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ABSTRACT. When coordinate measurements are subject to error, areas calculated from the
points will also be in error. Our statistical model describes polygons bounded by straight lines
between well-defined points, Error in each point must be independent and identically distrib-
uted. This article presents two statistical findings based on this model:

(1) the standard algorithm for area is an unbiased estimator of true area

(2) a formula for the variance of area based on parameters of point error.
The paper considers the nature of developments required to handle less restrictive cases.

BACKGROUND

Area calculations are a standard product
of land-related data systems, whether
manual or automated. These calculations can
be based on maps or field measurements of
position. No matter what the source of data,
there will be some amount of error in the
measurement of positions. Yet it is rare to
find area calculations with an estimate of error
attached. The phrase “» acres more or less”
commonly appears in legal descriptions, but
the amount more or less is not specified.
With the development of computer systems,
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area calculations are carried out to excru-
ciating numbers of digits, but still without a
measure of accuracy. None of the current
sophisticated software packages sold as geo-
graphic information systems temper their area
calculations with an error estimate.

This paper presents a statistical model that
permits the calculation of the variance of
areas under certain simple conditions. A few
examples will be presented. Then more
complex situations will be discussed.

Two recent publications have presented
models for error in areas derived from points.
Chrisman (1982a) developed an earlier ver-
sion of this model, but the result was unsat-
isfactory in a number of ways. In particular,
the error varied with the origin and orien-
tation of the coordinate system. Neumyvakin
and Panfilovich (1982) had a model that
depended on the coordinate system, although
they allowed an arbitrary covariance struc-
ture. Burrough (1986) reviews related liter-
ature on data quality and sources of error in
geographic information systems.




ASSUMPTIONS

Area calculations apply to regions of a sur-
face. Calculations for large regions of the
earth require consideration of geoidal cur-
vature, but many applications are well-served
by a planar projection. The focus of this paper
is restricted to planar polygons described by
strings of points connected by straight line
segments. Although some engineering draft-
ing includes circular arcs or complex curves,
many systems for digital cartography (partic-
ularly those that include advanced analytical
features like polygon overlay) accept the
restriction to straight line segments. A model
of error in a2 more complex situation involv-
ing parametric curves will not be easy to
develop since it will not be clear if the error
is in the endpoints or in the parameters.

An N-sided polygon P is described by a
sequence of points (P, P,, . . . Py). Since there
is a line between Py and Py, it is usual t
duplicate P, as Py ;. It will also be convenient
to duplicate Py as P, (See Figure 1). Each
point P, is located by a Cartesian coordinate
pair (X,,Y;). The main assumption of this paper
is that the error in the polygon is located at
the points. Our model assumes that the
measurements represented by (X,)Y;) comes
from some bivariate distribution with a mean
(x,,y.). The limitations of this assumption will
be considered at the end of the paper.

The focus of this paper is on the calcula-
tion of area. If the “true” values (x,y) were
available, the true area a could be calculated.
The common trapezoid algorithm for the area
of a polygon (A) can be algebraically simpli-
fied into Equation 1. Working with the more
usual form of this equation lead to some of
the problems in Chrisman’s (1982a) pre-
vious approach to the problem. The goal of
this paper is to determine how close A is to
a.

A=05 3 Xllhas — Y): )

Because the polygon is a closed loop, the
storage of coordinates must be circular to
permit Equation 1 to operate; Yy, = Y3, and
Y, = Yy (as explained before). This algo-
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rithm applies to simple polygons with a sin-
gle exterior ring [see definition of polygon
advanced as a national standard (Morrison
1988, 28)], but the result is easily extended
to multiple rings, whether interior or exte-
rior,

To develop a tractable model, we assume
that the error at each point is independently
and identically distributed around the local
mean. We do not need to make any further
assumption about the nature of the distri-
bution (normal, log-normal . . .). Viewed in
spatial terms, an independent, identical dis-
tribution creates an ellipse around each “true”
value (see Figure 2). Each ellipse will have
the same major and minor axis and share an
angle of orientation. Viewed as a bivariate
statistical distribution, the ellipses can be
expressed as two variances and a correlation
coefficient (Equation 2). The statistical for-
mulation is more useful for the algebraic
treatment of expected values performed
below.

var(X) =o?; var(Y)=0o% for i=1N (2)

cov(X.,Y) = p o, o,

Since the calculation of area in Equation 1
uses the X and Y axes differently, the variance
terms must be tied to these axes, not the
natural axes of the ellipse. Of course, the
resultant model must not vary if the coordi-
nate axes are rotated. This parametrization
permits the axes to be rotated while describ-
ing the same physical errors.

For the purposes of describing the model,
it is assumed that the three parameters of
Equation 2 are known. In actual practice, they
must be estimated from internal evidence,
repeated measurement or testing (for a full
discussion of these alternatives see the Pro-
posed Standard for Digital Cartographic Daia,
Morrison 1988). The design of tests based on
independent sources of higher accuracy has
been the subject of protracted discussion in
developing the American Society for Photo-
grammetry and Remote Sensing (Merchant
1983; 1987, Committee for Standards and
Specifications 1985) proposed specification
for large scale maps. The procedures sug-
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gested for performing the ASPRS test will
produce adequate information (Petersohn and
Vonderohe 1982) to provide an estimate of
the parameters of this model (variances and
correlation).

A SIMPLE MODEL FOR ERROR IN ARFA

For notational clarity, we define new random
variables that describe the deviations between
the observed coordinates and the mean for
each point.

E;=X\_Xi‘='ni=Yi‘_Yi (3)
Given the above assumptions, these two vari-
ables will have a mean of zero, and respective
variances of o, and ¢?,. Notice that adjacent
points along the boundary should not show
any particular correlation. This is a major
restriction of this model. Less restrictive forms
are considered below.

Given the assumptions and notation pre-
sented above, the measured area A can be
decomposed through algebraic steps into
Equation 4; the true area a with two error
terms.

A=a+B+C (4)
where
B=205 E € (Vivr1— Yie1) — Mi(XKiwr— %-1)

and
€ =05 E € (Miv1—Mi-1)

The first inspection of Equation 4 should
concern the first moment; does A have a as
its central tendency or expected value? Terms
B and C have an expected value of zero, given
the assumptions (specifically that € and v
have a zero expected value). Hence A is an
unbiased estimator of @ under these condi-
tions. This is a fortunate result because A is
the value normally reported. Of course,
expected value is a property of a whole dis-
tribution, not a single realization.

Bias is not the only component of accuracy
and reliability. The second moment of the
distribution (variance, though often reported
as standard deviation) is required. The vari-
ance of A can be stated as an expected value
of the variables defined above:
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var(A)=E(B*) + E(C*) +2E(BC) (5)
This last product has a zero expectation. The
other terms expand to:
E(B?) =025 3 € (Yie1 = Yiet P =07 (i =X
—2em: (Vi1 —¥io)(Xie1 —Xi-1) (6)
and
E(CY) = 025 2, €2 (w1 =Mi-1) =2 €€ MMiss (7)
Using the identities established, the
expected values of B? and C* can be rewritten
to derive the variance of A (Equation 8). This
equation is invariant to rotations of the coor-
dinates. The process of generating this equa-
tion involves algebraic substitution and dele-
tion of terms with zero expected value not
necessary to include in the paper.
o =05 N, o, (1—p%)
+ 0.25 2 [Uzg (G — %) — o (Vi+a _?"1—1)1]
—-0.5 z P Ox Oy (Vip1 = Vio ) (Xir1 —Xi-1) (8)

SAMPLE APPLICATIONS

Equation 8 can be applied when the spatial
data fits the point model, the errors are not
intercorrelated and the error parameters are
available. This section will demonstrate what
such results can show.

The preconditions used for the statistical
model (polygons formed from discrete points
and error only at the points) apply to a few
realistic applications. In particular, property

PN (also Po)

/
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X

.
L

Figure 1: A simple polygon, showing duplica-
tion of first and last point.
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parcel maps and similar features created by
human laws and institutions are often spec-
ified by specific points on straight line
boundaries. Cartographic compilation usu-
ally introduces some form of correlated error,
but some procedures for point dictionary
databases could fit this model.

To obtain the error parameters, some
accuracy tests have been performed to deter-
mine the positional error associated with
digital databases for parcel and related maps
(see for example, Crossfield and Mezera 1982,
Petersohn and Vonderohe 1982; Vonderohe
and Chrisman 1985). The tests referenced
were conducted according to a draft pro-
posed standard prepared by the American
Society of Photogrammetry (Merchant 1983),
which defined accuracy in terms of the bias
and precision (standard deviation). These
figures assist in deriving the variance of area
calculations*because the bias component of
the distribution is irrelevant to the area cal-
culation. In the more recent proposal, the
American Society for Photogrammetry and

Remote Sensing (Merchant 1987) simplified
its test to Root Mean Square Error, a figure
which mixes together the bias and precision
component. This may be proper if the goal
is determination of positional accuracy stan-
dards. However, for use in derivations like
area, the strategy should be to divulge more
information about the distribution of the test
results.

As an example, this study will report on
the Digital Line Graph (DLG ) data distributed
by the U.S. Geological Survey. Tests deter-
mined the accuracy of the PublicLand Survey
System (PLSS) section corner information
(Vonderohe and Chrisman 1985). This test
compared the location of section corners in
the DLG data with the corresponding coor-
dinates determined by a completely inde-
pendently conducted ground survey. The
survey covered the survey township of Ore-
gon, Wisconsin, which falls into two quad-
rangles (Oregon and Attica). On the Oregon
quad sheet (based on 34 matching points),
the test estimated o, = 5.44 meters and

Oy

Figure 2: Parameters of point error.
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o, = 3.46 meters; p = 0.026. The error ellipse
was nearly oriented along the easting axis of
the UTM projection. This error distribution
describes the estimated error in positions for
coordinates of other well-defined points dig-
itized from this particular 1:24,000 quadran-
gle sheet. Any extension from the specific
case to a more general one must be done
cautiously. It would be unjustified nationally,
but from the other sheets tested in Dane
County, it may apply beyond the single quad
sheet.

Equation 8 depends on the specific poly-
gons tested. This demonstration uses a square
mile section, the object tested in the Oregon
quad. A section should have a nominal area
of 2,588,881 m?. If it is cartographically defined
by four corner points, o, is 10,337 m? If it is
defined, in better correspondence with the
legal system, by section corners and quarter
corners (assumed to be mathematically set
for the purposes of the model), o, is 8979 m*.
The lower figure comes from the shorter
runs on the boundaries of the polygon. This
reduces the second term in Equation 8 much
more than the first term grows, In fact, the
second term is five orders of magnitude larger
than the first term and dominates the result
in the cases examined.

The figures determined above are rather
small, much below one percent of the area
estimate. The positional accuracies were above
one percent of the length of a section. This
seems to indicate that area measurements
are not overly sensitive to inaccuracies in
positional data. This finding must be restricted
to the types of polygon data modeled here,
namely polygons constructed with well-
defined points. More effort must be exerted
to extend this model to polygons where the
points are more arbitrary samples to indicate
the general trend of the boundary. Such data
is common in natural resource inventory and
other circumstances where boundaries are
formed by continuous curves. In these cases
there will be much more likelihood of cor-
related error between adjacent points from
the serial process of line following.
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CORRELATED ERRORS

The previous analysis depends on simplify-
ing terms due to the assumption that errors
are independent. It has to be remembered
that statistical independence differs from
causal linkage. Errors can be correlated with-
out a direct connection. In mapping, a draft-
er, or digitizer or stereoplotter operator might
have certain predictable types of error, such
as lagging behind a curve due to inertia. In
the field as well, measurements in one area
might depend on common sources of geo-
detic control or similar effects. Furthermore,
any errors that vary with different terrain
violate uniformity and create correlated errors.
The first requirement of further research is
better understanding of error distributions.
A model incorporating correlated error could
be refined in a number of different ways, but
only a few possibilitics might be required to
model actual circumstances. Neumyvakin and
Panfilovich (1982) developed their model of
error in area measurements to include auto-
correlation among all pairs of coordinates,
although the only case they consider in detail
has constant autocorrelations.

We present one type of correlated error
under simple conditions. We assume that error
is circular {o, = o,; p = 0}, and that the cor-
relation occurs between adjacent points
{var(X, X;.1) = var(Y, Yi+1) = 10?. Under
this model we assume that the number of
sides to the polygon (N) is large and that T
is small. In this case A will still be an unbiased
estimator of a, at least asymptotically over
many polygons. The variance of A is consid-
erably more complex and has not been fully
determined. This approach suggests the use
of Markov processes as the basis for further
work.

A further problem with the simple model
is that polygons do not always float indepen-
dently in the void. Most polygon maps
exhaustively partition the total study region.
The errors on a particular border contribute
to exactly two specific polygons though near
the nodes the error involves other polygons.
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Thus, although the formulas presented here
might even be correct, errors will correlate
to some extent between adjacent polygons.
A comprehensive error model must accom-
modate the topology of the map. Chrisman
(1982b) has suggested a different method to
describe errors in area calculations that tries
to deal with the effects of shared boundaries.
Perhaps further research will unify the topo-
logical approach with the more rigorous sta-
tistical foundation presented in this article.
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