bilateral scheme ( two directional correlation ) can be represented by a one dimen-
sional unilateral scheme (Whittle, 1954). Hence, the bilateral symmetric scheme in one-dimension has this approxi-
mate diagonalization of the covariance. The only change required for an asymmetric process would be the ()
function. For example, one can define a bilateral scheme with different covariances in different directions as:

n=1

T=y0)+ Y 1()BI +v(j)B]T,
J=1

where Y(0) = Var (Y,), 1(j) = Cov (¥, ,Y,+;) and ¥,(j) = Cov (¥, +1-j). The same result of (3.3) can be shown easily
because the proof is based on the matrix structure, and this I" essentially has the same structure as before. What is
needed here is the absolute summability on both y; and 7,.

4. Two Dimensional Neighborhood Structure

Before we define the two-dimensional neighborhood matrices, let us establish a modular indexing system.
Suppose that we have an 7Xc two-dimensional lattice. Let N =rc. We string the lattice out by rows. That is,

J=ujc +v; with u;=0,1,---r-1, v;=0,1,---¢-1, and j=0,1,2--- (r=1)(c-1). 4.1y

We will use this indexing scheme throughout this paper. The following matrices are therefore NxN. Let us define
the circular (torus) neighborhood matrices



W{=1, ® QI +T{")=F0.r) ®F(.c HF(-j.c)) , (4.2)
W =11+ T1{T) ® I, = (F(j r H+F(=j 7)) ®F0,c) ,

W{R =11/ @ 11h + (1T @ ¥ = (F(j,r) @F(k c )+HF(~jr) @F(-k,c)) ,
and
W{H =11/ @ TN + (T @ T4 = (F(j,r) @ F(—k . ))+(F(~j 7) ®F(kc)) .

W, W, W3, W, represent the horizontal, vertical, and the two diagonal neighborhoods, respectively. Figure A illus-
trates the idea. Let us use M to denote the non-circular neighborhood matrices:

MP=1, ® B/+B/") , M{’=B{+B{H ® I , 43)

M{“=®B/ © B)+®B{" ® BN , and MFP =B/ @ BT+ (B/" ® B)) .
Note that the J notations in (2.4) can be used as well.
The orthogonal matrix Py that diagonalizes the W’s is the Kronecker product of the matrices that diagonalize
the IT’s. That is,

1 o) 2 '
Py=P, ®P. and (Py)j=—expli(ZTuu+=vm), @4

where u;,uy,v;,v, are the indices of (4.1). Hence,
Py (IT/ @TI)Py = (P, @ P, )(II{ BIIA)(P; ®P;)

= (P,II/P}) ® (P, II*P))

=A/®A,

where j<m, and k<m, with m,=[r/2] and m,=[c/2]. A, and A, are A, defined in (2.3) with n replaced by r and ¢
respectively.

?

One of the most common nearest-neighborhood matrices for a torus is the root case, i.e.

W=1I, @@ +I1,7) + (I, +I1,T) @1, = W+wiV |
which is diagonalized by Py,

PyWPy=Ay=I, @(A,4+A. " + (A, +A,") I,
with

2n 2n

{AnI e =2[cos (Tu") + cos (-E—v,,)] :
There is an exact diagonalization of the non-circular counterpart of W. Let us denote the non-circular first step
neigborhood matrix as M,

M=I ®®B.+B))+ B,+B)) I, = MV+M4V .

This is the one step rook case neighborhood matrix with unbalanced weights on the boundary of the lattice. Since
there is an exact diagonalization of B,+B,T (Conte and deBoor, 1980, p.206),

Q. ¥, Q7 = (B, +B
where the orthogonal matrix Q, and the diagonal matrix ¥, are defined as
{Qn}jk=(

b4
(n+1)

n+l )_112 ; ']

> szn((n+1)jk) and (¥, u =2cos(

k) jk=12---n,

4=



the exact diagonalization of M arises from
M=I, ®(Q.¥.Q)+Q,¥,Q") ®L

=(Q, ®Q)1, ®¥)(Q, ®Q) +(Q, ®Q,)(¥, OL)Q, ®Q.)"

=(Q, ®Q.)1, ®Y.+¥, ®L)Q, ®Q,)’ = Q¥Q".
Note that there is no matrix Q that can diagonalize B+B;T for all 1<j<n. Therefore, we need to consider approxi-
mate diagonalization.
5. Approximate Diagonalization of Covariance in Two Dimension

In Whittle’s (1954) terminology, we define a two dimensional bilateral scheme as follows. Suppose that we
have an rxc rectangular lattice with observations (Y,,} r=0,1,--r-1and s=0,1, - - c—1 . We can define the
covariance I" in terms of the B’s from (2.1),

c=1 , 5
I=y0.0Iy + Y [v(,0)A. @ B))+¥-j,0A. ® B/N)] (5.1)

j=1

+§[K0J)(Bi ® L) +Y0,~)B{T ® 1)

j=1

r-1 e-1

+3 T vk.j)B! @ BY+y(—k,~j)BIT © BET)

J=1 k=1

+ Yk~ )BT ® B +¥(—k.,j)B! ® BT,
where Y(k,j) = Cov (¥, s Yk s4j) -

The two dimensional Fourier matrix Py is defined in (4.4). It diagonalizes the circular covariance matrix T,
which is defined in terms of IT’s from (2.2),

T, =Y00ly + X [Y( .01, ® /) +¥(-j 0)d, ® {7 52)

j=

+ S0 ® L)+ Y0~/ @ 1,)]
j=1

m m
-’ .

+ 3 ¥ [k )AL @ I + W=k —j)ALT © 11T
j=lk=1

+ 9k ~)ATT @ 1) + Yk, )T ® T1ET)].
The diagonalization of (5.2) is

Py Py = A =¥(0,0)Iy + E'['YU 0@, @ A)+v-j.0 & AL)] (5.3)
Jj=1

+ S0/ @ L) +¥0~i)Af" @ L)

j=

.5.



+ 3 Sk A ® Ak AT ® AF)

J=lk=1
+ Yk~ )AL ® ADHYH=k,j)A ® AFY).

Suppose that the covariance is radially symmetric. That is
Yk .j) =Y~k ,~j) and Y(k —j) =¥(~k,j) for j=0,1,-+-r—1and k=0,1,---c-1.

Let us define
WG =G0 » BG)=0) . Vak.j)="k.j) and Ya(k.j)="¥k.j). (5.4)
Then (5.1) and (5.2) can be written as
=1 : r—1 -
C=y0.0Iy + Tn(MP + Ty My’ (5.5)
j=1 j=1
r—le-1 ! N
+ 3 3 [vak MY P + y,(k j IMEH
j=1k=1
T, =70.0)ly + S H()WE + Sy Wy (5.6)
j=1 j=1
+ 33 sk JWEE 4y, )WEH]
j=lk=1

An example of T" in (5.5) is laid out in Figure B . With this assumption of radial symmetry, the diagonal matrix A
becomes:

A=Y0,0Iy + iﬁ(i )X ® (AL +A)+ Z",Tz(i XAl +Af) ® 1) (5.7
j=l =1 "

m m
r "

2 E{wc DAL ® AHAS @ ANk HIAS © AbHA! ® A:“‘)]}.

j=1k=1

Let us now show the asymptotic diagonalization of I" defined in (5.5) by Py defined in (4.4).

Theorem 1 Suppose that we have a rectangular rxc lattice from a stationary process and suppose that
Yk .j )=~k ~j) for k,j=0,£1£2, - - - . Suppose that y is absolutely summable with respect to both indices,

33 k) =g <.
j=lk=1

Then with Py , ', I'; and A being defined in (4.4), (5.5), (5.6) and (5.7) respectively,
Py (C,—D)Py Il -0

asmin(r.,c) — e and max (r ,c Ymin (r c) — constant < eo, _

Remark. Note that the lattice goes to an infinite field in a fairly even way. The rows and columns go to infinity at
the same rate.



Proof. Without loss of generality, let us assume both 7 and ¢ are odd. The proof is similar for either one or both
of r and ¢ even.

” oe-l )
L, -T= In()W{ - Ty( ML

j=1 =l

L ! )
+ }lezU)Wé" - ¥ 1.3 )M§)
e

Jj=1

m m . : r=le-1 ] .
+ 3 3 [k WY + ke, IWER = T 3 [va(k ) )M P + y,(k ,j MY A
j=1k=1 j=lk=1

= S MG) - Y= IMED + 3 ¥a(7) = Yalr— )IME)

=1 j=1

mom g4 . .
kg 703 Z{ 0¥ (k)= (e =~k = YIM{T 470 & [y (k)= (ke o7 = )IMLST 00

j=lk=11=3

+ k) Vile—k.j )]MIU'C_H} .

Note that the diagonal elements of Py (I, ~I)Py are larger than the off-diagonal elements on the same row. That is
1P, (C,-DPg| < 1P, (T,-DP,| for p#§
Thus it suffices to show that IP_," (Ts-D)Py1—0asr and ¢ — o in the sense stated in the theorem.

IP, TP, I

|m
= IE[‘Yl(I)‘*‘h(C—J )]J—r:os (—mo + Z[YzU)—Yz(C ~j )]—cos (—Ju,o (5.8)
+ E E{Zcos(—;u +—kv“)x

j=1k=1

(L (vt gyt L) (vt =L e v =0

+ 2cos (—2;7-5— juuﬂzTnkvP)x

= i(c— ; I
T A ) S (T LA N SO m} |

z lvlum(c-nuz 2L gy ypatr=i) (5.9)

Jul

+ 3 53Dk 1y, oy ek

J=lk=11=3



(c—k . ; ik : .
#2208 iy e e =1 + 22 1wk,
To show the bound in (5.9) goes to zero, we need the following lemma.

Lemma 1 (Two Dimensional Kronecker Lemma). Let (g;) and {b;} be two increasing sequences of positive
numbers. Let (X;;} be a lattice sequence of non-negative real numbers, which satisfy

z ZXU =X <co 5
i=lj=1
which implies
EX‘J =Xj<°° fof aH j and ZXU =X|'_ <co for a” i .
(=1 j=1
Then
25_;—' ’X,,-m z j =0 forall j and z X,,—)O for all i
i=]f=l ar c i=19r j=

asr and ¢ — oo,

Proof of the lemma.
] i s

Let§,,. =Y ¥ X;; be the finite sums. Then
'-1j—1

EE__ EE_ (Sl.,,r Su—l = —1J+Sl—lJ—1)

f=]j=1 ar C —1;—1 a

e-1 h
= Sr.c _Sr,c—l'sr—l,c+sr-1.c—l + E -+ [Srur'_Sr—l,j"Sr J—1+Sr--1,j—l]

Jj=1 bc
r-1 g r-le-1 g
2 E -l.c :c 1+S i—1 c—l] i+ ZE_'b_ SI,J Sl,_,v—l Sl 14+Sn-1.;—1]
i=1 % i=lj=1 ar D¢
r=te=1 (g; 1—a;)(bja1=b;) S
=5 B riaanf——it g, . (5.10)
i=0j=0 Bridg.

Note that {a;} and {b;} are increasing, so both (a;,;—a;) and (b j+1—b;) are positive. Without loss of generality, let
S0,j=Si0=S00=0 and a=b=0. Since the §; ; — X asi and j go to infinity, the expression in (5.10) goes to zero as
r and ¢ go to infinity. Because the X;; are non-negative, the convergence of the marginal sums to zero follows.

a

By applying the above lemma with X ; = |¥(j k)|, it is obvious that
M

E 2L 1y iyl z L i =)

j=1 ¢ j=1
and 222[2 k(e —k )1
j=1k=1i=3

£0 to zero because of the absolute summability of y. To show that



222[2 (r- J)k

e dyne k)1 + 21 g e ym e - - 0,
Jj=lk=11=3

we examine one of these terms.

5 320 1y jymek )15 5 5 20K 1y jy 12 CE vy g i )
j=lk=1 j=lk=1

= 3 3 2 i) 12 e )1+ 2 ok 2 ey

Jj=lk=1

£ Z[_SL]‘*‘ E[ g(c-t)]""el e
=

where e, and e, are the double summations with the weights ‘]{-ﬁ- which go to zero by Lemma 1, and

8=, |"(k,j)|<eo. Applying the one-dimensional Kronecker Lemma to terms involving g, gives the zero conver-
j=1
gence result. Hence, the proof is completed for r and ¢ odd.

Note that if either one or both of 7 and ¢ is even, replace }n, or m, in (5.8) and (5.9) by m,—1 or m,—1. Then
the proof can still be carried through.
=

Corollary 1
Under the same assumptions as Theorem 1, the convergent rate is of O (1/g) with g=min (r ,c).

Proof
From the absolute summability of vy, we have

Y/ .k)l =0 (l/re)
Then let us examine the upper bound in (5.9)

zimm ~¥1(c—j)! = O (lirc) and Z“LWz(l)-‘Yz(f-J)' =0 (l/re)

;-1 Jj=1

For I=3,4,
E‘hE_l[iZi- 1% (k.j)=nlc—k,r=j)1 = E‘ig‘,‘ouh)o (/)0 (1re) = 0 (U/re)
and : :
Z‘;"E K ke p(e—k o)1 = éé(l—O(llr)}O(llc)O(IIrc) 0 (1/c)
The bound becomes

O(Ure)+0(/re) + i[ O(lir)+0Qle)+0(1/re)]
1=3

which is dominated by O (1/¢) with g=min (r ,c ).

9.



Corollary 2
Suppose that we have the same assumptions as Theorem 1, except that we do not assume radial symmetry. Then

IPy(T,—D)Py Il = O (Umin(r.c)).

Proof We can break down the proof into four parts. One for each index quadrant:(+k +j). In each quadrant, we
can use the argument in the proof of Theorem 1. Since we have only four partitions, the combined result also holds.
O

6. Extension to Three and Higher Dimension

Extending to higher dimension is not very difficult but it is laborious. Based on the building blocks (2.1),
(2.2), (2.4) and (2.5), we write down the covariance of a stationary three dimensional process. Using the same nota-
tion as before, let us define the covariance of a rx¢ x{ lattice as T,

e—1

r=1 -1
= ¥ X X Myl 0J0.c) @3z 6.1)

x=—~(r=1) y=—(c=1) z=—(l-1)
where

Yxy2)=Cov(¥; sy Yiixsayveg)and x=0,1,- - r-1;y=0,1,- - ¢-1;2z=0,1, - - - I-1.

The Fourier matrix that asymptotically diagonalizes this I" matrix is

Py=P, @P, ® P, ,N=rxcxl

with
1 . 21 2n 2n

Pyl = Wexp[: (—r'uj t= Vvt )|
where j=ujcl+vil+w; u; =0,1, - r-1,v; =0,1, - -c=1,w; =0,1, - - - I-1.
Hence, the indices j and k are determined in an analogous manner to (4.1). The circular counterpart of I, I', has
the J's in (6.1) replaced by the F’s defined in (2.5) and the summations over m,, m, and m; respectively. With the
assumption of absolute summability on 7, the result on asymptotic diagonalization can be extended to the three
dimensional case. The details are tedious but straight forward. This result can further be extended to higher dimen-
sions,

If 1y is radially symmetric
Yx.y.z)=Y(x,yz) forx,yz=0£112,---
then (6.1) can be written as

1-1
I'=v0,0,0Iy + ¥¥0,02)A, @ L. ® (B{+Bi")) (6.2)

z=1
c=1
+ 2 ¥0.y.00I, ® (B4+BT) @ L)
y=1

r-1

+ Ty 00((BM4BN @I, @ 1))
x=1

e=11-1
+ 3 TY0,y.2)I, ® (B! @B/+BT @B + v(0,y,2)I, ® (B @B{+B!T @B}
y=lz=1

-10-



r-11-1
+ ¥ T 1(x,02)(B @I, ®B/+BT @I, ®B/T) + 1(x,0-2)(B ®I, ®B;"+B*" @I, ®B))

x=lz=1

r—le-1
+ 3 T yx.y,00BF @BXH+BT BT ®I + y(x,~y,0)(B @B +B T ®BY) ®1,
x=ly=1

r=le-1i-1
+ ¥ ¥ ¥vx.y z)(B @B @B/+B;T @B @ B;")

x=ly=lz=l

+Y(x,y,~z)BF®B? ®B;+B T @ BT @ B})]

r=le=11=1
+ 3 ¥ Y x~y.z)(B ©B!T @B/+BT B! @ B;")

x=ly=lz=l
+¥(—x,y,z)BT®B @B/+B®B)T @B;T)] .

For any finite d-dimensional lattice, the above formulation of I can be extended by using the building blocks
and the J matrices. Suppose that we have a d-dimensional lattice with edge sizes ny, - -, ny. Then we define the
non-circular covariance as

n~1 n~1

= % - X YW Jodl0un) @ - @J(ang)l (6.3)

J==@m-1) j==m~1
and its circular counterpart as
L= 2 0 2 Yn Ja)FGn) @ - - @F(gng)l (6.4)
Jy=-m, J=-m,

where the J’s and the F’s are defined in (2.4) and (2.5), respectively and m;=[n;/2]. Furthermore,
YW Ja)=Cov(,, ... 4 Yt4j, - 1,+;,)- Absolute summability assumption on 7y is needed, i.e.,

oo

Y o 3 W Ja) =constant <0 .

s g
The asymptotic diagonalization of I in (6.3) can be extended to d -dimensional using the d -dimensional Kronecker
Lemma.

Lemma 2. Suppose that
2 XXy =X <00
J=l J=1

and [ajl}, s ,[aj } are d increasing sequences of positive numbers, Then

n L7 a a}-‘
2 E ——‘Xj e -0
L . a a 1’ 4
=t =T ]
; min(ny, =" ,ng)
asny, - - - g — oo in the sense that e

max(ny, - - ,ng)

Remark The proof of this lemma is a straightforward extension of the proof of Lemma 1. The basic steps are the
same but the number of partial sums involved is 2¢. From this we can deduce the asymptotic diagonalization of a
covariance of a d-dimensional lattice. Hence, the rate of convergence is of O (1/q) where g=min(n,,- - - ,ng). A
recent piece of work on asymptotic likelihood estimation in d -dimensional Gaussian lattice is given by Guyon

Ty



(1982) .

7. Examples and Applications

Let us consider the two-dimensional case. The covariance of (5.1) is quite general. It requires only stationar-
ity and diminishing autocorrelation (absolute summability). The conditional AR and the simultaneous AR processes
on the lattice are two common examples that satisfy the above theorem.

Examples

(1) Conditional AR(1) on an rxc grid with different parameters for the vertical and horizontal correlations:
EX sl all Ys )=py(¥, s1+Y; p41) + P2(Yiot Y i1 )

where p; measures the row (east-west) autocorrelation and p, measures the column (north-south) autocorrelation.
Its covariance can be expressed as

3 cos (k 0;)cos (j 6,)
W)= 41:2 '[ J 1-2p;c0s (81)-2pacos (62)

Note that Yk j) = ¥~k —j) and ¥(k,~j) =¥(~k .j) but Y(j ,0) # Y(O0./) if p;#ps.

36,30,

(2) The simultaneous AR(1) with one parameter:
Yo = p(Y; s1+Y; 1+ 1oy s+Y 1 5) + white noise
where the variance of the white noise is 6 and the autoregressive parameter is p. Its covariance is

T T cos(kB)cos(j)
k)= 4::2J; [ [ 1-2p(cos (81)+cos (6,)) 1>

Note that if r=c then ¥(j k) =y(k,j) in addition to radjal symmetry for the conditional AR model.

891392

Applications

(1) In spectral analysis of time series, the power spectra are asymptotically uncorrelated (Priestley, 1984, p.405).
The use of two-dimensional spectral analysis has been illustrated in Cliff and Ord (1981) , Ripley (1981) and
Renshaw (1984). Because the orthogonal matrix Py we use to diagonalize a circular neighborhood matrix is a
Fourier matrix, the square of each component of Z=PyY is the sample periodogram, where Y is the observation
vector. Suppose that j is the d -dimensional analogue of j in (4.1). Then Z ,-2 is the periodogram at the d -tuple fre-
quency associated with j. Therefore, the asymptotic uncorrelation among periodograms of higher dimensional lat-
tice is the consequence of our current discussion.

(2) Field trial experiments:

This asymptotic diagonalization can be used in field trial experiments to remove spatial dependency among
agricultural plots. For example, the matrix Py in (4.4) can be used to aid the estimation of parameters from model-
ling general fertility or local competition on a field. Suppose that we have

@)Y=Dt+E+€ (soil fertility trend model)
or
(ii) @-pM)Y =Dt +¢& (local competition model) .

In both cases, D represents the design matrix and t the corresponding effect. € is the white noise with variance a?

and mean zero. § is a random variable representing the general fertility effect which might have a spatial structure
depicted in V(). M is the immediate or nearest-neighborhood matrix (non-circular) where p is the autocorrelation
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parameter.
Let Z=PyY. Then

(i) Var (Z) = PyV (E)Py+0 T
and
(i) Var (Z) = o Py (I-pM)~ (I-pM) " Py .
Both covariance matrices are approximately diagonal for a large lattice.
In both cases, the use of Py to diagonalize the covariance is demonstrated in the estimation of the autocorrela-

tion parameter p. The approximate diagonalization reduces the computational task because no decomposition of an
NN matrix is required. ‘
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Figure B

An example of "

For r=4 and c¢ =5, let us write out the I" matrix defined in (5.5). Let us define

[Ty Typ Tys Tyl
BV RY RYRYN
I3 T3p I'33 Ty
Tgr Tao Tz Ty

where I';; =T'j;.

0.0 (D 1R 1B 1é]
10,00 (1) 12 NG
I'; = ¥0,0) (1) 7@2)| fori=l1,--- 4.
70,0) Y,(1)

7(0,0)|

(1) B BG) BE@ 1506
142) 12(1) 1(2) 1:3) 13(4)
L je1= [ 14B3) %2 (D) 132) v;3)| fori=1,--- 3.
T4 %3) 12) %) 15(2)
| %405) Y4 14(3) 1a(2) 1 (1)]

12 BG) B@ KG) 1O)]
Y4(3) %(2) ::3) 13(4) 15(5)
Lije2= 1@ 103) 2) %03) @) fori=12.
14(5) @ 143) %2 %33)
| 14(6) ¥4(5) 144 1a(3) 12(2)

[1:03) 1@ B6) B6) BO)
Y4(4) 12(3) 13(4) 13(5) 15(6)
Fia=|%0) %@ %3) 14 7(5)
Y4(6) 14(5) ¥4(4) %(3) 13(4)
RAGR AR AR AR JE)]




