
JOURNAL OF MULTIVARIATE ANALYSIS 26, 184206 (1988) 

Asymptotics of Conditional Empirical Processes 
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Using two definitions of the conditional empirical processes we obtain some 
approximations for these processes. We also prove the functional law of the iterated 
logarithm for the conditional processes. Our results say that the asymptotic 
behavior of the conditional and unconditional empirical processes are very 
similar. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

We investigate asymptotic approximations of two estimators of the 
conditional empirical process of Y given X= x, leading to a functional law 
of the iterated logarithm. Our main results show that the weak behavior of 
the conditional empirical processes at a given x is essentially the same as 
that of the empirical process, although the rates now depend on the 
bandwidth. 

We examine the kernel estimator of Nadaraya [20] and Watson [29] 
and the nearest neighbor (NN) estimator of Yang [31] and others. The 
subject of nonparametric regression was reviewed by Stone [24,25] and 
Collomb [4]. Recently Rev&z [22], Johnston [12], Liero [17], and 
Konakov and Piterbarg [ 151 developed strong approximations of residual 
mean regression functions. Mack and Silverman [18] and Cheng [2] 
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derived uniform convergence rates for kernel estimates. Stute [26, 271 
proved almost sure and weak convergence results for kernel and nearest 
neighbor estimates of the conditional empirical function. Several authors 
have recently explored robust nonparametric regression (cf. Cheng and 
Cheng [3] and Hardle [ 111). 

Let (Y, X) be a random vector in R* with continuous distribution 
function F(y,x)=P(Y<y,X<x} and marginals H(y)=P{Y<y}, 
G(x) = P(X< x>. In statistical applications one may need an estimator of 
the conditional distribution function 

m(y I x)=P(YGy I X=x}, YER, 

at a fixed point x E R. Based on the random i.i.d. sample ((Y;, Xi)};, , , the 
usual estimators for F and G are 

and 

F,(y,x)=n-‘#(l<i<n: Y,<y,X,<x} 

G,(x)=F,,(co,x)=n-‘#{l<i<n:Xi<x}. 

(Throughout this paper, g( co) = lim p(x), x + co.) 
Our first estimator for m( y 1 x) is essentially due to Nadaraya [20] and 

Watson [29]. Let K be an appropriate kernel function, a, be a sequence of 
bandwidths and define 

h,(y,x)=a,’ fin K 
--oo 

(Integrals are over R unless otherwise noted.) Standard arguments 
involving multivariate densities show that h,( y, x) is a reasonable estimate 
for 

h(y, x)=; Fty, x). 

We assume that g = G’ exists in a neighborhood of x and estimate it by 

g,(x)=h,(q ~)=a,’ f K 

The estimator 



186 HORVATH AND YANDELL 

where Z(A) is the indicator of the set A, will be referred to as a kernel-type 
estimator of m(y 1 x). 

A different estimator is proposed by Yang [31] and Stute [28,26]. Let 

G,(x) - G,(u) 
a, 

4x,(Y~ u) 

and 

I,(x) = r,( co 1 x) = a;’ i K ( Gn(x)y “(‘)) dG,(u). 
n 

The estimator 

is called a nearest-neighbor (NN) type estimator. 
The central part of this paper is the almost sure behavior of the processes 

P.0 I x1 = (~a,)1i2 bdy I x) -m,,)(y I ~1) (1.1) 

and 

where 

Y,(Y I xl = (na,)“* MY I x) - k(,)(y I xl), (1.2) 

m,n,(Y I xl = h,n)(Y, xYg,,,(x)9 

k(,,(yI x)=a;’ j K(G(X)~G(u))duF(y,u), 
” 

and g(,) and h,,, are defined analogously to g, and h,, respectively, with F, 
and G, replaced by F and G. Standard methods can give the usual rates for 
the “numerical errors” m(,, -m and kc,,-m by assuming more regularity . 
conditions on F. Thus m(,, and k,,, can be replaced by m in (1.1) and (1.2) 
and our results will remain true (cf. Lemmas 3.1 and 4.1). 

We assume that x E R is a fixed point throughout this paper. It is well 
known that fl,J y 1 x) and y,J y 1 x) have normal limits for any fixed y E R as 
n -+ co. Stute [26] proves that y,(y I x) converges weakly to a time- 
transformed Brownian bridge. The main aim of this paper is a further 
investigation of the asymptotic properties of the conditional empirical 
processes B,,(y I x) and y,J y 1 x). We obtain rates for the Gaussian 
approximations and derive functional laws of the iterated logarithm for 
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these processes. The proofs are based on the observation that /I, and yn can 
be expressed as integrals with respect to 

%(Y, x) = n”*(Mv, x) - F(Y, xl), 

t,(x) = a,( co, x) = n”2(G,(x) - G(x)), 

with a small remainder term. 
In Section 2 we list some results which will be very useful later on. 

Section 3 contains the approximation of p,, and in Section 4 we prove a 
similar result for Y,,. The functional laws of the iterated logarithm will be 
proven in Section 5. 

Throughout this paper, C in proofs stands for a generic constant whose 
value may differ from line to line. Suprema and integrals are over R unless 
otherwise stated. We can assume without loss of generality that our 
probability space (Q, A, P) is so rich that all the random variables and 
processes introduced so far or later on can be defined on it (cf. de 
Acosta [S]). 

2. PRELIMINARIES 

This section contains some approximations for a,, r, and a symmetric 
kernel based on results in the literature. The following multivariate 
approximation is due to Borisov [ 11. 

THEOREM A. We can define a sequence of Gaussian processes 
{ f jl’)( y, x), - cc < y, x < co } such that 

P(sup)a,(y,x)-~~“(y,x)~>C,n~“610gn)~C2n~2 
)‘, .I[ 

and Ef(‘)(y n 3 x)=0 3 

Efy’(y, x) fy’(y’, x’) = F(y A y’, x A x’) - F(y, x) F( y’, x’). 

(Here a A b = min(a, b).) Using Komlos, Major, and Tusn6dy [14] and 
Lemma 1.1.1 of Csorgii and RCvesz [S] one can establish the next 
inequality. 

THEOREM B. if G is continuous in a neighborhood of x, then 

pi sup It,(x) - r,(u)] > C,(n-‘I2 log n + (dlog n)“*)} 
1GC.r) - G(u)1 <d 

<n -* + d-‘np4, 

for all O<d< 1. 

683/26/2-6 
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Let ~(2,; q), zi, z2 E R2, be a symmetric function, i.e., ~(z,; z2) = 
~(z,; z,) for all zi, z2 E R2. Assume that 

&4y,, x,; y*, X2)=0 (2.1) 

and 

E{k4Yl,Xl; Y2,X2)I Yl,Xl)=O a.s. (2.2) 

Using the symmetric kernel p we can define a multivariate V-statistic by 

u,= c p(Y,, xi; yj, x,,. 1 di,j<n 

Condition (2.2) implies that U, is essentially a degenerate U-statistic. For a 
survey on U- and V-statistics, see Serfling [23, Chap. 51. The following 
result is essentially due to Dehling, Denker, and Philipp [9]. They proved 
the result for a bivariate kernel p. It is easy to see that their method also 
works for a multivariate kernel. 

THEOREM C. Assume that (2.1) and (2.2) ho/d, and 

Mz,; %)I < c‘p (2.3) 

Then for all positive integers v, 

E( Un)‘” < n2’{4v2’(4C4/e)*” + n-‘v’“+ ‘(80/e)‘“+’ Ci”}. 

Theorem A is tailored for getting a rate in weak invariance principles but 
it is not enough to obtain exact laws of the iterated logarithm. In Section 5 
we need the following result. 

THEOREM D. We can define a Gaussian process (r(‘)( y, x, t), - rrc, < y, 
x < 00, t > 0) such that 

sup Ia,(y, x)-np”2r(2)(y, x, n)l “2 o(n-“) 
Y. * 

with some A. > 0 and ET”‘(y, x, t) = 0, 

Er’*‘(y, x, t) P2’(y’, x’, t’) = (t A t’)(F(y A y’, x A x’) - F(y, x) F(y’, x’)). 

Csiirgii and Revesz [S] obtained a similar result with A < & in the case 
of a smooth distribution function. Theorem D was proven by Philipp and 
Pinzur [21] with I < & without assuming any regularity conditions on 
F. Recently Csorgii and Horvath [6] improved the PhilippPinzur result 
to il< $ without assuming any regularity conditions on F. 
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3. KERNEL TYPE ESTIMATOR 

We now show that when the conditions below hold we can approximate 
p, using a sequence of Brownian bridges. From this we have immediately 
a strong law. The following conditions which we will use are not very 
restrictive, requiring some smoothness and an appropriate rate for the 
bandwidth. 

(3.1) 

(3.2) 

(3.3) 

K 2 0, lim K(u) = 0, K(u) du = 1 (3.4) 
u- *cc 

s IuI K’(u) du < co (3.5) 

s K*(u) du < 00 (3.6) 

K has bounded variation on R (3.7) 

and 
a, log n + 0 as n-cc (3.8) 

na;f(log n)-6 + 00 as n-co. (3.9) 

If we assume that K vanishes outside of a finite interval, then (3.3) can be 
replaced with 

Ig’(u)l < a9 s;p au I I 
2 h(y, u) < co 

uniformly in u in a neighborhood of x. 

THEOREM 3.1. We assume that (3.1)-(3.9) hold. We can define a 
sequence of Brownian bridges (By’), 0 < t < 1) such that 

~{S$p/B,(~I~)-(~K2(~)~~/~~~))“2~~1)(m(~Ix))/ 

> C,((a, log n)“* + n ~ 1/6a;1/2 log n) 3 < C,n-*. 
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Theorem 3.1 and the Borel-Cantelli lemma immediately imply the 
following strong law. 

COROLLARY 3.1. Zf (3.1)-( 3.9) hold, then 

limsup(logn))“*sup [/?,(y (x)1 g2-“2 
n--t’x J U 

112 
K2(u) dulgb) 

> 

Assuming more regularity conditions we improve Corollary 
Section 5 and prove a law of the iterated logarithm. . ,^ 

a.s. 

3.1 in 

The results of this section will hold for (na,)‘lL (m,(y 1 x) -m(y 1 x)) if 
we can prove that m,,,(y I x) - m(~ I x) is asymptotically negligible. This is 
done in the following lemma, whose proof is immediate using a two-term 
Taylor expansion. 

LEMMA 3.1. We assume that (3.1)-(3.4) hold, 1 u’K(u) du < 00 and 

;,yup ~~h(y,u)~- 

Then 

SUP ImJy I x) - mb I XII = Wt). ? 

If we assume that K vanishes outside a finite interval, then the extra 
condition on h in Lemma 3.1 can be replaced by 

uniformly in u in a neighborhood of x. 
In order to prove Theorem 3.1, we first approximate /I,, by stochastic 

integrals involving a, and t, in the following lemma. 

LEMMA 3.2. Zf (3.1~(3.9) hold, then 

B”(Y I x) = g(x) ‘2 j- K(y) d,cr,(y, u) 

- “L’~~~‘X)IK(~)dt.(U)+R:lI(Y.x) 

and 

P{sup IRL’)(y, x)1 > C,((a, log n)“* + n-“2a;3/2 log n)) < C,nd2. 
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ProoJ: First we note that 

+ 
n ~ “*u;3’2h(H)( y, x) 

g:,,(x) g,(x) 
(1 K(y) dr,(u))2. (3.10) 

By (3.3)-(3.5) we have 

sup Ih,,,(.Y, X)-NY, x)l = Wa,) 
” 

(3.11) 

and 

I &n,(X) - g(x)1 = w&J. 

Integration by parts and Kiefer’s [ 131 inequality imply that 

(3.12) 

s a,(y, x - ta,) dK(t) > C(log n)“* 

sup Ia,(y, u)l i d IK(t)l > C(log .)I’* 

< Cne2, (3.13) 

and similarly 

P{l, K(~)dtJu)I>C(logn)1i2)bCnp2. (3.14) 

Using now (3.1 l)-(3.14), we obtain that 

> C(a, log n)lj2 1 < CU2 (3.15) 
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and, for the second term in (3.10), 

> C(a, log n)“2 
> 

< cn-2. (3.16) 

Observing that 

g,(x)-g&)=6 f +$fWWW 
” 

we get from (3.1), (3.9), (3.13), and (3.14) that 

P{ g,(x) > C} d CK2. (3.17) 

Hence (3.1), (3.14), and (3.17) yield 

> Cn-“2a;3/2 log n 6 CK2 (3.18) 

and 

n”2u; 3/2hcnl( y, x) 

g:“,(x) g,(x) 
(, K(y) 4M) 

> Cn - ‘I*a, 3i2 log n 
I 

< Cn - 2. (3.19) 

Lemma 3.2 now follows from (3.15), (3.16), (3.18), and (3.19). 
If we assume that 

inf g(x) >O 
r,Cx~r~ 

instead of (3.1), then Lemma 3.2 holds uniformly in x E [t:, t:] for 
t, < t: s tz* < t,. 

Proof of Theorem 3.1. By Lemma 3.2 an approximation of 
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up’/* 1 K((x - ~)/a,) d,,a,(y, u) results in an approximation of /3,. Now 
aiplying Theorem A we have 

> Ca-‘12n- ” (3.20) 

It is well known (cf. Wichura [30]) that there is a two-dimensional 
distribution function J with uniform marginals such that 

F(Y, x) = J(NY), G(x)). (3.21) 

Let { WJ(s, t), 0 <s, t < 1 } be a two-dimensional Wiener process with 
EW,(s, t) = 0 and EW,(s, t) W,(s’, t’) = J(s A s’, t A t’). Then for each IZ we 
have 

{rl”(y,x),y,x~R}~iW,(H(~),G(x))-F(y,x) W.,(l,l),y,x~R}, 
(3.22) 

and 

{J K(2f) 4,~:1’(~, ~1, Y, x E R } 
2{J ~(7) 4, W.,(fO), G(u)) 

-w,(L 1) J K(~)~W4du,y,~~R}. n 
Now applying (3.2) and (3.4) we get that 

f’{ Iw,(l, 1)1 sup /[ K(y) h(y, u) dn[ > Ca.(log n)‘!‘] 6 cnp2. (3.24) 
Y  ” 

Elementary calculations show that 

EJ ~(3) 4, W,(W), G(u)) = 0 
n 
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and 

Ea, ’ 1 K (y) 4, W,(W), G(u)) j- K(y) d,W.,(H(y’), G(u)) 
n n 

=a;’ j K’(y) h(y A y’, u) du = l,*(y A y’). 

Thus we get 

4, W.,(fG’), G(u)), Y E R E { We,*), y E R}, (3.25) 

where { IV(t), 0 < t < 0~) } is a standard Wiener process. Let I(y) = 
h(y, x) f K’(u) du. A one-term Taylor expansion and (3.3), (3.5) imply that 

SUP V,*(Y) - 4yl= sup 
Y Y 

s ~*(~)(~(y, x - q,) -KY, xl> du = Wan). 

(3.26) 

Combining (3.26) and Lemma 1.1 .l of Csiirgii and RCvisz [S] we get that 

P{sup ( W(I,*(y)) - W(l(y))] > C(a, log n)“‘} < CK2. 
? 

(3.27) 

By Lemma 3.2, (3.20), (3.23)-(3.25), and (3.27) we have that 

UMY I XL Y ERI 

4Y I xl 
- W(1(oc,))+R:2’(y),y~R 

g(x) 
(3.28) 

and 

P{Sup JRi2)(y)J > C((a, log .)1/2 + n-L/6a;1/2 log n)] < Cnp2. (3.29) 
Y 

It is easy to check that 

D 

> 

112 
= K’(u) Wdx) WNY I x)),YER 9 (3.30) 

where (B(t), 0 < t d 1 } is a Brownian bridge. Theorem 3.1 now follows 
from (3.28)-(2.30) and Lemma 4.4.4 of Csiirgii and Revtsz [IS]. 
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4. NEAREST-NEIGHBOR TYPE ESTIMATOR 

We start again with the conditions. We assume that there is a 
neighborhood of x, denoted by V= V(x), such that the following 
conditions hold true: 

inf g(u) > 0, (4.1) UE v 

supsupKY, U)<% 
uev y 

(4.2) 

and 

SUP Id(u)I< 
“E v 

(4.4) 

We need more restrictive conditions on K than those assumed in Section 3, 
namely, 

K is bounded and vanishes outside of a finite interval, 

sup K’(u)1 < m, 
u 

(4.5) 

(4.6) 

and 

sup Ilul( < co. 
u (4.7) 

Without loss of generality, we can assume that K(u) = 0 unless u E [ - 1, 11. 
It will follow from the proofs that instead of (4.6) and (4.7) it is enough to 
assume that K’ and K” exist and are uniformly bounded almost everywhere 
with respect to Lebesgue measure. 

THEOREM 4.1. Assume that (4.1)-(4.7) and (3.8k(3.9) hold. We can 
define a sequence of Brownian bridges { Bj,*)( t), 0 < t < 1 } such that 

> C,((a, log n)“* +np”6a;1/2 log n) 
I 

< Clan-*. 

Theorem 4.1 and the Borel-Cantelli lemma immediately imply the 
following. 



196 HORVATHANDYANDELL 

COROLLARY 4.1. Zf (4.1)-(4.7) and (3.8)-(3.9) hold, then 

lim sup(log n) - ‘I2 sup IY,(Y I x)1 < n-m Y ( 
j” K’(u) du/2 

> 

w 
a.s. 

The next lemma gives a rate for k,,, -m. 

LEMMA 4.1. Assume that (3.4) and (4.1 t(4.4) hold and 

sup sup ~$h(y,u)om. 
US V(x) Y 

Then 

sup I&,)(y I xl - m(Y I x)l = W4). 

The proof of the Theorem 4.1 uses Theorem A and calculations similar 
to those in the proof of Theorem 3.1. The proof is omitted, except for the 
following 

LEMMA 4.2. If (4.1 k(4.7) and (3.8), (3.9) hold, then 

y,(y 1 X)=a,‘/2 K 
j ( 

G(x)-G(u) 
> duan(x 4 4 

- a; ““m( y I x) j K ( G(x)y ‘(‘)) dr,(u) + Ri3)( y, X) 
” 

and 

P{sup IZ?L3)(y, x)1 > C,,n-1’2a;3/2 log n} < C12np2. 
Y (4.8) 

Proof: A two-term Taylor expansion yields 

r,(y 1 ~)=a,’ K s ( G(x) - G(u) 
4 > 

dJn(y, ~1 

+ n-1i2a;2 i (t,(x) - t,(u)) K’ G(x)a G(u)) d,F,,(y, U) 
” 

= Rip’ + RLs) + Ri6), 

where 6 is between (G,(x)- G,(u))/a, and (G(x)-G(u))/&,. We 
approximate the first two terms of the expansion of y,(y I x) by 
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(na,)‘i2 (RIpJ- k,,,(y 1 x)) and (nun)ll* RA5), respectively, and show that Rjp) 
is negligible. 

First we consider RL6). Using the Dvoretzky, Kiefer, and Wolfowitz [lo] 
inequality we get that 

P{sup /G,(u)- G(u)1 > C(log n/n)“*} d Cn-‘. 
u 

(4.10) 

By condition (3.8) this means that 6 is essentially in the interval 
(G(x) - G(u))la,, f Ca,, . l/* Using (4.5), (4.7), (4.10), and Theorem B with 
(3.8) we obtain that 

P{sup IRjp'(y)l >Cn-‘~,~logn} 

GP( sup (t,(u) - blw2 > C% 1% 4 
IG(.r) - G(u)1 d Cu, 

<Cne2. (4.11) 

To estimate RAs) we observe that 

n"2a~R~s)= s (t,(x)- t,(u))m(y 1 u)K ( G(x'; '@)) dG,(u) 

where 

+ R(7)_ R(8) 
” ” ) (4.12) 

{d,Fn(y, u) -m(y I u) dG,(u)}, 

(d&,(y, u) - m(y 1 u) dG,(u)}. 

We show that Rh7) and Ri8) are asymptotically small. For convenience, let 

p;(s, t)=Z{t<y} K (G(x); G(s)), 

P:(s, f) = NY I s) K (G(x); G(s)) 

By (4.10) it is enough for Ri7) to consider 

RIP'= i (Z{Yi<y}-m(y ) X,))K G(x) - GWi) 
i=l a” > 

= jll IP-LtXF% ‘i) - P:txi, yi) >- (4.13) 
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It is easy to see that there exist N= Cn points - cc = y, < y, < ... < 
y, = co such that 

(4.14) 

1 <j< N - 1. Using the monotonicity of & and pi in y, we get that 

SUP IR’9’(y)l d 3 max ” 
Y  

,cl {P:,txiT yi) - Pfs,txi, Yj)} / 
l=SjSN 

+3 max 
I<j<N-1 

Observing that E&(X,, Y,) = @:(X1, Y,), we have by Hoeffding’s 
inequality (cf. Serfling [23, p. 751) that 

i (P.b,(Xi, yi)-~~,(xj, Yi)) > C(n log n)l/* Q Cn-*. (4.15) 
i=l 1 

By (4.14) we have that 

Rr’)<3+6 max 

Arguing similarly to (4.15) we obtain 

P{R;“’ > C(n log n)“*} G Cn-*. (4.17) 

Combining (4.15), (4.17), and (4.10) we have 

P(R!,‘)> Cn- “*logn},<Cn~*. (4.18) 

Estimation of Rf) is similar to R, , (‘) but is somewhat lengthier. We can 
write 

R(8) = n-3/* n C (z{Xjdxi}-G(X,))(Z(Yi~y} 

-4.Y I Xi)) K’ G(x)- G(Xi) 
a, 
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+ Iiz, < j’)(z(Z, d z3) - G(z,)) K G(x) - G(z3) 
a, 

P@ ~,z~;z,,~,)=m(yIz,)(Z{z,~z,}-G(z,))K’ G(x);Gtzl)) 
( n 

+ NY I z,ftZ(z, dz,) - W,)) ZC’ 
G(x) - Gtz,) 

a, ! 

and 

R~‘2’= C {P;txi> yi;xj, yj)-p-$(Xi, YiixJ, Yj)}. 

I<i,jin 

It is easy to check that 

~(8) = in-31*q2). 
II (4.19 

Using (4.14) we can show by elementary arguments that 

“YP IR!l’*‘(Y)l G3 yzt 1 (p.z,(Xi, Y,; X,, Yj)-/-l:,(Xi, Yi; Xj, Yj)) 
1 <i.J<tl 

-&+,(X, y;; xj, Yj>, 

= 3 max IRL’i)l + 3 max IRL1;)l. 
1CkiN ’ I<k<N ’ 

(4.20) 

For each k, RA:i) is a degenerate U-statistic, and an application of 
Theorem C implies that 

E(R~13k))*v~C?vn*v{V2v+n--1V2v+I}, 

and C does not depend on k. Therefore, with v = log n, 

P{ IR$)I > bn log n} = P{ (R$))*” > (bn log n)*“} 

(4.21) 

n2” 
’ (bn log n)2y 

C*‘[(log n)*” + n-‘(log n)*“+ ‘1 

=(C/b)‘“g”[1+n-‘logn]dn-3, (4.22) 
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if b is large enough, which implies that 

P( max 
I<k<N 

IRif:)I > Cn log fl> < Cne2. 

Using the definition of p-t we get that 

NOW (4.14) and Bernstein’s inequality (cf. Serffing [23, p. 951) imply that 

Collecting together (4.19), (4.20), (4.23), and (4.24) we get that 

P{sup IRL8)(y)l > Cn-“2 log n} < Cnm2. 
” 

Therefore, for RL5) it is enough to consider 

(4.24) 

(4.25) 

s (t”(x)- t,(u)) m(y 1 u) K’ G(x);G(u)) dG,(u). 
n 

Using (4.5) we get that 

%“’ = s’;fP (&(x) - t,(u))(m(y 1 u) - m( y 1 x)) K’ G(x); ‘(‘)) dG,(u) 1 
n 

<csup sup IdY I U)-NY I XII 
v IG(.x) ~ G(u)1 sun 

X sup {It,(x) - rn(u)l IGn(u) - G,(x)l >. (4.26) 
lG(.x) - G(u)1 <a. 

We obtain from (4.1), (4.3), and (4.4) that 

sup sup IMY I u) - 4Y I )I = Wan). 
Y lG(.x-G(u)l<a. 

(4.27) 

We get from (4.4) that 

sup IG,(uf - G&N 
ICC-r) - G(u)1 ah. 

d sup n - 1’2 1 t,(x) - t,( u)l + O(n - “2Lz”). 
ICC-Y--G(u)1 GO, 

(4.28) 

Using now (4.27), (4.28), and Theorem B, we obtain that 

P{RL’5’> Cflog n/r~)“~) < en-*. (4.29) 
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In a similar fashion to the estimation of RL8), an application of Theorem C 
yields 

j (t,(x) - fn(~)) K’ G(x); ‘(‘)) d(G,(u) - G(u))1 
n 

>Cn- ‘/*logn <Cn-*. 
I 

(4.30) 

Therefore, since R1;‘) and RL*) are negligible, it is enough to consider the 
first term on the righthand side of (4.12). Integration by parts gives 

s (t,(x) - f,(u)) K’ G(x) - G(u) 
a, ) dG(u) = - a,, I K ( G(x)i ‘(“) dt,(u). 

n 
(4.31) 

Combining (4.12), (4.18), (4.25), (4.26), and (4.29)-(4.31) we obtain 

4Y I xl W(y) +- n n liZa n 

>Cn-‘a;210gn (4.32) 

All that remains is the approximation of Rip) - k,,,(y 1 x). Condition 
(4.5) implies that I(,,(x) = k,,,(oo 1 x) = 1 if n is large enough. Using (4.9), 
(4.1 l), and (4.32) we obtain that 

P{(na,)‘/2 (I,(x)- l( > Cn-“2a;3/2 logn) d Cn-*. (4.33) 

By Kiefer’s [ 131 inequality we have 

p{sup (1 K( Y G’x)~G(u)) d,,cr,(y, u)/ > C(log n)‘i2) < Cn-*. (4.34) 

Observing that 

(n4-“2 Y,(Y I x) = r,(.v I X)-~&Y I x) - (L(x) - 1 N~,(Y I xl 

- k,n,(y I x)W,(x) + k,,,(y I x)(1 - W))/L(x), 

Lemma 4.2 follows from (4.9), (4.11), and (4.32~(4.34). 
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5. LIMIT POINTS OF CONDITIONAL EMPIRICAL PRO~EF,ES 

Theorems 3.1 and 4.1 say that the weak behavior of the conditional 
empirical processes are essentially the same as for the usual empirical 
process. Now we consider the exact almost sure properties of the 
conditional processes. Let 

r(s) = T(S 1 x) = inf{ y: m(v 1 x) 2 s}, (5.1) 

the inverse (quantile) of m(~ 1 x). We will assume that there is a 
neighborhood of x, say V= V(x), such that 

sup (m(r(s 1 x) 1 U) - m(r(s’ 1 x) 1 U)l < c IS - S’IT 
ut v 

(5.2) 

with some C > 0 and 0 < z < 1. This condition is implied by the condition 
that for y < y’, 

sup INY I u) -NY’ I UN< c INY I XI - dy’ I x)1’. UE v 

Let H be the set of absolutely continuous functions (with respect 
to Lebesgue measure) on [0, 1 ] for which f(0) =f( 1) = 0 and 
j: (f’(t))* dt < 1. 

THEOREM 5.1. Assume that (3.1b(3.4), (3.8), (3.9), (4.5), and (5.2) hold 
and that a,, = nmp, 0 < p < 22, where ,I is given in Theorem D. 

(i) Q-(3.1)-(3.4) hold, then 

is almost surely relatively compact in D[O, 1] with H as its set of limit 
points. 

(ii) Zf (4.1)-(4.4) hold instead, then 

is almost surely relatively compact in D[O, 1] with H as its set of limit 
points. 

The next result follows immediately from Theorem 5.1. 



CONDITIONAL PROCESSES 203 

COROLLARY 5.1, Assume the conditions of Theorem 5.1. For the kernel 
estimator, if (3.1 k( 3.4) hold, then 

lim sup (log log H)-‘/~ sup Ip,(y 1 x)1 = 
n-m Y 

(’ :F:y) lJ2 a.s. 

For the NN estimator, of (4.1)-(4.4) hold, then 

lim sup (log log n)-‘I’ 
n--r* > 

112 
a.s. 

Proof of Theorem 5.1. We show the proof only for fl,, as the result for 
the NN estimator follows along similar lines. By Lemma 3.2, it is enough 
to consider 

Applying Theorem D, we get 

s;p la;1’2 1 K(y) dJor,( y, u) - n - 1’2r(23( y, u, n)) 2 o(n -ia; ‘i2). 

Let ( W,(s, t, u), 0 d s, t < 1, u > 0} be a three-dimensional Wiener process 
with EW,(s, t, U) = 0 and EW,(s, t, u) W,(s’, t’, u’) = (u A u’) J(s A s’, 
t A t’). Then from (3.21) we have 

{T”‘(y, u, n),y, UER, n> I} 

IIW,(H(y),G(u),n)-F(y,u) W,(L 1,4,y,u~R,n>l). (5.3) 

Integration by parts and the law of the iterated logarithm for Wiener 
processes gives 

(wJ”2 I WA4 1, n)l sup y II K(y)h(y,u)dul ~O((a,loglogn)‘/2). 

Hence it suffices to investigate 

TA3)(s) = (na,)-1’2 
(5 K(Y) 

4, WAW(s), G(u), n) 

-s j- K(y) dW.41, G(u), 4}. 

68312612.7 
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We obtain from (3.26) that 

sup 
O<S,l<l 

Ef;3’(s)ra,ct)-J” K2(z+h4g(x)(t A S-B) =0(l). (5.4) 

Elementary calculations show that 

E(f(3’(f)-f(3’(S))*<C Jt--sJr n n > 

where T is given by (5.2). 
Let c > 1 and define n, = [c”], with v an integer. We next show that for 

every E > 0 there is a c = C(E) > 1 such that 

lim sup max (log v)-l/* sup ITi3’(s) - T;;‘(s)1 GE a.s. (5.5) 
Y-m n,<n<n,+1 OGSCI 

Let n <m such that 4 <n/m and define 

f C4’( t, s) = f L3J ,(m _ .)(S) - zys), o<s, t< 1. 

It is not difficult to calculate the covariance function of rc4’ because the 
process is given in terms of integrals with respect to a Wiener measure. 
Long but elementary calculations give the following results: 

and 

E(T’4’(t,S)--r(4’(f’,S))2~CIl-m/nl It-1’1, (5.7) 

E(fc4’(t, S) - fc4’(t, S’))* < C I1 - m/n1 Is - s’jT (5.8) 

E(f’4’(t,s))2<C 11 -m/nl, (5.9) 

where C is an absolute constant. By (5.7)-(5.9) we can apply Lemma 2 of 
Lai [16] and get that for all x 2 10 

P sup lfc4’(l, s)l > XC I1 - m/r21 < 100 Jm exp( -u*/2) A. (5.10) 
OCs,r<l x 

Hence (5.5) follows immediately from (5.6) and (5.10) with x = (4 log v)“*. 
Now we observe that E can be arbitrarily small in (5.5), and log logn,/ 
log v + 1 as v + GO for all c> 1. Thus Theorem l.la of Mangano [19] 
implies that { (2 log log n f K*(u) A/g(x))-‘/* TL3’(s), 0 <s < 1 }, is almost 
surely relatively compact in C[O, l] with limit points in H, 
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Next we show that H must be in the cluster set. Let q > v. Then 
straightforward calculations yield 

which goes to zero as ye - v -+ co. Now we can apply Theorem l.lb of 
Mangano [ 193 (cf. his remark on p. 912) to show that the cluster set is H. 
The proof of Theorem 5.1 is now complete. 
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