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Asymptotics of Conditional Empirical Processes
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Using two definitions of the conditional empirical processes we obtain some
approximations for these processes. We also prove the functional law of the iterated
logarithm for the conditional processes. Our results say that the asymptotic
behavior of the conditional and unconditional empirical processes are very
similar. © 1988 Academic Press, Inc.

1. INTRODUCTION

We investigate asymptotic approximations of two estimators of the
conditional empirical process of ¥ given X = x, leading to a functional law
of the iterated logarithm. Qur main results show that the weak behavior of
the conditional empirical processes at a given x is essentially the same as
that of the empirical process, although the rates now depend on the
bandwidth.

We examine the kernel estimator of Nadaraya [20] and Watson [29]
and the nearest neighbor (NN) estimator of Yang [31] and others. The
subject of nonparametric regression was reviewed by Stone {24, 257 and
Collomb [4]. Recently Révész [22], Johnston [12], Liero [17], and
Konakov and Piterbarg [15] developed strong approximations of residual
mean regression functions. Mack and Silverman [18] and Cheng [2]
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derived uniform convergence rates for kernel estimates. Stute [26,27]
proved almost sure and weak convergence results for kernel and nearest
neighbor estimates of the conditional empirical function. Several authors
have recently explored robust nonparametric regression (cf. Cheng and
Cheng [3] and Hardle [11]).

Let (Y, X) be a random vector in R? with continuous distribution
function F(y,x)=P(Y<y,X<x} and marginals H(y)=P{Y<y},
G(x)= P{X < x}. In statistical applications one may need an estimator of
the conditional distribution function

m(y| x)=P{Y<y|X=x}, yeR,

at a fixed point x € R. Based on the random i.i.d. sample {(Y;, X,)}7_,, the

usual estimators for F and G are

i=12

F(y,x)=n""#{1<i<n Y, <y, X,<x}
and
G (x)=F (oo, x)=n""#{1<i<n X;<x}.
(Throughout this paper, u(c0)=1lim g(x), x - ©.)
Our first estimator for m(y | x) is essentially due to Nadaraya [20] and

Watson [29]. Let K be an appropriate kernel function, 4, be a sequence of
bandwidths and define

h,(y, x)=a, f K(

(Integrals are over R unless otherwise noted.) Standard arguments
involving multivariate densities show that h,(y, x) is a reasonable estimate
for

) d,Fo(y, ).

W, x) = o (3, ).

We assume that g =G’ exists in a neighborhood of x and estimate it by

X—Uu

£.6) = (oo, 1) =a;" [ K (222) d6, .

n

The estimator

my(y | x)=h,(y, x)/g.(x)

-5 (2 x(52)

i=1
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where I(A) is the indicator of the set 4, will be referred to as a kernel-type
estimator of m(y | x).
A different estimator is proposed by Yang [31] and Stute [28,26]. Let

) J K (Gn(x)_ Gn(u)

rylx)=a, ) d,F.(y, u)

n

and

Lx)=r,(c0 | x)=a," | K(G‘L‘:G(“_))

n

dG ,(u).

n

The estimator
k(y | x)=r(y|x)/l(x)
= % 17,2y (GRG0 [ (GGl

i=1 an an

is called a nearest-neighbor (NN) type estimator.
The central part of this paper is the almost sure behavior of the processes

Bu(y | x)=(na,)"* (m,(y | x)—m(y|x)) (1.1)
and
‘yn(y | X)‘—‘ (nan)l/2 (kn(y I x)_k(n)(y | )C)), (12)

where
M (¥ | X)=hi,(p, X)/8 (X)),

k(v | x)=a," j K(M

n

)duF(y, u),

and g(,, and h,, are defined analogously to g, and 4, respectively, with F,
and G, replaced by F and G. Standard methods can give the usual rates for
the “numerical errors” m,,—m and k., —m by assuming more regularity
conditions on F. Thus m,, and k,, can be replaced by m in (1.1) and (1.2)
and our results will remain true (cf. Lemmas 3.1 and 4.1).

We assume that xeR is a fixed point throughout this paper. It is well
known that 8,(y | x) and y,(y | x) have normal limits for any fixed yeR as
n— oo. Stute [26] proves that y,(y|x) converges weakly to a time-
transformed Brownian bridge. The main aim of this paper is a further
investigation of the asymptotic properties of the conditional empirical
processes B,(y|x) and y,(y|x). We obtain rates for the Gaussian
approximations and derive functional laws of the iterated logarithm for
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these processes. The proofs are based on the observation that §, and y, can
be expressed as integrals with respect to

o,(y, x) =n"*(F,(y, x) = F(y, x)),
tu(x)=0,(00, x)=n"(G,(x) - G(x)),

with a small remainder term.

In Section 2 we list some results which will be very useful later on.
Section 3 contains the approximation of f§, and in Section 4 we prove a
similar result for y,. The functional laws of the iterated logarithm will be
proven in Section 5.

Throughout this paper, C in proofs stands for a generic constant whose
value may differ from line to line. Suprema and integrals are over R unless
otherwise stated. We can assume without loss of generality that our
probability space (£, 4, P) is so rich that all the random variables and
processes introduced so far or later on can be defined on it (cf de
Acosta [8]).

2. PRELIMINARIES

This section contains some approximations for «,, ¢, and a symmetric
kernel based on results in the literature. The following multivariate
approximation is due to Borisov [1].

THEOREM A. We can define a sequence of Gaussian processes
{r'Y(y,x), —o0 <y, x<0o0} such that

P{sup | a,(y, x)—T'"(y, x)|>C,n "logn} < Con?

and EI''V(y, x)=0,
ELO(p, x) Ty, x")=F(y Ay, x A X'} = F(y, x) F(y', x').

(Here a A b=min(a, b).) Using Komlos, Major, and Tusnady [14] and
Lemma 1.1.1 of Csorgé and Révész [5] one can establish the next
inequality.

THEOREM B. If G is continuous in a neighborhood of x, then

P{ sup [t,(x)—t,(u)] > Cs(n~"*logn+ (dlog n)'?*)}

|G(x)— Glu)| <d

<n i4+d 'nd

Jor all 0 <d<1.

683/26/2-6
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Let u(z;2,), z,,2,€R? be a symmetric function, ie., u(z;;z,)=
u(z,;z,) for all z,, z, e R% Assume that

Eg(Y,, X\;Y,, X,)=0 (2.1)
and
E{w(Y,,X;Y,,X,)| Y\, X,}=0 a.s. (2.2)
Using the symmetric kernel x4 we can define a multivariate V-statistic by
U= Y wY,X;Y;,X)
1<ijgn

Condition (2.2) implies that U, is essentially a degenerate U-statistic. For a
survey on U- and V-statistics, see Serfling [23, Chap. 5]. The following
result is essentially due to Dehling, Denker, and Philipp [9]. They proved
the result for a bivariate kernel u. It is easy to see that their method also
works for a multivariate kernel.

THEOREM C. Assume that (2.1) and (2.2) hold, and
Iz 52,) < Cy. (2.3)
Then for all positive integers v,
E(U,)” <n®{4v*(4C,/e)” +n~ v +1(80/e)> 1 CI'}.

Theorem A is tailored for getting a rate in weak invariance principles but
it is not enough to obtain exact laws of the iterated logarithm. In Section 5
we need the following result.

THEOREM D. We can define a Gaussian process {I'?(y, x, 1), —0 <y,
x < oo, t>0) such that
a.s.

sup lo,(y, x) —n = "2I'?(y, x, n)| = o(n™%)

v, x

with some 4>0 and EI"(y, x, t)=0,
Er®(y, x, ) 'y, x', t)y=0 A ')F(y A Y, x A x')—F(y,x) F(y', x')).

Csorgd and Révész [5] obtained a similar result with A < in the case
of a smooth distribution function. Theorem D was proven by Philipp and
Pinzur {21] with 1 < 35855 without assuming any regularity conditions on
F. Recently Csorgd and Horvath [6] improved the Philipp—Pinzur resuit
to A <{ without assuming any regularity conditions on F.
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3. KErRNEL TYPE ESTIMATOR

We now show that when the conditions below hold we can approximate
B, using a sequence of Brownian bridges. From this we have immediately
a strong law. The following conditions which we will use are not very
restrictive, requiring some smoothness and an appropriate rate for the
bandwidth.

g(x)>0 (3.1)
sup A(y, u) < (32)

d ,
sup E h(y,u)| < w, sup |g'(u)| < (3.3)

Y. u u
K>0, lim K(u)=0, j K(u) du=1 (3.4)
u— oo
[ 14l K2y du< o0 (3.5)
[ k() du< oo (3.6)
K has bounded variation on R (3.7)
and

a,logn—0 as n— oo (3.8)
nal(logn) =% - as n- . (39)

If we assume that K vanishes outside of a finite interval, then (3.3) can be
replaced with

9wy <o

ou

|g'(u)] <00,  sup
y

uniformly in « in a neighborhood of x.

THEOREM 3.1. We assume that (3.1)-(3.9) hold We can define a
sequence of Brownian bridges {B'"(t), 0<t <1} such that

P {sup

> Cs((a,logn)'? +n~"%a; " log n)} <Cyn2.

1/2
.00 10— ([ K dfg(x)) B mty 1 )
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Theorem 3.1 and the Borel-Cantelli lemma immediately imply the
following strong law.

CorOLLARY 3.1. If (3.1)-(3.9) hold, then

1/2
lim sup(log n) '/ sup [B,(y [ x)| <2~ 12 U K?(u) du/g(x)) a.s.

H— o

Assuming more regularity conditions we improve Corollary 3.1 in
Section 5 and prove a law of the iterated logarithm.

The results of this section will hold for (na,)? (m,(y | x)—m(y | x)) if
we can prove that m,,(y | x) —m(y | x) is asymptotically negligible. This is
done in the following lemma, whose proof is immediate using a two-term
Taylor expansion.

LeMMA 3.1.  We assume that (3.1)-(3.4) hold, | u’K(u) du < co and

2

0
sup s h(y, u)| < co.

you

Then
sup (v ] ¥) = m(y | x)] = O(a3).

If we assume that K vanishes outside a finite interval, then the extra
condition on 4 in Lemma 3.1 can be replaced by

2

W h(}’, u)

sup <o
v

uniformly in « in a neighborhood of x.
In order to prove Theorem 3.1, we first approximate S, by stochastic
integrals involving «, and ¢, in the following lemma.

Lemma 32. If (3.1)~(3.9) hold, then

—12 _
By 1 00= 2= [ K (=) dn )

_a;Pm(y | x)
g(x)

f K(xa_ ") di,(u) + ROy, )

n

and

P{sup |RM(y, x)| > C,((a,logn)"* +n~"2a;3? logn)} < Cen 2.
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Proof. First we note that
a2 xX—u
By ] x)= 2 K( )dﬂA,w

g(n)('x) f an y

a; ' 2h (v, x) J ( ) )

g(n)(x

n='2q- 32 x—u xX—u

-gWUA&u)fK<an)dﬂ*”“)fK<an)m*”

nfl/za"_s/zh(n)(y, x) Yy ,
e @) (J K ( a )dfn(u)>- (3.10)

By (3.3)-(3.5) we have
sup |~ )y, x) = h(y, x)| = O(a,) (3.11)
and
|8 m(x)—g(x)| = O(a,). (3.12)
Integration by parts and Kiefer’s [13] inequality imply that

fK<x;u

n

P%w )@%Wﬂ)

> C(log n)l/z}

=P {sup Jf o, (y, x—ta,) dK(t)i > C(log n)l/l}

P{sup ln,(r. ] [ dIK)I> Cllog )7}

vou

<Cn~? (3.13)

and similarly

j2 {U K(xa_ “) dt (u)

n

> C(log n)l/z}San. (3.14)

Using now (3.11)-(3.14), we obtain that

Plare

> C(a, log n)l/zkc*n'2 (3.15)

1L _ 1
gm(x) g(x)

jK(xa_,,u

) dur

sup
y
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and, for the second term in (3.10),

ho(y, x) my|x)| _ x—u
P{s‘ip par e LA R ( z )d’"(“)
> ((a, logn)l/z}SCn“z. (3.16)

Observing that

X—u

gn(X)—gumix)=a,’ fx( y

)d(G,.(u)—G(un

n

we get from (3.1), (3.9), (3.13), and (3.14) that
P{g.(x)>C}<Cn 2 (3.17)

Hence (3.1), (3.14), and (3.17) yield

j K ("a’ “) dt ()

n

nl/za—3/2
{g(n)(x) gn(x)

[ (%) dntrn)

n

sup
> Cn~'2q;3? logn}SCn‘2 (3.18)

and

n*2a-3?h\(y, x) X—u 2
P {su n__(BD < K(——) dt, (u )
-"p g(zn)(x) gn(x) J‘ a, ( )
> Cn~ a3 log n}an“z. (3.19)
Lemma 3.2 now follows from (3.15), {(3.16), (3.18), and (3.19).

If we assume that

inf g(x)>0

n<sx<n

instead of (3.1), then Lemma 3.2 holds uniformly in xe[tf, ¢F] for
<<t <t,.

Proof of Theorem 3.1. By Lemma 32 an approximation of



CONDITIONAL PROCESSES 193

a, 2 | K((x —u)/a,) d,x,(y, u) results in an approximation of §,. Now
applying Theorem A we have

P {an“/z sup
Y

j K(xa— u) d“(rzl)(y’ u)—d,,(y, u))

n

> Ca;"*n~"%log n}an‘z. (3.20)

It is well known (cf. Wichura [30]) that there is a two-dimensional
distribution function J with uniform marginals such that

F(y, x)=J(H(y), G(x)). (321)

Let {W,(s,t), 0<s, 1<1} be a two-dimensional Wiener process with
EW,(s,t)=0and EW (s, 1) W,(s',t')=J(s A 5", t A t'). Then for each n we
have

(I(y, x), y, xeR} = {W(H(y), G(x))— F(y, x) W,(1,1), y, xR},
(3.22)

and

{J K(xa— u) d, Iy, u), y, xeR}

“ K(xa_u> d, W (H(y), G(u))

n

X—u

— W1, 1) j K< -

>h(y, u) du, y, xeR}.

n

Now applying (3.2) and (3.4) we get that

f K(xa_ u) h(y, u) du

n

P{IW,(I, 1)| sup > Ca,(log n)1/2}<Cn2. (3.24)
y

Elementary calculations show that

B[ K(X22) dw (), Gl =0

n
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and

pa; [ K () a, w60 [ K (2

n

) d, W (H(Y), Gw))

n

=a;' [ K2 (x' ) h(y Ay, u)du=1(y A y).

n

Thus we get

far = [ K(522) dwottn), G, yeRY 2 (W) yeR), (325)

n

where {W(1),0<t<o0} is a standard Wiener process. Let I/(y)=
h(y, x) | K*(u) du. A one-term Taylor expansion and (3.3), (3.5) imply that

sup |1¥(y) = I(y)| = sup f K*u){h(p, x —ua,) — h(y, x)} du) = O(a,).
(3.26)
Combining (3.26) and Lemma 1.1.1 of Cs6rgé and Révész [5] we get that

P{sup |W(L}(y))— W(l(y))| > C(a,logn)?} <Cn2. (327)

By Lemma 3.2, (3.20), (3.23)-(3.25), and (3.27) we have that

{B.(y|x),yeR}

m(y | x)
g(x)

1
2{—— W) —

(2)
g(x) Wl(0)) + R, (y),yeR} (3.28)

and

P{sup |[R®(y)| > C((a,logn)'* +n~Y%a 2 logn)} <Cn"2 (3.29)

It is easy to check that

{# wi(y)) — 22 1X)

w(l R
g(x) g(x) (), ye }

1/2
- {(f K*(u) du/g(x)) B(m(y | x)), yeR}, (3.30)

where {B(r), 0<s<1} is a Brownian bridge. Theorem 3.1 now follows
from (3.28)-(2.30) and Lemma 4.4.4 of Cs6rgd and Reévész [5].
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4. NEAREST-NEIGHBOR TYPE ESTIMATOR
We start again with the conditions. We assume that there is a

neighborhood of x, denoted by ¥V =V(x), such that the following
conditions hold true:

inf g(u)>0, (4.1)
ueV
sup sup A(y, u) < o, 4.2)
uelV v
0
sup sup |=— h{y, u){ < (4.3)
ueV y au
and
sup |g'(u)| < co. (4.4)
ueV

We need more restrictive conditions on K than those assumed in Section 3,
namely,

K is bounded and vanishes outside of a finite interval, (4.5)
sup |K'(#)| < o0, (4.6)

and
sup |K"(u)| < 0. 4.7)

Without loss of generality, we can assume that K(x)=0 unlessue[—1,1].
It will follow from the proofs that instead of (4.6) and (4.7) it is enough to
assume that K’ and K" exist and are uniformly bounded almost everywhere
with respect to Lebesgue measure.

THEOREM 4.1. Assume that (4.1)-(4.7) and (3.8)—(3.9) hold. We can
define a sequence of Brownian bridges { B?)(t),0<t< 1} such that

P {sup

> Cy((a, log n)'? +n"%a ;2 log n)} <Cpon~ 2

1/2
110 =([ K2 ) B2ty 1)

Theorem 4.1 and the Borel-Cantelli lemma immediately imply the
following.



196 HORVATH AND YANDELL

COROLLARY 4.1. If (4.1)-(4.7) and (3.8)—~(3.9) hold, then

1/2
lim sup(log 7n) =2 sup |y,.(y | x)| < (J K*(u) du/2> as.

n— oo ¥y

The next lemma gives a rate for k,,—m.

LemMA 4.1.  Assume that (3.4) and (4.1)-(4.4) hold and

62
sup sup Wh(y, u)

ue V(x) y

< 0.

Then
sup k(¥ | X)—m(y | x)| = O(a).

The proof of the Theorem 4.1 uses Theorem A and calculations similar
to those in the proof of Theorem 3.1. The proof is omitted, except for the
following

LemMa 4.2. If (4.1)(4.7) and (3.8), (3.9) hold, then

1 x)=ar? | k(T2 40,0

n

G(x)—G(u)

—a;m(y | x) j K( ) dt,(u) + Ry, x)

n

and
P{sup |RO(y, x)| > C;yn~ a2 logn} <Cpon™% (48)

Proof. A two-term Taylor expansion yields

G(x) — G(u)

a,

ry I x)=a;" | K( )d,,F,,(y,u)

G(x)— G(u)

#0100 - 1,) K ) (3.

+4n 10, [ (1,00 = 1,0))? K'(3) d,F oy, )

=R® + R+ R®),

where ¢ is between (G,{x)—G,{u))a, and (G(x)—G(u))a,. We
approximate the first two terms of the expansion of y,(y|x) by
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(na,)"? (R —k,(y | x)) and (na,)? R, respectively, and show that R\"
is negligible.

First we consider R!®. Using the Dvoretzky, Kiefer, and Wolfowitz [10]
inequality we get that

P{sup |G,,(u)~ G(u)| > C(log n/n)"*} < Cn 2. (4.10)
By condition (3.8) this means that ¢ is essentially in the interval

(G(x) — G(u))/a,+ Cal’®. Using (4.5), (4.7), (4.10), and Theorem B with
(3.8) we obtain that

P{sup |R®(y)| > Cn~'a;?log n}

<P{ sup  (1,(w)—1,(x))*>Ca,logn}

1G(x)— G(u)| < Ca,

<Cn2. (4.11)

To estimate R{> we observe that

w2k = [ (0= ) miy ) & (T2 a6,
+ R =R, (4.12)

where

G(x)— G(u)
a

RP =1, | 1«( ) {d,Fyy, u)—m(y | 4) dG,(w)},

G(x)—G(u)

n

R 0 x ) (duFo(y, ) = m(y | u) dG,(u)).

We show that R{” and R® are asymptotically small. For convenience, let

G(x)— G(s)>,

ul(s, t)=1{z<y}1<'< -

(s, )=m(y|s) K (M)

n

By (4.10) it is enough for R{" to consider

RO= % (1{y,<y}-miy 1))k (ZELZEE)

i=1 n

=_ {ﬂ_i(Xis Yi)_.uf»(xi, Yf)}- (4.13)

1

I M s

i
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It is easy to see that there exist N=Cn points —~c0o=y, <y, < --- <
y~ =00 such that

'E#;,'(Xl’ Y ) E#yJ+I(X1! Y )l /n,

<
(4.14)
Ey; <Y <yj 1} <1/n,
1 <j< N—1. Using the monotonicity of x, and y; in y, we get that

sup |[R®)(y)) <3 max

I</j<N

Z": {“;,(Xi’ Yi)_l‘f,,(Xi’ Yi)}l

+3 max |5 Y- 0 1)
SS=AT i=1
= RUO) 4 RUD,

Observing that Euj(X,, Y,)=Eui(X,,Y,), we have by Hoeffding’s
inequality (cf. Serfling [23, p. 75]) that

£ ix, Y-, Y,.))\>C(n10gn)v2}<cn—2. (4.15)

{ max
1<j<N i
By (4.14) we have that

R34+ 6 max

1<j<N

Z(ﬂ (X, ¥~ Ent X,,Y»\ (4.16)

Arguing similarly to (4.15) we obtain

P{R!V> C(nlogn)"?}<Cn™2 (4.17)

Combining (4.15), (4.17), and (4.10) we have
P{R'>Cn "?logn}<Cn > (4.18)

Estimation of R!® is similar to R, but is somewhat lengthier. We can
write

RO =n= ¥ (I{X,<X)}-GX)IY,<y)

I<ijsn

G(x)—G(X;
—miy) )k (TR

n
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Let
Ili(zhzzﬂy24)=1{22<)’}(1{Z3<21}“G(Zl))K' (M>

+ 1z, <y }I{z, <23} = Glzy)) K <_G(x)— G(zg))’

n

uz1, 22525, zg) =m(y | 2))I{z3< 2, } = G(z)) K’ <M>

a

n

+mlylz3)0{z, <23} = G(z3)) K’ (@)

n

and

RLIZ)= Z {ﬂ_‘?(X,-, Yi;Xja )/j)_ui(Xi’ Yi;Xj, Yj)}'

I<ij<n

It is easy to check that
R® =1p32R0U2) (4.19)

Using (4.14) we can show by elementary arguments that

sup IRLIZ)(.V)I <3 Ilnax Z (l‘tik(Xiﬁ Y, Xja Yj)_#;k(Xis Y; Xj’ Yj))

L<ij<n
3 .
+3  max Y (WX, Ys5X,Y)
I1SkSN-1 1<ij<
<ij<n

-, (X, Y5 X, ¥)))

=3 max |R}Y|+3 max [R{Y) (4.20)
1<k<N 1<k<N

For each k, R{} is a degenerate U-statistic, and an application of
Theorem C implies that

E(in))z\v<C2vn2v{v2v+”—1v2v+l}’ (421)
and C does not depend on k. Therefore, with v=1log n,

P{|R\3)| > bnlog n} = P{(R{)?> (bnlog n)*")}

n2v
<__.—
(bnlog n)*

=(C/b)®" [1+n"'logn]<n?, (4.22)

C»[(logn)®* +n~'(logn)>+']
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if b is large enough, which implies that

P{ max |R{Y!>Cnlogn}<Cn~2% (4.23)
1<k N
Using the definition of u; we get that

|R£:i)| <Cn }: Hye<Y,<yeoa)

i=1

Now (4.14) and Bernstein’s inequality (cf. Serfling [23, p. 95]) imply that
P{ max [R{!Y|>Cnlogn}<Cn2 (4.24)
1

IsksN-—
Collecting together (4.19), (4.20), (4.23), and (4.24) we get that
P{sup |[R®(y)|>Cn~"?logn}<Cn~2 (4.25)

Therefore, for R!® it is enough to consider
G(x) - G(u)
a

n

J =ty miy 1 & ) dG,

Using (4.5) we get that
G(x) = G(u)

s

Ry =sup ’ [ 0 = 1,0 0m(y 1 0) =y | x)) K’( )dGn(w[

< Csup sup [m(y | u)y—m(y| x)|
v |G(x)—G(u)| € a,

x osup  {{t(x) = 1,(u)] 1G(u) — G (x)| }. (4.26)

1G(x) - Glu)| < an

We obtain from (4.1), (4.3), and (4.4) that

sup  sup  |m(y|u)—m(y|)l=0(a,). (4.27)

¥y 1G(x)— G(u)| < an

We get from (4.4) that

sup |Go(u) — G (x)|

1G(x) —~ G(u)| <ay

< sup n= 2t (x)— t,(w) + O(n~a,). (4.28)

|G(x) —~ G(u)| < an

Using now (4.27), (4.28), and Theorem B, we obtain that
P{R\'>> C(logn/n)"*} < Cn~2. (4.29)
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In a similar fashion to the estimation of R®), an application of Theorem C
yields

G(x)—G(u)
a

n

P{sup |[ (1,0t & ) (60~ 6w

>Cn ?log n}an’z. (4.30)

Therefore, since R{" and R® are negligible, it is enough to consider the
first term on the righthand side of (4.12). Integration by parts gives

J (= s & (2= agay = — g, [ & (T .

n n

(4.31)

Combining (4.12), (4.18), (4.25), (4.26), and (4.29)-(4.31) we obtain

RLS)(yHm(y | x) j K<G(x)—G(u)> dtn(u)‘

n'g,

P {sup

n

>Cn"'a;log n}SCn”. (4.32)

All that remains is the approximation of R{*—k,(y | x). Condition
(4.5) implies that /,)(x) = k(,(c0 | x)=1if n is large enough. Using (4.9),
{4.11), and {4.32) we obtain that

P{(na,)"? [ (x)—1|>Cn a3 logn} <Cn2 (4.33)
By Kiefer's [13] inequality we have

P {sgp f K <-G—(—x—)a_—(@) d,a,(y, u)

Observing that

> C(log n)”z} <Cn~2  (4.34)

(na,) ™" vy | x)=ru(y | ) =kl | X) = ((x) = D(rly | x)
~ k(L X)D/1AX) + ki y | XY=L, (x))/1,(x),

Lemma 4.2 follows from (4.9), (4.11), and (4.32)-(4.34).
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5. LiMIT PoOINTS OF CONDITIONAL EMPIRICAL PROCESSES

Theorems 3.1 and 4.1 say that the weak behavior of the conditional
empirical processes are essentially the same as for the usual empirical
process. Now we consider the exact almost sure properties of the
conditional processes. Let

r(sy=r(s | x)=inf{y:m(y | x)=s}, (5.1)

the inverse (quantile) of m(y|x). We will assume that there is a
neighborhood of x, say V= V(x), such that

sup |m(r(s | x) | u) —m(r(s"| x) | u)| < C|s— 5|7 (52)

ueV

with some C >0 and 0 <7< 1. This condition is implied by the condition
that for y <y,

sup [m(y | u)—m(y" [ u)] SCim(y| x)—m(y"| x)|".

ueV

Let H be the set of absolutely continuous functions (with respect
to Lebesgue measure) on [0,1] for which f(0)=/(1)=0 and
fo (S /() dr< 1.

THEOREM 5.1.  Assume that {3.1)-(3.4), (3.8), (3.9), (4.5), and {5.2) hold
and that a,=n"*, 0<pu <22, where A is given in Theorem D.

(i) If (3.1)~(34) hold, then
{(2 loglog n f Kz(u)du/g(x)) / ﬂn(r(slx)lx),0<s<1}

is almost surely relatively compact in D[0,1] with H as its set of limit
points.

(ii) If (4.1)-(4.4) hold instead, then
—1/2
{(2 log log n j K(x) du) p(r(s] %) | x), 0<5< 1}

is almost surely relatively compact in D[0, 1] with H as its set of limit
points.

The next result follows immediately from Theorem 5.1.
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COROLLARY 5.1.  Assume the conditions of Theorem 5.1. For the kernel
estimator, if (3.1}~(3.4) hold, then

[ K(u) du)l/2

lim sup (log log n)~ 12 sup |B,(y | x)I =( 22(x)

For the NN estimator, if (4.1)—(4.4) hold, then
172
lim sup (log log n) ~"Y?sup |7,(y | x)| = (I K*(u) du/Z) as.

Proof of Theorem 5.1. We show the proof only for §,, as the result for
the NN estimator follows along similar lines. By Lemma 3.2, it is enough
to consider

a1 {J K(t”) d,a,(y, u)—m(y| x) j K(xa_”) dt,,(u)}.

n n

Applying Theorem D, we get

= o(nta; ).

a; 2 J K(x_ u> du((xn(yv u) —n- ’/ZF(Z)(y) U, n))
a

n

sup
¥

Let {W,(s, t,u), 0<s, t<1, u>0} be a three-dimensional Wiener process
with EW,(s,t,u)=0 and EW,s, t,u) WAs',t',u') = (uru)J(sAs,
t A t'). Then from (3.21) we have

{r'(y,u,n),y,ueR,n>1}
2 {WH(p), Glu), n)— F(y, u) W,(1,1,n), pueR,n>1}. (53)

Integration by parts and the law of the iterated logarithm for Wiener

processes gives
X—U
[k
a

n

(na,) ™" |W (1, 1, n)| sup = 0((a,log log n)"?).
y

)h(y, u) du

Hence it suffices to investigate

X—Uu

r'(s)=(na,) " '? {j K( p

) d, W ,(H(r(s), G(u), n)

n

—s [ K (xa_ ") dW (1, G(u), n)}.

n

683/26/2-7



204 HORVATH AND YANDELL

We obtain from (3.26) that

sup Ers,”(s)r;”(z)—fKz(u)dug(x)(z/\s—zs) =o(1). (54)

0<s, 151
Elementary calculations show that

E(Ir'2(t)—T'®s))*<Clt—s|,

where 7 is given by (5.2).
Let ¢>1 and define n,=[¢*], with v an integer. We next show that for
every ¢ > 0 there is a ¢ =c(g)> 1 such that

limsup max (logv)™"? sup |[I'P(s)—T'P(s)<e  as. (55)

Voo aySnsniyy] 0<s<1

Let n < m such that 1 <n/m and define

I, s)y=rgQ), ._.,)—T'Ps), 0<s, <1, (5.6)
It is not difficult to calculate the covariance function of I'® because the
process is given in terms of integrals with respect to a Wiener measure.
Long but elementary calculations give the following results:

E(r'™(t, s)—I'“(¢, s))> < C |1 —m/n| |t—1], (5.7)
E(r (1, s)— ', )< C 1 —mfn |s—s|° (58)

and
E(r'™(t,5)? < C |1 —m/nl, (59)

where C is an absolute constant. By (5.7)-(5.9) we can apply Lemma 2 of
Lai [16] and get that for all x> 10

P{ sup |, s) >xC |1 —m/nl} <100 ro exp(—u*/2) du. (5.10)

0<s, 11

Hence (5.5) follows immediately from (5.6) and (5.10) with x = (4 log v)"/~
Now we observe that ¢ can be arbitrarily small in (5.5), and loglogn,/
logv—1 as v— oo for all ¢> 1. Thus Theorem 1.1a of Mangano [19]
implies that {(2loglogn | K*(u) du/g(x))~'? I'®(s), 0<s< 1}, is almost
surely relatively compact in C[0, 1] with limit points in H.



CONDITIONAL PROCESSES 205

Next we show that H must be in the cluster set. Let n>v. Then
straightforward calculations yield

E{E(D(s) | TP(1),0<1<1,0<u<n,)}?
SE{E(TD(sY | Wit v, u), 0<t,v< L, 0<us<n,)}?
<Cc’ 7,

which goes to zero as # —v— c0. Now we can apply Theorem 1.1b of
Mangano [19] (cf. his remark on p. 912) to show that the cluster set is H.
The proof of Theorem 5.1 is now complete.
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