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SUMMARY

We present methodology for analyzing age-specific birth rates, with particular emphasis on describing
variability within a cohort of like-aged individuals. We use a model structure appropriate for natality
in insects and other arthropod species. Our approach separates natality into a baseline rate represent-
ative of the effects of the environment for the population and a factor that represents the unique
effect of each individual in the cohort. We employ smoothing splines with the penalized likelihood
methodology for estimation. We illustrate the methodology by applying it to data on leafhopper
egg-laying rates.

1. Introduction

The age-specific natality schedule provides information of fundamental importance in
animal population ecology. Conventional methods for studying population dynamics [e.g.,
the Leslie matrix model (Plant, 1986)] require information on age-specific natality for the
population, but for the most part these approaches require only population averages and
ignore any associated variability. However, there has been a growing interest in exploring
the implications that variability in vital rates (birth and death) has for overall population
behavior (Meyer et al., 1986; Slade and Levenson, 1982; Strong, 1986). Arthropods in
general, and certain insect species in particular, exhibit considerable variation in age-specific
birth rates and thus make good candidates for investigating individual variability and its
effects on population dynamics.

A common approach in insect natality studies considers the cumulative number of births
as a function of time for an individual as

N(t) = J;m(x) dx

with m(¢) the observed birth rate. The expected birth rate, 4(¢) = Em(t), is then modelled
with some parametric form, such as a logistic, exponential, or Gompertz curve (cf. Madden,
1985). In contrast, we develop a nonparametric method for modelling insect natality that
allows us to characterize an overall or “baseline” birth rate and to analyze individual
contributions to that rate. Our starting point considers the number of eggs laid per unit
time as a nonstationary Poisson process (Cinlar, 1975), and we propose to estimate the
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age-specific Poisson rates by penalized maximum likelihood using spline-based generalized
linear models.

The model structure we propose embodies the general characteristics of insect natality.
In addition to high individual variability, these include strong dependency on age and
sensitivity to environmental conditions (especially temperature). Let 4%¢) be the birth rate
mediated by the common environment, the age-specific “baseline rate” common to all
individuals subject to the same conditions. Furthermore, we suppose that variability
introduced by individual differences over time (= age) affects the birth rate in a multiplic-
ative fashion. Let a;(¢) be the “individual factor” that depends on unique characteristics
during the life of individual i. We consider modelling the birth rate for the ith individual,
hi(1), as

hi(t) = h%(t)ai(t). (1)

That is, individual-to-individual variation has a relative effect on the baseline rate. Other
models, such as an additive one where individual factors have an absolute effect on the
number of births, are possible but not considered here. The model structure (1) has been
considered extensively for mortality rates (Cox, 1972). If individual birth rate curves /,(¢)
follow the same shape as the baseline birth rate (on a log scale), then a;(¢) is constant. If
not, changes in a;(¢) reflect time-dependent changes in individual natality (e.g., due
to physiological changes). Taking logs in (1) and defining 6, = log A, 0° = log 4°, and
«; = log a;, we have

0:(1) = 6°(t) + au(?). 2

Bartoszynski et al. (1981) and Clevenson and Zidek (1977) considered such a model for
Poisson data with «;(z) assumed constant. This model is a special case of the generalized
additive model (Hastie and Tibshirani, 1986).

We estimate the log baseline rate 8°(¢) and individual factors «,(7) as smoothly changing
functions of time. Our method requires the imposition of some measure of desired
smoothness on the estimates through a “penalty” on overall curvature of the functions. We
maximize the likelihood plus the penalty, striking a compromise between fidelity to the
data (with rather bumpy estimates) and simplicity in curve shape (with straight-line
estimates). This maximum penalized likelihood methodology has received growing atten-
tion recently for graphical examination of smoothly changing curves (cf. O’Sullivan,
Yandell, and Raynor, 1986; Green and Yandell, 1985; Silverman, 1985; and Hastie and
Tibshirani, 1986).

We outline the methodology in Section 2. We demonstrate the utility of our approach
by applying it to leathopper data sets: baseline rates are analyzed in Section 3, and individual
variability is examined in Section 4. We make some conclusions and remarks in Section 5.

2. Splines and Penalized Likelihoods

We present here our estimation procedure for the baseline birth rate and the individual
factors using the penalized likelihood method. Added detail is presented in the Appendix.
We consider first a single female and for notational simplicity drop the individual sub-
script i. Thus, our goal is estimation of A(z) or, equivalently, 0(¢) = log A(¢). Suppose the
female is observed at » distinct times, 0 < ¢, < --- < ,, with f, = 0 being the time of adult
emergence. During an interval between observation times, say ¢—; and ¢;, one would expect
to see H; births, with

H, = f j h(t) dt. 3)
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The number of births occurring during this interval, m;, should have approximately a
Poisson distribution with mean H;. The best (maximum likelihood) estimate of H; is m;,
the observed count, and the best estimate of 4(z) for ¢ between ¢,_, and ¢ is

h(t) = m/d,  with d =t — 1, (4)

Unfortunately, if therq are many short intervals between observations, this (nonsmoothed)
estimate of birth rate /(¢) ends up being very rough.

The basic idea in our approach using smoothing splines is analogous to attaching a
flexible rod to the crude estimates of 6(¢) = log /() from (4) at the “nodes” ,

() = log(m;/d), )

using springs that move vertically. Strong springs force the rod (or curve) to adhere to the

point estimates, whereas weak springs lead to a linear estimate. Springs with intermediate

strength allow the rod to form a smooth curve. Our approach leads to a curve that

approximately follows a cubic polynomial between nodes. We use maximum likelihood

imposing a “penalty” on rough curves, with a large penalty corresponding to a weak spring.
For a single individual, the Poisson distribution

Pr{m;| H}} = (H;)"exp(—H,)/H}!

leads to the log-likelihood based on observed counts m,, .. ., m,, of
" (Prim;| H~}> d :

L=1lo —L—L ) =% m(log H, — log m)) + m; — H)). 6

gjl=-ll <Pr{mj| mj} jgl ]( g J g J) j§1 ( ] J) ( )

The second sum can always be made 0 by setting Y H; = ¥m;, and is ignored below. If one
assumes that / is “smooth,” one can allow the data to indicate what shape /4 has without
specifying a parametric form. Approximating the integral H; by A(¢))d; (see Appendix) and
using 6 = log A, we can write the log-likelihood as

L= % m{oe) + log(d) ~ loglm)] )

Maximizing L directly leads to the estimates (5). Instead, we maximize the penalized
likelihood,

L — I\J(0), (3

with J(6) the roughness penalty and A an appropriate “spring constant.” With a penalty
J(6) on overall curvature,

J0) = f (0" (), ©)

the maximum penalized likelihood estimate is cubic between observation times but is
continuous with a continuous derivative over the domain of observation. Other choices
of the penalty J are possible, e.g., to emphasize a more Bayesian interpretation of 6(¢)
(Silverman, 1985; Wahba, 1985).

If the spring constant X\ is near O (strong springs), the estimate reduces to the rough
maximum likelihood estimate (4). A large value (weak springs) forces the estimate to be a
straight line. An intermediate value of A can be chosen by generalized cross validation
(GCV) (Craven and Wahba, 1979), which compares each count () with the curve estimate
obtained by excluding that count. Since nonparametric curve estimates are biased, one
must strike a balance between bias and variance reduction. Selecting that A which minimizes
the GCV criterion tends to achieve this in the sense of approximately minimizing the
expected mean squared error.
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Suppose one observes r individuals, each with its own birth rate according to the model
(1), and that m;; offspring are found for female i at time ¢. The overall penalized likelihood
can be written, using (5), as

L=7Y Y m[0%t) + ait) + log d; — log m;] — P

=1 j=1

where P incorporates the penalty. This can be expressed as
L=1IL6°+ Y La) — P,
i=1
with

L) = X my[0%) + log(rd) — log m.)],
! (10)

L(a)) = ¥ mylai(t)) + log(my,/r) —log my], i=1,...,r,
i=1

and m.; = ¥; my. Note that L(6°) is a Poisson likelihood, and at time ¢, {m;}i-, is
multinomial conditional on ;. Thus, one now has (r + 1) log-likelihoods in (10).

Our earlier discussion of roughness focused on a single function, 6(¢), for a single
individual. We now have (r + 1) functions, 8%(¢) and a(¢) = {a:(?)}}=;. We postulate a
smooth model that allows for two distinct roughness penalties, one for the baseline rate
6°(¢) and the other jointly for the individual factors a(). Thus, we need to specify two
spring constants, A\, and \,, one for each penalty. The resulting penalized likelihoods are

L, ) = L) = J6°), (i
L, 2) = 3 La) = B 3 S, (12)

Recall that if A, is large (weak springs), the individual factors «; are forced to be nearly
linear.

The penalized likelihood L(6°, \;) can be solved for fixed A\, using a Newton—-Raphson
iterative scheme with Fisher scoring typical of generalized linear models (McCullagh and
Nelder, 1983; cf. Green, 1984). A similar argument holds for L(a, X\,). At convergence, the
deviances D(6°) = —2L(6°) and D(&) = —2 /-, L(&;) have approximately x distributions
(Yandell and Green, 1986). One can estimate the degrees of freedom for each statistic and
use these for testing. For instance, comparing D(a) with the deviance for constant «; tests
whether birth rates can be considered parallel (on a log scale), with a constant relative
difference. Details dre presented in the Appendix.

Algorithms for solving this problem can be found in Green and Yandell (1985) based on
the B-spline algorithm of Hutchinson and de Hoog (1985). This is currently being prepared
for general distribution in FORTRAN77. A multidimensional algorithm based on GCVPACK
(Bates et al., 1987) appears in Yandell (1988) and is available in FORTRAN77 from the
author.

3. Potato Leafhoppers and Temperature

Hogg (1985) studied population dynamics of the potato leathopper, an important crop
pest, in controlled environments at the University of Wisconsin-Madison Biotron. Three
temperature regimes were established with daily fluctuations designed to follow the cycle
typically found under “cool,” “intermediate,” and “warm” summer field conditions in
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southern Wisconsin. Analytical methods included age-specific life tables and Leslie matrix
modelling, but did not incorporate individual variation in birth rates.

Here, we estimated the baseline oviposition rate 4° for leafhoppers at each of the three
temperature regimes. Each regime had 25 or 26 females observed three times a week from
adult emergence to death or removal from study. Of these, some never produced eggs and
were not further considered, leaving 24, 21, and 23 individuals for cool, intermediate, and
warm regimes, respectively. We based estimates on data from the age of first egg-laying
through the last interval in which eggs were laid. As a consequence, the population of
each group could change over the course of the study as individuals died or were lost
from the study.

We estimated the baseline rates using (11). The smoothing parameters were chosen using
GCYV and gave fairly smooth estimates (Figure 1). Note that the cool regime baseline rate
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Figure 1. Curve estimates for potato leafhopper baseline oviposition rates for (a) warm, (b) inter-

mediate, and (c) cool regimes. Smooth lines are penalized estimates; rough lines are interpolated
daily estimates.
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estimate has more structure to it, reflecting the fact that there were two or three times as
many records for this regime because leafthoppers tended to live longer at lower tempera-
tures. The baseline rate curves all tend to exhibit an early peak in oviposition rate, followed
by a gradual decline.

Potato leathopper longevity is greatly influenced by the environment (note the different
time scales in Figure 1). One might ask whether the intermediate and warm regime baseline
rates are accelerated versions of the cool regime baseline rate. To examine this, we converted
time to “physiological time” units of degree-days, which combine calendar time and
temperature to reflect more realistically the leafthoppers’ growth and maturation (Figure 2).
It appears that the shapes of the baseline rate curves are roughly similar, supporting the
notion of an accelerated time scale. However, there are differences in magnitude of
oviposition rates among the three regimes. In particular, on a physiological time scale, the
intermediate regime appears to be the most favorable for oviposition (cf. Hogg, 1985).
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Figure 2. Baseline oviposition rate estimates on a common physiological time scale for warm (dot),
intermediate (dash), and cool (solid) regimes.
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4. Examining Individual Variability

We estimated individual factors a; in each of the three temperature regimes using (12). We
present here only results for the cool regime (Figure 3) since we have longer records for
these individuals. Results for the other two regimes were similar.

Our main interest was in exhibiting the individual factors to look for interesting patterns
not easily detected in the raw data or baseline rates. There were several individuals that
had increased birth rates relative to the others early, but then died at a relatively early age.
Note that some individuals had a much lower g; in midlife (15, 20, 24), while some were
just the opposite (18, 23).

We constructed deviance tests for constant individual factors to see whether the individual
oviposition rates are parallel on a log scale, meaning that individual relative differences in
egg-laying are constant over time. The tests were performed by comparing the difference
in deviance between the constant ¢; model and the smooth (spline) a; model to a x>

individual factor relative to baseline
0.5
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Figure 3. Variability among individual oviposition curves for 24 leafhoppers in the cold regime.
Each curve is the individual factor, identified by survival rank.
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distribution with degrees of freedom being the difference in degrees of freedom between
the two models (Table 1). Note that the degrees of freedom are fractional and the test is
approximate (Yandell and Green, 1986). These tests indicate that the individual factors are
not constant; this result was consistent for all three regimes. Thus, the smoothly changing
nature of the individual factors appears to be real, and marked differences exist in individual
oviposition rates over time among leafthoppers in the same controlled environment.

Table 1
Deviance and degrees of freedom (in parentheses) for
individual factors
Model
Regime Constant Spline Difference
Warm 265.90 145.70 120.20
@211) (177.81) (33.19)
Intermediate 856.55 614.31 242.24
(436) (393.31) (42.69)
Cool 1,727.07 974.87 752.20

(965) (861.91)  (103.09)

Deviances are approximately x> with d.f. which may be fractional.
Difference is test of smooth spline against constant individual factor
model.

5. Discussion

We have shown that it is possible to separate a baseline rate from individual factors that
may modulate this baseline. We can examine pictures of the baseline rates and the individual
factors, compare them visually, and even test for apparent patterns. While we have
developed our model specifically for insect natality, the approach promises broader appli-
cability for examining complicated counting data in other biological systems.

Different egg-laying patterns were exhibited by the potato leafthoppers within each regime,
even among the longest-lived leafthoppers. However, we do not know if these represent
distinct oviposition “strategies” within the leafhopper population, or whether they are
simply a random sample from all possible patterns. These results suggest further work
aimed at understanding the basis of individual variation in insect age-specific birth rates.
It also suggests that population characteristics may not adequately reflect individual
characteristics. For instance, the population net reproduction rate (cf. Pianka, 1978),

R°=J; Hh°(t) dt,

with /(¢) the survival probability, may differ markedly from the individual net reproduction
rates

R, = j; (i) dt.

This net reproduction rate R° plays a key role in evolutionary theory (Williams, 1966).
Some aspects of the theory need refinement, notably demonstrating conclusively the
distributions of tests and properties of estimates for semiparametric GLMs. However, as it
stands, the methods presented here can be used for exploratory investigation to examine
temporal and individual variability, and to suggest particular parametric models that
may be useful for subsequent experiments. New questions about temporal patterns and
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individual variability will emerge as this methodology is incorporated into statistical
packages accessible to biologists.
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RESUME

Nous présentons une méthodologie d’analyse dex taux de natalité age-spécifiques, en insistant
particulierement sur la description de la variabilité au sein d’une cohorte d’animaux d’4ges voisins.
Nous utilisons une structure de modéle appropriée a la natalité des insectes et d’autres arthropodes.
Notre approche sépare la natalité en un niveau de base représentatif des effets de I’environnement
sur la population, et en un facteur représentant 1’'unique effet de chaque individu de la cohorte. Nous
employons conjointement les fonctions de lissage splines et une méthode de vraisemblance pénalisée
pour l’estimation. Nous illustrons cette méthodologie en I’appliquant a des données sur le taux
d’oviposition des cicadelles.
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APPENDIX

We first justify our approximation of the integral (3) by the mean value theorem, and then present
details of the maximum penalized likelihood estimation procedure for §°, followed by a brief discussion
of test statistics and the choice of spring constant ;. Brief mention is made of estimating a.

The mean value theorem ensures that H; = h(t)(t; — t,—1) = h(t})d; for some ¢, <t} < . In
practice, we assume that t* = (4 + t—,)/2, but we ignore this below and treat ¢* as ¢, Note that this
approximation introduces some bias that could be important if there are only a small number of
observation times. Using § = log # and the mean value theorem gives us (7).

Initial investigations showed that mortality in the population affects the baseline rates but has only
a modest effect on the individual factors. One can adjust for mortality by modifying the population,
and even allowing the baseline rate to have jumps (Shiau, Wahba, and Johnson, 1986). However, this
has not been treated here.

The log-likelihood L(6°) can be approximated near its maximum, using a second-order Taylor
series expansion, by a weighted least squares. Given an initial estimate 69 of 6°,

L(0°) = L(09) + ¥ [0%)) — %))y — w)) — 3 2 wi[6°(2) — 6%(1))

= L(®) + 3 X wi(my; — w)* — 3 X wly — 0%)F, (13)
with “working-weights” and “working-values” being, respectively,
w,; = rdexp[09(2)] and y; = 03(t) + (ma; — w)/w. (14)

Note that given 6 only the last term of (13) depends on the unknown 6°,
The problem of finding 6° to maximize L(6°, \,) is equivalent to finding §° to minimize

2 wily = )P + NJ(0°) (15)

and iterating to convergence. Typically one makes an initial guess at 69, assigns w; and y, in (14),
solves for a new 6° in (15), replaces 69 by the estimated 6°, and updates w; and y;, and so on, until the
estimates converge adequately.

The estimate that minimizes (15) for penalty (9) can be written as (cf. Bates et al., 1987)

0%t) = Bo + Bt + Bat®> + X 8|t — ®
Jj=1
with the condition that

Y orf=0, k=0,1,2
J=1
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To actually solve for this, we can write the penalty (9) in a quadratic form in the §;’s.

n n

JO) =X ¥ oblt; — 1l
j=1 k=1
allowing us to restate (15) as a quadratic form in the §;’s and 8,’s, which can be minimized by standard
methods.
At convergence, the estimate can be written as

6° = Ay,

with 6° and y vectors of the parameter estimates and working values, respectively, and A the matrix
of coefficients. The “effective number of parameters” are trace (A) (Craven and Wahba, 1979). The
deviance D?*(6°) = —2L(6°) has approximately a x> distribution with trace(I — A) degrees of freedom
(often a fraction), which can be used for approximate tests (Yandell and Green, 1986).

The choice of A, can be made by minimizing the GCV function,

V(\) = nftrace(I — A)]™ :Z' wily — 6°%)P (16)

Since w; and y; depend on the estimate éo(t,-), one repeats the above minimization for several choices
of A and chooses that value which minimizes (16) by a grid search.

Similar arguments can be made for « and A\,. However, when data are not collected on the same
days for all insects one must estimate the total number of offspring per each observation period on
individual i. This can be done by linear interpolation, smoothing out the births for each individual,
and replacing m.; by the interpolated value in L(a;) of (10). The penalty is a sum of terms such as
those given above for J(8°). One then proceeds to the weighted least squares iteration to convergence.
The deviance under the null model of constant g; is simply D*(&) = —2 ¥i-, L(&;) from (10) with
a;(t;) replaced by & = log(m;./m..), the maximum likelihood estimator for constant individual
factors. The difference in deviances reported in Table 2 is simply D*(@) — D*a).



