
Austral. J .  Statist., 30(3), 1988, 342-358 

BOOTSTRAPPED MULTI-DIMENSIONAL 
PRODUCT LIMIT PROCESS 

BRIAN S. YANDELL 

Departments of Statistics and of Horticulture, 
University of Wisconsin-Madison, Madison, Wisconsin, USA 53706 

AND 

LAJOS HORVATH 

Department of Statistics, University of Wisconsin-Madison 

Summary 

We approximate the limit process for a multivariate censored survival 
distribution using the bootstrap. The empirical process has a complicated 
covariance structure depending on the survival and censoring. The boot- 
strapped process provides a means to develop distribution-free procedures 
including simultaneous confidence bands. Results extend to comparison of 
multivariate survival distributions. A gallstone study is examined in some 
detail. 
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1. Introduction 

We show that the bootstrap can be used to  approximate the limit 
process for a multivariate survival distribution based on censored data. 
Since the limit process has a complicated covariance function which de- 
pends on the true survival and censoring distributions, the bootstrapped 
process provides a means to develop distribution-free procedures leading 
to simultaneous confidence bands or to comparisons of two multivariate 
distributions. Examples of multivariate survival distributions include mul- 
tiple nonfatal pathologies on the same individual, breakdown of parts on a 
machine, and stages of a progressive disease or crop damage. All endpoints 
may be observed or censored, making this distinct from the competing risks 
problem. We apply our results to part of the National Cooperative Gall- 
stone Study (Schoenfield et al., 1951) to examine the efficacy of the drug 
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chenodiol. We compare the bivariate distributions of times to bilary pain 
and to cholecystectomy for the placebo group and the high dose group. 

Self-consistent estimators of multivariate survival distributions were 
introduced by Hanley & Parnes (1983), Campbell (1981) and Campbell 
& Foldes (1982) based on writing the joint bivariate survival distribu- 
tion as the product of a univariate survival distribution and a conditional 
survival distribution. Campbell St Foldes (1982) pointed out that an es- 
timator based on this is path dependent and may not even be a distri- 
bution function. However, it is asymptotically equivalent to  other forms, 
and converges to a Gaussian process (Burke, 1988; Campbell, 1982). Lo 
& Wang (1985) showed weak convergence of the self-consistent survival 
estimator, and suggested a modification to this estimator which guaran- 
tees that it is a distribution function. Tsai, Leurgans & Crowley (1984) 
proposed a kernel estimator which is not path dependent. Burke (1987) 
suggested another bivariate estimator for randomly censored data, and 
showed its strong uniform consistency. tVei & Lachin (1984) proposed 
asymptotically distribution-free tests for equality of multivariate survival 
distributions based on analogs to linear rank tests. Related references can 
be found in these works. 

We present our results in terms of bivariate distributions; the multi- 
variate results follow in a completely analogous fashion. Section 2 presents 
results on the weak convergence for the bivariate bootstrap. The two sam- 
ple problem is addressed in Section 3. Section 4 contains simulations and 
an application to disease progression. Although our method has been de- 
veloped for censored data, it works equally well for comparing distributions 
of two populations when there is no censoring. 

2. Weak Convergence of Bivariate Bootstrap 

For convenience denote min(z,y) by z A y  and max(s,y) by zVy. Also 
X ,  = op(l)  means P{lX,l > c} 4 0 for every positive constant c. Let 
{X! ,  yio}zl be a sequence of independent 2-dimensional random vectors 
with common continuous survival function P ( z ,  y) = P { X p  2 z, 2 y}, 
which we wish to estimate. In practice, we usually observe the censored 
vector, {X;,y1,  Sj ,p j }~=~ .  Here, Xi = Xs A C; and % = yo A Di, in which 
{Ci, Dj}gl is a sequence of independent random vectors, independent 
of { X ~ , ~ o } ~ l ,  with common censoring distribution H ( c , d )  = P(Ci 1 
c ,D;  2 d } .  The indicators 6i = I [ X i  = X:] and p i  = I[Y, = KO] specify 
whether the entire lifetime was observed or not. 

Denote the survival function of {Xi, yi} by F ( z ,  y)  = P { X ;  2 z, yi 2 
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y} and define the empirical survival function at  the nth stage as Fn(z, y)  = 
( l /n)#{15 i 5 n : Xi 2 z, K 2 y). Using the relation 

we can define the bivariate product-limit estimator proposed by Campbell 
(1981) and Hanley & Parnes (1983), 

m . 9  Y) 

if F,,(z,y) > 0, with e(z ,y )  = 0 if F,(z,y) = 0. Interchanging Xi and Yj 
in (2.1) and (2.2) yields another, asymptotically equivalent, estimator of 
p (cf. Lemma 4.4 of Campbell & Foldes (1982)). Self-consistency of 
was proven by Campbell (1981), Campbell & Foldes (1982) and Hanley & 
Parnes (1983). Assuming regularity conditions on 8" and a, Campbell & 
Foldes (1982) obtained a rate of uniform almost sure convergence of to 
I" on the interval 

T = ( (2 ,~ )  : --OO < 2 5 20 < 0 0 ,  --OO < y 5 YO < 00 a d  F(zo,yo)  > 0) .  
(2.3) 

Horvith (1983), while extending a univariate result of CsorgG & Horvsth 
(1983), generalized this result in two ways by obtaining the same rate on 
T only assuming that p is continuous, and showing almost sure conver- 
gence on the plane (with a different rate). Campbell (1982) proved weak 
convergence of 

to  a Gaussian process, which was extended by Burke (1988) to a strong 
approximation summarized in the following: 
Theorem 1. (Campbell, 1982; Burke, 1988). Assume is continuous 
and T is defined as in (2.3). Then we can define a sequence of Gaussian 
processes {A(z, y),An(z, y)}rz1 such that 

as n -+ 00, and for each n, An has  the same distribution as A on T. 
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The covariance function of A was calculated by Campbell (1982) and 
Burke (1988). However, it has a very complicated form which depends 
on the unknown Therefore, one cannot directly derive a 
distribution-free statistical procedure from Theorem 1. 

Efron (1981) introduced a bootstrap method in the case of univariate 
censored data which can be extended to the multivariate case. Given data 

and El. 

{ X i ,  yi, &, pi}?=l, let 

Gn(z) = (l/n)#{l 5 i 5 n : Xi 5 21,x 5 12,s; 5 23,~; 5 24) 
with z = (~1,22,~3,24). Draw a bootstrap sample { X , ? , Y ~ , ~ 5 f , p ~ } ~ ~ ,  
which are conditionally independent with common distribution function 
Gn. Define the bootstrapped empirical survival function F',n(z, y) = 
(l/nz)#{l 5 i 5 m : X: 2 z,v 2 y} and the bootstrapped bivariate 
product-limit estimator PmIn(z, y) analogously to (2.2). Our first result is 
the weak convergence of the bootstrapped bivariate product-limit process, 

Zm,n(t, Y) = m1'2 ( E , n ( x ,  Y )  - C<z, Y)) * 

Theorem 2 .  Assume the conditions of Theorem 1.  Then we can define a 
sequence of Gaussian processes {Am,n(x, Y)}:,~=~ such that 

as m I\ n 00 and mn-2 -, 0,  and for each m, n, Am,n has the same 
distribution as A on T .  

Horvdth & Yandell(l987) proved a strong approximation of Zm,n with 
a convergence rate for the one-dimensional case. 

Our next result leads to Cramkr-von Mises and Kolmogorov-Smirnov 
type procedures. Let D ( T )  be the space of all bounded real-valued func- 
tions on G equipped with the supremum norm (cf. Gaenssler, 1983) and 
let 4 be a continuous functional defined on D(T). Theorems 1 and 2 imply 
that as m h n + 00 and mn-' + 0, 4(Zn) and b(Zm,n) both converge 
in distribution to 4(A). In other words, the corresponding distributions, 
Un(t) = P{4(Zn) < t }  and Um,n(t) = P{d(Zm,n) 5 t } ,  respectively, con- 
verge to U ( t )  = P{4(A)  < t }  at every continuity point of U. 

The distribution U can be approximated by the empirical distribution 
based on a large number of bootstrap samples. Let {Zk!n}jN,1 be N boot- 
strap processes calculated from independent samples of size m drawn from 
G,. Introduce the empirical distribution 

uN,m,n(t) = (1/~)#{1 I j I N : 4(zgIn> 5 t )  - 
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By the Glivenko-Cantelli theorem, IUN,m,n(t) - Um,n(t)l  -+ 0 almost surely 
as N + 00 for each m and n. Hence, U N , m , n ( t )  -, U ( t )  almost surely 
and consequently, lU~,,,,,,,(t) - U,(t)l + 0 almost surely as N --+ 00 and 
m A n + 00, mn-2 3 0,  at every continuity point of U .  Define the critical 
v a l u e c ( 1 - a ) = i n f { t L O : U ( t ) >  1-a}, O < a <  l ,anddefinec,( l -a)  
and CN,m,n(l  - a) similarly for Un and UN,,,,,,,, respectively. In a similar 
fashion to the proof of Corollary 17.3 of Csorgo et al., (1986), 

Icn(1- 0) - CN,m,n( l -  .)I 4 0 (2.4) 

(2 .5)  

almost surely and 

C N , m , n ( l -  a) 4 ~ ( 1 -  a) 

almost surely as N -+ 00 and m A n -+ 00, mn-2 --+ 0, if U ( t )  is continuous 
on its open support. The following corollary shows that the Cramkr-von 
Mises and Kolmogorov-Smirnov statistics have continuous distributions, 
leading to global statistical procedures based on the bootstrap. 
Corollary 1. Let 

(Z,Y)ET 

with JJ w2(x, y) dx d y  < 00 . 
(Z*Y)ET 

Then U ( t )  = P { 4 ( A )  6 t }  is continuous on its open support. 

Consider the Kolmogorov-Smirnov functional 4(Z)  = sup 121 and 
a specified null distribution p. Let 8, = n * j 2 ( 2  - p) and on = 
P{+(&) 5 t}.  Note that (2.5) holds as N + 00 and mAn -+ 00,mn-' -, 
0 regardless of whether or not is the true distribution. If it is not, 
then 4(&) diverges as n -+ 00 and On(cN,m,n(l - a)) --+ 0. If is true, 
then o , , ( c ~ , ~ , ~ ( l -  a)) + 1 - a. Thus our bootstrap procedure is asymp- 
totically consistent. The asymptotic consistency of statistical procedures 
based on other functionals 4 can be discussed in a similar way. 

3. Two Sample Bivariate Bootstrap 

Consider samples from two bivariate distributions which we wish to 
compare. Let { ( l ) X ; ,  (')yio}& denote a bivariate sequence with common 
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continuous survivd function ( 1)P(z7 y) = P{ (1)X: > - 3, (')KO 2 y}. We 
actually observe the censored data { ( 1 ) X j 7 ( 1 ) ~ 7 ( 1 ) 6 i ~  (1)pi}r'17 defined in 
an analogous way to Section 2. We define a second sample, independent 
from the first, in a similar fashion with common continuous survival func- 
tion (2) Fo. 

We wish to test whether ( l )F0  = (*IFo, or to estimate the difference 
(l)P - (2)p .  We proceed in an analogous manner to Section 2 in defining 
the empirical survival functions (l)$'& and (?)e2. Introduce 

Because our samples are independent, we have an immediate corollary 
Theorem 1. 

Corollary 2. Assume ( j ) F o ,  j = 1,2, are continuous, 

to 

T' = ((2, y) : --oo < 5 5 20' , -00  < y I yo' I n  

and (j)Fo(zG,y;) > 0 , j = 1,2}. 

Then we can define two independent sequences of Gaussian processes 
{ ( j ) A ( ~ 7 y ) , ( j ) A n ( z , y ) } ~ = l ,  j = 1,2, such that 

as n -+ 00, and for each n, j ,  (j)A, and (')A have the same distribution. 
The same problem arises here as in the one-sample case, that the 

asymptotic covariance functions depend on the survival functions ( j ) F "  , 
j = 1,2, and on the censoring distributions, in a complicated way. There- 
fore it is also natural to use the bootstrap method in the two-sample case. 
Using similar notation to Section 2, we can draw independent bootstrap 
samples of sizes ml and m2 from the given data samples. We define the 
bootstrapped bivariate product-limit estimators (j)cj,nj j = 1,2, and 
the bootstrapped bivariate product-limit processes 

Again, because the samples are independent, and because the bootstrap 
samples for the two distributions are drawn independently, the following 
corollary to Theorem 2 is immediate: 
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Corollary 3. Assume the conditions of Corollary 2. Then we can define 
two independent sequences of Gaussian processes {(')Am,n(z, Y)}&,=~, 
j = 1,2, such that 

as m h n --+ 00 with mn-2 + 0, and for each m, n and j, (')Am,n and (')A 
have the same distribution. 

For simplicity we focus on Kolmogorov-Smirnov type procedures. Sup- 
pose that 722/(n1 + n2) + A, 0 < X < 1, as nl,n2 -+ 00. The maximal 
deviation 

converges in distribution to 

The distribution of D can be approximated by the empirical distribution 

be 2N bootstrap processes calculated from independent samples of size m 
from the given data. The distribution of the bootstrap maximal deviations, 

based on N pairs of bootstrap samples. Let {(j)Zmjrnj}k=l, ( k )  N j = 1,2, 

converges to that of D provided m2/(m1+ m2) 3 X as m, A n, -t 00 with 
m p j '  --+ 0 for j = 1,2. Note that if ( l )F" = = p ,  then D has the 
same distribution as  SUP(^,,)^^. JA(z, y)(. 
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Arguing as in Section 2, we can show that our two sample boot- 

is asymptotically consistent for the Kolmogorov-Smirnov procedure. Pro- 
cedures based on other functionals with continuous distributions could be 
developed in a similar fashion. 

strap approach based on the empirical distribution of {Dml,m,,nl,n2}k=l ( k )  N 

4. Gallstone Efllcacy 

We examine data on floating gallstones from the National Coopera- 
tive Gallstone Study (Schoenfield et al., 1981) on the effect of chenodiol 
on the times to bdary pain and to cholecystectomy. We limit attention 
to a subgroup of 113 patients who had a high expected incidence of effi- 
cacy (disappearance of gallstones). The control group of 48 patients only 
received a placebo, while the treatment group of 65 received a high dose 
of chenodiol, which was hoped to obviate the need for surgery. We show 
estimates of the bivariate distributions for both groups and the difference 
between the distributions. Our test of the difference in distributions is 
consistent with the earlier findings of Wei & Lachin (1984). 

Figure l(a-b) shows the bivariate survival distributions for the placebo 
and the high dose groups. The placebo group has a rapid drop in bivariate 
survival time early, and levels out at 50% survival at  about 500 days to 
bilary pain. The high dose group shows a less marked drop in bivariate 
survival, with the 50% time occurring at around 750 days to bilary pain. 
Note that survival never goes very low for either group, as many of the 
patients had not developed bilary pain or had a cholecystectomy by the end 
of the study (20/48 censored time to bilary pain in placebo group; 39/65 
censored time to bilary pain in the high dose group). The improvement in 
bivariate survival for the high dose group can be seen in the standardized 
difference of the survival curves (Figure l(c)), which is positive over most 
of the domain. The largest differences occur around 400 days for bilary 
pain, and up to 600 days for cholestoctomy. 

Goodness-of-fit tests or tests for equality of distribution can be per- 
formed using the bootstrapped empirical distributions of the maximal 
deviation statistics. The onesample and two-sample distributions were 
based on 1000 independent bootstrap trials with bootstrap samples of size 
mj = knj for various multiples k (Figure 2(a-c)). Note that the choice 
of m, is not too critical, even for s m d  sample sizes. The empirical 90% 
critical values for the placebo bivariate product limit process were 1.15, 
1.12 or 1.15, depending on the choice of k = 1,2 or 4. The empirical 90% 
critical values for the placebo process were 1.78, 1.85 or 1.79 and for the 
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(c> 
Fig. 1.- Placebo group (a) and high dose group (b) survival distributions; (c) normal- 
ized differences between high dose and placebo survival distributions. Maximum height 
for (c) is 1.45. All perspectives run from 0 to 800 days and have a trim of height 0. 

Bilary pain axis runs back to left; cholestoctomy axis runs back to right. 
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Fig. 2.-Bootstrapped empirical distribution of maximal deviation statistics with 
N=1000, nl=48,  n2=65 and r n , = k n j ,  k=l (solid), 2 (dashed), 4 (dotted): 
(a) placebo group; (b) high dose group; and ( c )  two-sample difference. 
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two sample comparison, the 90% critical values were 1.52, 1.46 or 1.46 for 
k = 1,2 or 4. A test for difference in distribution between the 2 groups 
using the normed maximal deviaion of 1.45 yielded a two-sided pvalue 
0.128, 0.100 or 0.100, for k = 1 ,2  or 4. Thus we have slim evidence for 
a difference in bivariate product limit curves. As noted by Wei & Lachin 
(1984), a test streamlined to detect early differences in bilary pain (as ev- 
idenced by the peak difference at  400 days) would have higher power for 
this situation. 

TABLE 1 
Simulated 90% bootstrap critical values 

Maximal deviation for bivariate exponential 
n m  censoring 

uniform exponential 
0% 20% 50% 20% 50% 

20 20 1.34 1.43 1.70 1.46 1.82 

(.03) (.09) (.17) (.08) (.18) 
20 100 1.32 1.43 1.76 1.45 1.80 

(.04) (.06) (.19) (.06) (.17) 

50 50 1.41 1.53 1.97 1.54 2.08 

(.02) (.05) (.19) (.05) (.20) 
50 100 1.41 1.53 1.98 1.54 2.08 

(.03) (.05) (.18) (.05) (.22) 

We were concerned that our estimators were path-dependent and were 
not strictly distribution functions. We computed the estimates with bilary 
pain and cholestoctomy times interchanged, and found no appreciable dif- 
ferences in the estimates over the domain. 

5 .  Simulations 

Simulations were performed to assess the importance of sample size. 
Exponential survival data were simulated with 0%, 20% and 50% censoring 
(uniform and exponential) for sample sizes n = 10, 20, 50, 100 and 200 
using N = 1000 Monte Car10 trials with m = n and m = 100. Table 1 
shows the 90% critical value for the empirical distribution of the maximal 
deviation statistic U N , ~ , . ,  for n = 20, 50; the size of m does not appear 
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Fig. 3.-Simulations of bootstrapped maximal deviation statistics U I O , , ~ , ~ , , ,  , for single 
samples from an independent bivariate exponential distribution with 20% exponential 

censoring, n=10, 20, 50, 100, 200 and (a) m=n or (b) m=100. 

to affect the statistic. Figure 3(a) shows realizations of UN,,,,,,, for inde- 
pendent bivariate exponential data with 20% censoring over the range of 
n with m = n, while Figure 3(b) shows similar realizations with m = 100. 
These simulations show that the distribution seems to  settle down above 
n = 50, and support the idea of using m = 100 in practice for the range of 
n considered. Similar findings were obtained for 20% and 50% uniform cen- 
soring and for 50% exponential censoring, though some realizations with 
50% censoring had uniformly large deviations. 
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6. Appendix 

We prove Theorem 2 and Corollary 1 after some preliminary results. 
For each n we have data {Xi,x,~5;,pj}r=~, and for each rn and n a boot- 
strap sample { X y , ~ , 6 t , p : } ~ l .  Define the distribution G(z)  = P(X1 < 
zl,Y1 _< .z2,61 _< z3,pl I z4) and, recalling the definition of G,, introduce 
the bootstrap distribution 

and the bootstrap empirical process 

We use the following special case of Theorem 4.3 of Gaenssler (1986). 
Theorem A l .  (Gaenssler, 1986). We can define a sequence of Gaussian 
processes { B ( z ) ,  Bm,n(z),z  E R4) such that 

as m A n --t 00, and for each m, n, Bm,,(z) and B ( z )  have the same 
distribution over R4. Further, for z,z* E R4, E B ( z )  = 0 and 

EB(z )B(z* )  = G(z A 2') - G(z)G(z*) . 

Recall that F ( z ,  y )  = P{Xi  >_ z, >_ y} and define the sub-distrib- 
ution functions 

I<(z,y) = P(X1 c z,Y1 2 y,6, = 1) 

and L ( z ,  y )  = P{X1 2 z, Y'I < y,p1 = 1) 

Let K, and L ,  denote the empirical sub-distributions based on the data 
and I<m,n and Lm,., denote the empirical sub-distributions based on the 
bootstrap sample. Theorem A1 implies the joint weak convergence of the 
following processes: 
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Theorem A2. We can define three sequences of bivariate Gaussian pro- 
cesses 

1) r(2) )}" { (r7r(117 r(')) 7 (rm,n7 r&,n7 m,n m,n=l  7 

such that 

as m A n -, 00, and for each rn, n, (I?m,n71'c!n,I'm,n) (2 )  and (r,'F(1)7r(2)) 
have the same joint distribution. In addition, 

Similar formulae hold for 

Proof of Theorem 2. We first consider the bivariate empirical cumula- 
tive hazard functions 

i = 1,2. 

and the bootstrapped cumulative hazard functions Hm,n, (1) H m , n  (2) and Hm,n, 
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defined ir. an analogous way using the bootstrap distributions. Let 

J-00 

for i = 1,2. Combining these two results, we can approximate the cumu- 
lative hazard process 

{m1j2 (Hm,n(z, Y> - zn(z,  Y>) 9 (2, Y> E T} * 
Using an argument similar to  Breslow & Crowley (1974), we can show that 

0 I -log C,n(z,  Y) - Hrn,n(z, Y) 
X 

I & Lm(Fm,n(u,-m) - l /m)-2 du Km,n(u,-W) 

+ 1- (Fm,n(z ,  - ~ / m ) - ~  d v  Lm,n(z, 
Y 

for all m and n, and (z,y) E T (cf. Horvith (1983), p.207). Immediately 
we have 

By the original Breslow & Crowley (1974) lemma, 

Thus we can approximate the bootstrapped bivariate product-limit process 
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provided mn-2 + 0 as m A n -, 00. Define the process 

Using a one-term Taylor expansion we obtain 

By definition, the distribution of Am,,, does not depend on m or n. Further 
the distribution of A is the same as that obtained by Campbell (1982) and 
Burke (1988). 
Proof of Corollary 1. Arguing similarly to Proposition 17.5 in Csorgo, 
Csorgii & Horvdth (1986), Theorem 1 of Tsirel'son (1975) implies the con- 
tinuity of the distribution functions of the first two statistics. Consider 
the third, Cramh-von Mises type, random variable. It follows from the 
L2-decomposability of square-integrable processes (cf. Sat0 (1969)) that 
the characteristic function can be expressed as 

in which X I ,  Xz,  . . . are the reciprocals of the eigenvalues of the covitriance 
function of w ( z ,  y)A(z, y), with Xk > 0, k 2 1. It is easy to show that the 
function I t l g l l e ( t ) l  is bounded on the whole line for any q > 0. This implies 
(Corollary 11.6.1 in Kawata (1972)) continuity of the third distribution 
function of Corollary 1. 
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