COMMUN. STATIST. -SIMULA., 17(1), 295-312 (1988)

ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM’S

Brian S. Yandell
Departments of Statistics and Horticulture
University of Wisconsin~Madison

Key Words and Phrases: generalized linear model; generalized residuals; iteratively reweighted
least squares; partial thin plate smoothing spline; penalized likelihood; semiparametric model.

Purpose and Description

Purpose

These Fortran-77 subroutines provide tools for penalized likelihood estimation and model
checking for generalized linear models (GLMs) in which the model has a semi-parametric form.
The routines build on GCVPACK (Bates et al., 1987) and are designed to use the generalized
cross-validation criteria (Craven and Wahba, 1979) to determine the degree of data smoothing.
These problems include smoothed GLMs (O’Sullivan, Yandell and Raynor, 1986), iteratively
reweighted least squares (Green, 1984), and general nonlinear problems. We present some of the
problems PGLMPACK is designed for and describe the structure of the routines.

General Problem: A variety of penalized nonlinear problems can be solved by an iterative
scheme in which the inner step involves a linear model approximation,
Yi=0.+¢ ,i=1,--,n,

with y = (yp * -+ ,y,)7 the working values, 8 = (8,, +-- ,6,)7 the linearized model and € =
(€5, - * - +€4)F a random vector with zero mean and covariance W2, which is often diagonal.
(The matrix W is referred to as the working weights.) In many situation, a semiparametric model
is appropriate, such as

6 =sla+f(x),i=1-,n, Q.1

in which s; is a ¢ -vector of covariates with corresponding parameter vector a, X; is a d-vector
of variates and f (;) is some ‘‘smooth’” function. Smoothness can be enforced by a ‘‘roughness
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penalty™”, J(f), with a common choice being the integrated squared mth derivative (cf. Bates e
al., 1987). The solution to such a penalized linear model minimizes

-”'- W y-0) 12+ A (f) 1.2)

for some fixed A, leading to a solution of the linear model as 6 = WIAQ)Wy, with AQL) the
“‘hat’* matrix. One can then iterate on the nonlinear problem to convergence.

The choice of the tuning constant A has been a subject of considerable discussion (Rice,
1984; Hirdle and Marron, 1985 a,b). We limit discussion to choices based on minimizing the
generalized cross validation (GCV) criterion (Craven and Wahba, 1979)

voy= 2 Ia-agwyI® a3
lr @-AG)?
However, our development could be easily modified for any data-driven criterion based on A(A).
What we propose to do is to iterate on both 8 and A to find the £ which minimizes (1.3) with 8
minimizing (1.2). It is not known whether such a procedure will converge, but we conjecture that,
if the GCV minimizer is bounded away from 0 and o and the nonlinear problem is suitably con-
vex, then it does converge.

If the penalty is chosen 5o that the estimate of f is a member of a reproducing kernel Hil-
bert space then the penalty, and hence (1.2), can be expressed in a quadratic form (Aronszajn,
1950). Such a space can be partitioned into a *‘smooth”’ space which is defined by the penalty,
and a “‘null’’ space which is annihilated by the penalty, The semiparametric model (1.1) can be
written in matrix form as

0=Sa+TB+KS ,

with § the n xc covariate matrix with rows s, T an a Xt matrix whose columns span the
null space, and K an n xk matrix spanning the smooth space. If J penalizes the integrated
squared mth derivative, then the ith column of T contains the low order polynomials in x; of
total order at most m — 1 and the ijth entry of K is proportional to Ilx; —x; I|*" ™ (cf. Bates et
al., 1987).

Let Ky be the k xk matrix corresponding to the quadratic penalty for J and let Ty be
the k xt matrix spanning the null space. Typically Ky and T, are either derived from the
unique design points or from a set of user-supplied basis nodes (see Appendix 2 of Bates et al.
(1987)). The objective function (1.2) can be expressed as

% ' W (y - Sa-TB-K5) I+ A5TK ;5 (1.4)

subject to TF8=0. We propose computational solutions when matrices and working vectors in
(1.4) may depend on the unknown parameters. Some problems of interest include: (a) semi-
parametric generalized linear models, in which the matrices S, T, K and Ky are constant while
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the working values W and y may change with each iteration; (b) iteratively reweighted least
squares, in which only Ky remains constant; and (c) general nonlinear problems (remote sensing,
for example), in which all matrices may change with each iteration.

One would like to decompose any constant matrices exactly once and to keep decomposi-
tions of the changing matrices as cheap as possible. The method proposed here combines the
advantages of the singular value decomposition (SVD) (Dongarra et al., 1979, chapter 10) in
locating the GCV choice of A with Cholesky decompositions (CDs) (Dongarra et al., 1979,
chapter 8) which are relatively cheap once A is fixed. While the decompositions suggested are not
new, the combination of approaches appears to be an unexplored area. The basic strategy is as
follows:

(1) choose an initial guess of A, e.g., A=oo;
(2) find estimates of (B, a, 8) by iteration using CDs;
(3) linearize the problem based on the iterated solution;
(4) use SVD to diagonalize A(A);
(5) choose new A using GCV or another method;
(6) interate through (2)—(5) until convergence.
Convergence criteria can include absolute or relative convergence of the regularization functional

and/or the parameter estimates, and absolute convergence of log(nA). The number of iterations in
(2) may be restricted, leading to rough estimates which are fed into (3).

We do not assume any special structure to the design or the matrices, except that we sup-
pose that W is of full rank, symmetric and computationally invertible. In many cases, W is actu-
ally diagonal, but this will not be explicitly used in the linear algebra. The algorithms below are
extensions of Bates et al. (1987), building on their Fortran77 package, GCVPACK.

Semliparametric Generallzed Linear Models: Semiparametric generalized linear model
parameter estimation can be formulated as the problem of minimizing, for fixed A,

S:(0)=-2LO)+AJ(f) . 2.1)

in which 0 is of the form (1.1), L(8) is the log likelihood and J is the smoothing penalty (see

. O’Sullivan, Yandell and Raynor, 1986; Green and Yandell, 1985). If L (8) is suitably convex and
J (©) has a quadratic form, then S3(0) has a unique minimum for each A. These conditions appear
to hold for many generalized linear models.

The log likelihood can be written in an iterative form using the score vector u, the
working-weights W and the working-vatues y,
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u=| &L
0], "
wi=g| - L 22
2007 | o’

y=6°+W72a ,
based on @° from the previous iteration. Note that for the independent normal model, W™! is a
diagonal matrix of the standard deviations and y is the vector of observed responses. The log
likelihood is approximated by a quadratic based on a two-term Taylor series expansion (¢f. Yan-
dell and Hogg, 1987),

L©)~L(69+% W all®=% IWy-0)lI° .

This allows one 1o locally approximate the penalized likelihood by (1.2). It is well known (Green,
1984) that under regularity conditions the iteratively reweighted least squares solution based on
(1.2) is the same as the maximizer of (2.1).

We first decompose the constant matrices. Locating the unique design points Ty and the
corresponding unique covariates S,y (if any) we form a QR decomposition (Dongarra et al.,
1979, chapter 9)

[TU :Sw] = i‘é = [Fl 'iﬂ[(zl] = i’lﬁl B

From this we construct the (unweighted) design

X =[T:S:KFy @3)
and penalty
z=[° _To_] . (24)
0 FIK,F,
We decompose I using a pivoted Cholesky followed by a QR decomposition,
E'ZE=LL and LT=QR=QR, . 2.5)
and construct
T
Z=1(2,:Z;)= XEQ{R; :] . 26)

Note that F]JK ,F, is of rank ¢ <k ~1,and LT, Q,, R, and Z, all have ¢ columns, The ori-

ginal parameters are transformed to
p R" 0
A [m] @7
2
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with ¥ of length ¢ and ® of length ¢ +¢ . The objective function becomes

1 2 T,

- IWE-Z,0-Z, )"+ ry'y . (2.8)

At this point, we have done all the ‘‘one-time’’ decompositions. The following steps must
be redone each time W and y change. We form a QR decomposition of

WZ2= FG= F]G] ’

RN
J ) [JZ} B [F;
with J; being (r+c)xq and J, being (n —t —c)xq . This leads to the final form of the objec-
tive function,

and create

WwWZ, ,

%IIF,TWy—Glm-J,yIIH

) 2.9
- IFTWy-Jy1%+ 2Ty ,
in which the first term can be made zero by solving for @, with any given ¥,
G,0=F[Wy-J,y . (2.10)

The latter two terms of (2.9) comprise a ridge regression (Golub, Heath, and Wahba, 1979), with
the estimate of y found by solving

My=J]Fwy , (2.11)
where
M=J]2+nM .

The **hat’’ matrix can be formally written as

I o R
AN =F|, IMT Fr . 2.12)

Naturally, one would iterate to new working-values and working-weights using (2.2) and repeat
the minimization of the objective function (2.8). At convergence, one can obtain the estimates of
the original parameters via (2.7).

Singular Value or Cholesky Decomposition?: One may approach the solution of (2.11)
for yy and the hat matrix (2.12) in different ways, depending on whether one wishes 1o select a new
A or whether one wishes to leave A fixed. One way (0 automate choice of a new A is based on
GCYV for the linearized problem (2.9). We can diagonalize A(A) with a singular value decompo-
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sition (SVD) to simplify the search (Golub, Heath, and Wahba, 1979). Decompose
J,=UDVT ,

where D is diagonal of size¢ @ = min(g,n—¢-c) and U and V are orthogonal of sizes
(n—t—c)xa and a xq , respectively. The parameter estimates are

¥=V@D+n Al 'DUTFIWy ,
with ® determined by (2.10). The hat matrix is diagonalized as

1 ° .
AM=F| o up22+ parytut| F

These leads to a rational polynomial representation of the GCV criterion (1.3), which can easily
by minimized by a golden section search, as in GCVPACK.

If instead A is fixed, one can take the cheaper approach of a Cholesky decomposition (CD)
of

M=C'c,
leading to the estimate of v by solving
C'cy=JIFfwy .
The hat matrix becomes

A= ! o T 2.13
()_FOJZC—IC-TJIF . @. )

Diagnostics: The diagonal elements of the hat matrix have been used for diagnostics in GLMs
(Pregibon, 1981) as well as in smoothing spline models (Eubank 1984, 1985). Recently they have
been extended to semiparametric GLMs (Yandell and Green, 1986). The diagonal elements of
(2.12) can be computed formally as

(A = I1FTe; 1124+ M43FF e, 11
in which e; is the n-vector with a 1 in the { -tk position and 0’s elsewhere. For the SVD approach
this is simply
(AW = I FTe; 1%+ ID@ + nAD)4UTF e, 112,
and for the Cholesky approach (¢f. O’Sullivan (1985)),
(A, = IFTe 12+ 11 CTa]RTe, 117

The trace of A(A) can be quickly computed if one is not interested in the diagonal entries by not-
ing that

r(AQ) =t+c+tr(JFIM =g +t+c-nlerM™?) .
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For the SVD approach (see Bates et al. (1987)) this is

tr(AA) =t+c+ f;dﬁ/(d,-2+n A)

i=l

=a+i4c- SA+dHAN .

i=l

For the CD approach we have
r(AA)=q+t+c-nkr(C'CT

q
=q+t1+c-nAY ICTe, e,

ix]
in which e; here is of length ¢.

Covariance matrices can be computed by noting that COV (y)=W2. Considering first the
linear model estimates of (1.1), we find from (2.12) that

cov(®)=w-IF I 0 Fiw!
0 M ITILM 3T :

Hence, the variances are
VAR (0;) = IFTW e, II*+ Il IMJTFW e, 1% .
For the SVD approach, this becomes
VAR 8;) = IFTW e 1>+ IID¥D2+ n AL 'UTFIWle; 112 .
Noting that
MM =M -naM2 | (3.1
the variances under the Cholesky approach can be written as
VAR (8;)= IFTW e, 112+ I CTIIFIW e, I
-l CICTIIRTW e, 112

The covariance among the coefficients can be derived, using (2.7), (2.10) and (2.1 1)as

B
CoV| a | =EQ,G{'G;TQJET +
FIs

=T

R R’
1 -13T -1 1 TT
EQ[_G;,JI]M HIM [—GF‘JJ Q"ET .

-T

In many sitations we may be only interested in COV (a). Further, if the penalty T is of the
proper rank, then (2.7) essentially permutes and rotates the coefficients @ and B into @. Let & =
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G;"QJE"e,,;,i=1, - ,c,be the transformed index for o; . For the SVD approach,
VAR (o) = 11§ 12+ D2+ n AL VTITe, 112
For the Cholesky approach, using (3.1),
VAR (o) = I1& 112+ 1CTIT6, 1> = nall C'C-T T, 112 .
Tests: One may test parameters using the covariance matrix given above. One can perform
stepwise tests in nested semiparametric GLMs using score tests which are computationally more

appealing than tests based on deviances (Pregibon, 1982, Yandell and Green, 1986). One can also
test whether the f is parametric using analogues to recent results of Cox et al. (1987).

Consider testing a full model
6 =sTa+sa+f(x;)
against the reduced model
8 =sfo+f(x) .
In other words, one tests whether the 7-vector a=0. The score statistic is

aL

= Wxv—0)= -
5| = WO-9=wa-Awy

4

= WF,(I-J,MJ)F;Wy =Hy .

The score test for @ is
T =u'§(§"HS)'§Tu
e 32
=y'HSSTHS)'§Hy ,

with § the n xr matrix with rows & . This test is conjectured 10 have approximately a 2 dis-
tribution with r degrees of freedom when @=0. For the SVD approach define the g xr matrix

B=(1+D?/(n\)™*UTFWS§
and transformed working values
§=@+D*/ (nA)™*UF]Wy .
Form the QR decomposition of B = QR = Q,R;. The score test (3.2) can then be written as
T = 5'B(B™B)'BTy = I1QTy I
For the CD approach,
H=WF,(I-J,CCTINFIwW .
Forming the Cholesky decomposition of

§THS=L"L ,
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the score test (3.2) becomes
§=IL"§THy I |

Note that when r =1, calculations for both the SVD and the CD approaches simplify greatly,
obviating the need for the extra decomposition in either case.,

Cox and Koh (1986) proposed a test for f parametric in the simple spline model, which
was later extended to partial and generalized spline models by Cox et al. (1987). One can readily
show that the nonlinear analogue of that test is

T = IDUTFIwy 1= 1 JTFTwyl® |

This can be easily computed after convergence is reached. In fact, the computation overlap with
some of those needed for the score test, which can lead to some time savings. Unfortunately, the
distribution of T is a weighted sum of %? statistics which has no closed form (Cox and Koh,
1986).

Other Nonlinear Models: Iteratively reweighted least squares (IRLS) models differ from
semiparametric GLMs in that only the penalty matrix remains fixed (Green, 1984). The likelihood
parameter 8 can be locally linearized, but the S, T, and K matrices are no longer fixed. For
instance, with a penalized likelihood of the form (2.1),

_aL _oL _dL
S=3a T 3 ™ E=%
which may depend on the unknown parameters, We still only need form and decompose I as in
(2.4) and (2.5) exactly once. However, the (unweighted) design (2.3) may change with each itera-
tion. Hence, the remaining computations need to be done at each iteration. One could proceed in
the same manner as for the generalized linear models, but reconstructing X, and hence Z and J,
each time.

General nonlinear problems could proceed in the same manner as for IRLS, except that Ky
changes each time. Thus most computations need to be redone. It may be possible for some non-
linear problems to reparameterize them as SGLM or IRLS problems to eliminate this difficulty.

Description

The package has one main driver, dpgim, for penalized general linear models. The subrou-
tine dpglm calls dmksx to make the penalty £ and the design matrix X using GCVPACK rou-
tines dmaket, dmakek and dctsx. The penalty T is decomposed by a call to the GCVPACK rou-
tine dsgde. Then the matrix Z is created by the GCVPACK routine dcrtz.

The routine dnrfs handles all computations for the iterations, The model is initialized by a
call w0 dmodel, which is one of dbin, dpois or dnorm, depending on the model selected: binomial,
poisson or normal. This routine handles evaluation of the likelihood and updating of working-
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values. The algorithms are set up for a diagonal W matrix, and would have to be slightly
modified for more general *working-weights. At each iteration for either the CD or the SVD
approach, dmodel is called to update working values, and dcheck is called at the end to check the
convergence criteria. For the SVD approach, the GCVPACK routines dzdc and dgcv are called to
decompose Z and o locate a new A by GCV. For the CD approach, Z is decomposed in the
routine dchrr.

Once convergence is established, dnrfs computes the predictive MSE (if requested) and
back-transforms the predicted values to the original units. It computes the diagonal of the hat
matrix (if requested) by dcdiag for the CD approach or by the GCVPACK routine ddiag for the
SVD approach. The variances of the parameter estimates (if requested) are computed in dvar for
both the SVD and the CD approaches. The test statistic for parametric f is then computed by
dnrfs. 1f score tests are requested, then dsvst or dchst compuies the overall test of a=0, along
with single tests for for each of the r elements of .. Once dnrfs retums, dpgim does some final
cleanup using LINPACK routines.

The user can control whether A is to be considered fixed or to be automatically chosen, how
many CD iterations are done each loop, and how many over CD and SVD iterations are per-
formed.

Related Algorithms

The numerical lincar algebra in our routines is performed using the LINPACK (Dongarra et
al.,, 1979) routines. The linear algebra for generalized cross validation is performed using
GCVPACK (Bates et al., 1987). The introductory comments of each PGLMPACK routine list
which GCVPACK, LINPACK and BLAS (Basic Linear Algebra Subroutines) routines are called
directly or indirectly. There is one machine—dependent constant, the relative machine precision,
which is used in these routines to determine error conditions caused by ill-conditioning, but that
constant is computed each time it is needed.

The present work generalizes GCVPACK algorithms for linear models of Bates et al.
(1987) and references therein, It would also be possible to take advantage of block diagonal
forms (Yandell, 1987) to realize further savings of time and storage space.

O’Sullivan, Yandell and Raynor (1986) developed algorithms for smooth generalized linear
models based on the Cholesky decomposition. Green (1985) and Green and Yandell (1985)
presented algorithms for penalized likelihood schemes which include generalized linear models
and other iteratively reweighted least squares methods. Green and Yandell (1985) present a one-
dimensional algorithm based on Reinsch (1967) and a general algorithm based on the Cholesky
decomposition. See also O'Sullivan (1985). Yandell (1985) developed an earlier version of the
present multidimensional algorithms. Hastie and Tibshirani (1986) and Buja, Hastie, and
Tibshirani (1987) developed algorithms for generalized additive models using the ‘‘backfitting
algorithm’’ pioneered by Friedman and Stuetzle (1981).
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If one follows Elden (1984) to stop the singular value decomposition after the bidiagonali-
zation, considerable time can be saved since the effort to diagonalize is magnified by the number
of iterations. Earlier work on GCVPACK (Bates et al., 1987) indicated that half of the singular
value decomposition time may be spent on bidiagonalization. Of course, once convergence is
reached, one could complete the diagonalization, doing this only once, to easily derive the
diagonal of the ‘‘hat” matrix. Such a savings in computation would further reduce the advantage
of iterating via Cholesky with fixed A (se¢ Test Results section).

Test Results

The package and drivers have been tested for internal consistency and for accuracy against
other known algorithms. Here we present some timing results to show that the methods are feasi-
ble for relatively large data sets and to offer insight into which portions of the code should be
improved, if possible.

All timing runs were performed on a Vax-11/750 computer with a floating point accelerator
and running the 4.2 BSD UNIX™ operating system. All timing was performed using GCVPACK
with the standard BLAS of LINPACK (Dongarra et al., 1979),

We focus our investigations upon the Poisson and binomial special cases of the semi-
parametric generalized linear model as these are potentially of wide interest and easy to formulate.
We allowed up to ¢ initial iterations of the Cholesky decomposition (CD) for A=oo (perfectly
smooth case), and up to ¢ CDs following each SVD, where ¢ was 1, 2, or 10. No case required
more than 7 CD following an SVD, or more than 7 SVD overall.

We simulated data which we thought might be ‘‘cumbersome’ for the numerical algo-
rithms. Simulations were conducted for n =50 and 100. The simulations were Poisson with a
normal shaped curve of 8 = log(mean value), with peak height of between 6=1.5 and 20. Bino-
mial simulations used a similar normal shaped curve for 8 = logit(mean value), with peak height
of between 6=1ogit(.05) and logit(.3) for n =50 and between. 0=10git(.005) and logit(.3) for
n=100.

The simulations showed that when the “‘signal’’ is small relative to the *‘noise’’, the CDs
seem to stabilize the minimization problem, reducing the number of SVDs required and cutting
the run time. Table 1(a) present the combined CD and SVD run times, while Table 1(c) present
the numbers of SVDs and CDs. As the height of the Poisson peak rises, the CD iterations have a
reduced impact on convergence. However, note that on several occassions iteration with only one
CD increased the number of SVDs required. Allowing more than 2 CD steps only seemed to
increase the overall run time; the number of SVDs was reduced in only a few instances. In addi-

UNIX is a trademark of AT&T Bell Laboratories
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Table 1(a). Poisson Run Times
n =50 n=100
peak | c=0 c=1 ¢=2 c=10 ! c=0 c=1 c=2 ¢=10
1.5 | 134 120 94 103 974 848 885 904
2 163 150 130 141 950 834 880 933
25 | 134 148 126 134 | 1149 1051 1098 932
3 132 148 125 138 759 824 659 718
4 150 178 155 142 956 1048 882 967
5 158 180 157 144 955 1069 1100 988
6 131 173 155 120 970 1244 915 1006
7 133 159 127 161 938 1038 873 970
8 131 175 157 141 939 1053 1105 1043
9 135 178 158 144 955 1280 1138 1026
10 157 204 188 174 | 1129 1245 1106 1371
15 134 180 187 181 941 1252 1109 762
20 158 207 189 175 962 1276 1131 1143
Table 1(b). Poisson Decomposition Count (SVD.CD)
n =50 n=100
peak | e=0 c=1 ¢=2 ¢=10 | c=0 c¢=1 =2 =10
15 | 50 44 35 310 | 50 44 46 410
2 61 56 48 412 | 50 44 47 412
25| 50 55 47 412 | 60 55 58 411
3 50 S5 47 413 | 40 44 36 311
4 60 66 58 415 | 50 55 47 413
5 60 67 59 415 | 50 56 58 414
6 50 66 5.9 316 | 51 66 49 415
7 50 55 47 419 | 50 55 47 414
8 50 66 59 414 | 50 56 59 417
9 51 66 59 415 | 50 67 59 4.16
10 60 77 610 516 | 60 66 59 523
15 51 67 610 51850 66 59 313
20 60 77 610 516 |50 66 59 419
Table 2(a). Binomial Run Times
n= 50 n=100
size prob | ¢=0 c=1 ¢=2 ¢=10 | c=0 c=1 c=2 ¢=10
10 3 108 87 90 91 943 827 671 692
2 106 118 125 131 970 829 858 882
1 133 118 92 97 968 860 885 937
.05 135 148 130 135 | 1171 1064 898 977
.01 - - - - 1166 1046 1097 935
20 3 109 91 92 96 743 604 632 635
2 137 119 123 127 760 617 636 645
1 109 120 124 129 780 838 650 680
.05 165 15 159 168 795 849 681 742
.01 - - - - 1351 1261 1103 1225
.005 - - - - 1513 1676 1536 1683
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Table 2(b). Binomial Decomposition Count (SVD.CD)
n=150 n =100

size _prob | c=0 c=1 =2 =10 | c=0 c=1 ¢c=2 ¢c=10
10 3 50 44 35 38 50 44 36 38
2 40 44 46 49 50 44 46 48

Bl 40 33 35 36 50 45 47 4.11

05 50 55 48 411 | 60 55 47 4.12

01 - - - - 60 55 58 4.11
20 3 40 44 46 49 40 33 35 3.6
2 51 44 46 48 41 33 35 3.7
1 41 34 35 137 41 44 35 38

05 60 55 58 51240 44 36 3.10

01 - - - - 70 66 58 5.14

005 - - - - 80 88 7.1 1720

tion, a few simulations, not shown here, converged when up to 2 CDs pe‘PSVD were allowed, but
did not converge when 0 or up to 10 were allowed. Similar statements can be made about the
binomial simulations (Table 2).

Since we know that the estimates converge for fixed A (O’Sullivan, Yandell, and
Raynor, Jr., 1986), a few iterations for fixed A may guard against nonlinearity in the penalized
likelihood. It is not known at this time what conditions are required on the penalized likelihood,
as a function of A, to insure convergence in the SVD-only approach.

Acknowledgements

This research has been supported in part by United States Department of Agriculture CSRS
grant 511-100, and National Sciences Foundation grant DMS-8404970, Computing was per-
formed on the UW-Madison Statistics VAX 11/750 Research Computer.

Bibliography

Aronszajn, N. (1950), ‘‘Theory of Reproducing Kemels,"* Trans. Am. Math. Soc., 68, 337-404.

Bates, D.M,, Lindstrom, M.J., Wahba, G., and Yandell, B. S. (1987), **GCVPACK - Routines for
Generalized Cross Validation,” Communications in Statistics - Simulation and Computa-
tion, 16, 263-297. (Algorithms Section)

Buja, A,, Hastie, T., and Tibshirani, R, (1987) ‘‘Linear Smoothers and Additive Models."* Techni-
cal Report#50, April 1987, AT&T Bell Laboratories.




308 YANDELL

Cox, D.D,, and Koh, E. (1986) ‘*A Smoothing Spline Based Test of Model Adequacy in Polyno-
mial Regression.”’ Technical Report#787, Dept. of Statistics, U. of Wisconsin.,

Cox, D.D., Koh, E., Wahba, G., and Yandell, B. S. (1986) ‘‘Testing the (Parametric) Null Model
Hypothesis in (Semiparametric) Partial and Generalized Spline Models.”” Technical
Report#790, Dept. of Statistics, U. of Wisconsin.

Craven, P., and Wahba, G. (1979), *‘Smoothing Noisy Data with Spline Functions: Estimating the
Correct Degree of Smoothing by the Method of Generalized Cross-Validation,”” Numer-
ische Mathematik, 31, 377-403.

Dongarra, J.J., Bunch, J.R., Moler, C.B,, and Stewart, G. W. (1979), Linpack Users’ Guide, Phi-
ladelphia: SIAM.

Elden, L. (1984), *‘A Note on the Computation of the Generalized Cross-Validation Function for
I11-Conditioned Least Squares Problems,”’ BIT, 24, 467472,

Eubank, R.L. (1984), ‘“The Hat Matrix for Smoothing Splines,”* Statist. and Prob. Letters, 2, 9-
14,

Eubank, R.L. (1985), ‘‘Diagnostics for Smoothing Splines,'’ Journal of the Royal Statistical
Society, Ser. B, 47, 332-34].

Friedman, J. H., and Stuetzle, W. (1981), ‘‘Projection Pursuit Regression,” Journal of the Ameri-
can Statistical Association, 76, 817-823.

Golub, G. H., Heath, M., and Wahba, G. (1979), ‘‘Generalised Cross Validation as a Method for
Choosing a Good Ridge Parameter,’’ Technometrics, 21, 215-224.

Green, P.J. (1984), *‘lteratively Reweighted Least Squares for Maximum Likelihood Estimation
and Some Robust and Resistant Alternatives (with Discussion),” Journal of the Royal Sta-
tistical Society, Ser. B, 46, 149-192,

Green, P.J. (1985) ‘‘Penalized Likelihood for General Semi-Parametric Regression Models.”
Technical Report#2819, Math. Research Center, U. of Wisconsin.

Green, P.J., and Yandell, B.S. (1985), ‘‘Semi-Parametric Generalized Linear Models,” in
GLIMSS: Proceedings of the International Conference on Generalized Linear Models, Sep-
tember 1985, ed. R. Gilchrist Lecture Notes in Statistics, vol. 32, Springer-Verlag.



ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 309

Hirdle, W., and Marron, J.S. (1985a), ‘‘ Asymptotic Nonequivalence of Some Bandwidth Selec-
tors in Nonparametric Regression,’’ Biometrika, 72,481-484.

Hiirdle, W., and Marron, J.S. (1985b), ‘‘Optimal Bandwidth Selection in Nonparametric
Regression Function Estimation,’’ Annals of Statistics, 13, 1465-1481,

Hastie, T.J., and Tibshirani, R.J. (1986), ‘‘Generalized Additive Models,’’ Statist. Science, 1,
297-318. (with discussion)

O’Sullivan, F. (1985), **Contribution to the Discussion of the Paper by Silverman,”” Journal of the
Royal Siatistical Society, Ser. B, 47, 39-40.

O’Sullivan, F., Yandell, B.S., and Raynor, Jr., W.J. (1986), *‘ Automatic Smoothing of Regression
Functions in Generalized Linear Models,”’ Journal of the American Statistical Association,
81, 96-103.

Pregibon, D. (1981), ‘‘Logistic Regression Diagnostics,”* Annals of Statistics, 9, 705-724.

Pregibon, D. (1982), *‘Score Tests in GLIM,” in Proc. GLIM82 Conf., ed. R. Gilchrist, New
York: Springer-Verlag.

Reinsch, C. H. (1967), “*‘Smoothing by Spline Functions,”” Numer. Math., 10, 177-183.

Rice, J.R. (1984), ‘‘Bandwidth Choice for Nonparametric Regression,’” Annals of Statistics, 12,
1215-1230.

Yandell, B.S. (1985), *‘Graphical Analysis of Proportional Poisson Rates,”’ in Proceedings of the
17th Symposium on the Interface, 17-19 March 1985, Lexington, ed. D.M. Allen, New
York: North Holland, 283-287.

Yandell, B.S., and Green, P.J. (1986) *‘Semi-Parametric Generalized Linear Model Diagnos-
tics.”” Proceedings of the Statistical Computing Section, ASA, Chicago, 48-53.

Yandell, B.S. (1987) *‘Block Diagonal Smoothing Splines.”” Technical Report#812, Dept. of
Statistics, U. of Wisconsin.

Yandell, B.S., and Hogg, D.B. (1987) ‘‘Determining Egg-Laying Rates of an Insect Using
Splines.”’ Technical Repori#807, Dept. of Statistics, U. of Wisconsin.




310 YANDELL

0000000000000000000OOOOOOOOOOOOOOOO00000000000000

Comments for Driver Routine

subroutine dpglm(des,lddes,cov, ldcov,node,ldnode, resp,ldresp, ivec,
® adiag,avar,pred,lamlim,dvec,coef,svals,tbl,ldtbl, auxtbl, score,

® Jdscor, stest,work,lwa,iwork,liwa, job, info)

integer lddes,ldcov,ldnode,ldresp,ivec(13),1dtbl,ldscor, lwa,

* liwa,iwork (liwa), job,info

double precision des(lddes,*),cov(ldcov,*),node(ldnode,*),

¢ resp(ldresp, 2),adiag(*),avar(*),pred(*),lamlim(2),dvec(8),

* coef (*),svals(*),tbl (1dtbl, 3),auxtbl (3, 3), score (ldscor, *},

* stest (*),work(lwa)

Purpose: determine the generalized cross validation estimate of the
smoothing parameter and fit model parameters for a penalized
general linear model.

On Entry:
des (lddes,dim) design for the variables to be splined
lddes leading dimension of des as declared in the

calling program
cov (ldcov, ncovl+ncov2) design for the covariates
first ncovl columns contain covariates which
duplicate the replication structure of des
next ncov2 columns contain covariates which
do not duplicate the replication structure of
des
ldcov leading dimension of cov as declared in the
calling program
node (ldnode,dim+ncovl) nodes for basis splines
or unique design points and covariates
ldnode leading dimension of node as declared in the
calling program
resp(ldresp, 2) response vector, weight vector

ldresp leading dimension of resp as declared in the
calling program
ivec (13) contains:

1 nobs number of observations
2 dim number of columns in des
3m order of the derivatives in penalty
4 ncovl number of covariates which duplicate
the replication structure of des
= 0 if using basis splines
5 ncov2 number of covariates which do not
duplicate the replication structure
of des
6 nuobs number of nodes if using basis splines
or number of unique design points
7 ntbl number of evenly spaced values for
1n (nobs*lambda) to be used in the
initial grid search for lambda hat
if ntbl = 0 only a golden ratio search
will be done and tbl is not referenced
if ntbl > O tbl will have ntbl rows
8-10 {(not used)
11 maxin maximum iterations for inner loop
12 maxout maximum iterations for outer loop
13 nscor number of covariables for score test
adiag(nobs) "true” y values on entry if predictive mse is
requested
lamlim(2) limits on lambda hat search if user input limits
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dvec (8)

ldtbl

are requested
if lamlim(l) = lamlim(2)} then lamhat is set to
lamlim (1)
contains:
1 lambda first guess for lamhat
(required in except for normal job)
= -1.0 for lambda = infinity
2-6 returned on exit
7 mintol minimum tolerence for convergence
8 minlam minimum difference in log{lamhat)
leading dimension of tbl as declared in the
calling program

score (ldscor, nscor) covariables for score test (destroyed)

ldscor
job

On Exit:
des (lddes, dim)
pred(nobs)
adiag(nobs)

leading dimension of score
integer with decimal expansicn abedef
if a is nonzero then compute predictive mse
using adiag as true y
if b is nonzero then user input limits on
search for min lambda hat are used
is odd then diagonal of the hat
matrix is calculated
> 1 compute variance of (beta:alpha)
is nonzero then use svd
= 0 only use cholesky (fixed lambda)
= 0 use linear model (normal)
= 1 use logistic model (bincomial)
= 2 use log-linear model (poisson)
is nonzero then pred already initialized
= 0 then initialize pred

if

0

if

if

if

MO oOoQLOo

unique rows of des
predicted values
diagonal elements of the hat matrix if regquested

avar( (nnull* (nnull+l)/2) covariance (alpha:beta)
lamlim(2) limits on lambda hat search
dvec (8) contains:

1 lamhat generalized cross validation

estimate of the smoothing parameter

2 penlty smoothing penalty

3 rss residual sum of squares

4 tr(I-A) trace of I - A

5 1like log likelihood

6 obj liket+lamhat*penlty

7 gev generalized cross validation

8 test test of lambda = infinity
ivec(13) contains:

1-7 (same as on entry)

8 npsing number of positive singular values

9 npar number of parameters

(npar = nuobs + nnull)

10 nnull size of the null space of sigma

11 itin iterations for inner loop

12 itout iterations for outer loop

13 (same as on entry)

coef (npar)

svals (npsing)

tbl (1dtbl, 3)

coefficient estimates [alpha:beta:delta)

coef must have a dimension of at least
nuobs+nnull+ncov2
singular values
svals must have a dimension of at least
nucbs-nnull
column contains

1 grid of ln{(nobs*lambda)

2 V{(lambda)
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3 R(lambda) if requested
auxtbl (3,3) auxiliary table
lst row contains:
ln (nobs*lamhat), V(lamhat) and R{(lamhat) if
requested
where lamhat is the gcv estimate of lambda
2nd row contains:
0, V(0) and R(0) if regquested
3rd row contains:
0, V(infinity) and R{infinity) if requested
stest (l1+nscor) overall and single score test if nscor > 0
info error indicator
0 : successful completion
-1 : ln(n*lambda hat) <= lamlim(l) (not fatal)
-2 : ln(n*lambda hat) >= lamlim(2) (not fatal)
1 : dimension error
2 : lwa (length of work) is too small
3 : liwa (length of iwerk) is too small
4 : error in dmaket (in dmksx)
5 : sigma is rank deficient (in dsgdc)
6 : R is singular (dtrel error in dxeqr)
7 ldcaux (length of dcaux) is too small
8 : error in ntbl
9 : lamlim(l) > lamlim(2)

10 : weight (resp(,2)) is zero
20 < info < 30 : 20 + nonzero info from chol
30 < info < 40 : 30 + nonzero info from dzdc
100 < info < 140 : 100 + nonzero info from dgecv
200 < info < 210 : 200 + nonzero info from dchst
Working Storage:
work (1lwa) double precision work vector
lwa length of work as declared in the calling

program must be at least lwal + lwa2 where
lwal = nctsl*{(nuobs+l) + nnull*(nnull-1)
+ 2*npar* (npar-nnull+l)
+ npar* (nobs+max (nobs, npar))

lwa2 = (npar-nnull)® (ncbs-nnull) - nnull
+ 2* (nobs+npar)
iwork (liwa) integer work vaector
liwa length of the iwork as declared in the calling
program

must be at least 3 ® nobs - nctsl

Subprograms Called Directly:
Pglmpack - dbin dmksx dnorm dnrfs dpois
Gevpack - dertz dsgde
Linpack - dqgrsl
Blas - deopy
Other - dset

Subprograms Called Indirectly:

Pglmpack - dcdiag dcheck dchrr dchst dmodel (=dbin, dnorm,dpois)
davst dvar

Gevpack -~ detsx defer ddiag dgev dmakek dmaket dpder dpmse
drsap dtsvdec dvl dvlop dvmin dzdc mkpely

Linpack - dchde dposl dgrde dgrsl dsvde dtrco dtrsl

Blas - daxpy dasum dcopy ddot dgemv dnrm2 dscal dswap

Other - dcpmut dprmut dset dftkf fact pcheck
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