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Abstract

Locally adaptive smoothing splines combine features of variable kemels and smoothing
splines to allow for local adaptive fitting and for a minimization of integrated mean squared
error. Basically, one first adaptively fits a function with a local bandwidth kemnel estimator,
followed by a global fit to the presmoothed data using a penalized likelihood. One has to
be careful to allow the variable kernel bandwidth to converge slightly faster than the spline
bandwidth. We present some propertics of the estimator and demonstrate its practical use

through simulations and data analysis.
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1 Introduction

Suppose one obtains observations Yy, -+, Y,,_; of the form
Y = f(zi) + e
with z; =é/n, i = 0,---,n — 1. It is assumed that the errors ¢; contaminating the observations

of f(x) are independent random variates with mean O and variance o2. Of interest is the
nonparametric estimation of the function f € C*[0,1],% > 4, such that f*) € Lip,[0,1], by a

function from the Sobolev space of order two,

W2 ={glg,¢' € C[0,1] and ¢® € L,[0,1]}.
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We propose a nonparametric estimate of a curve which is a hybrid of kernel smoothing (Priestly
and Chao [1972]) and spline smoothing (Reinsch [1967]; Wahba and Wold [1975]).

We combine the ideas of the computationally simple kernel estimator,

n—1 n—1

falz,0) =Y w (5 )Y/Z:( L), 0 < b(e) < 1/2, (1)

1=0

with the theoretically and aesthetically appealing cubic smoothing spline (Wahba [1975]). The
kernel estimator minimizes the following weighted least squares criterion (Cleveland [1979];

Staniswalis [1987]) at fixed z,

n—1

(nB)™ 3w (5=28)[Y; ~ f(2)P? (2)

while the cubic smoothing spline minimizes the penalized least squares (Good and Gaskins

[1971])
12(1 e ,\] [¢®(2)]*d (3)

among all ¢ € W}, with A > 0 the smoothness constant. Our purpose is to show that the

minimizer of

U(f) -12[11/ 12 w( *?‘) )(Y f(;uj))Q] i ,\fol[f(ﬂ(g;)]?dm, (4)

where W; = Y04 w (%ETF) has smaller IMSE than that of the spline estimator of (3). Thus
a locally adaptive smoothing spline is proposed, which improves on the IMSE of the global
smoothing spline, using ideas and methods from adaptive kernel estimators.

Computer simulations and real data examples are used to show that the asymptotic analysis
is actually providing us with useful guidance in the selection of b(z) in the case of finite sample

sizes.



2 Kernels and Splines

We consider kernel estimators of the form (1) where w(v) with & continuous derivatives is a

symmetric kernel of order k£ with compact support on [-1,1], satisfying the moment conditions

LTka;éO ¥ =
The bandwidth b € (0,1/2] is a function of n and z although the notation does not reflect this.
If b — 0 and nb — oo as n — oo then f,(z,b) is a consistent estimator of f(z) (Gasser and
Muller [1979]). The bias of the kernel estimator is proportional to b* f(*)(2) and the variance is
inversely proportional to nb. Therefore, the bias of f,(z,b) can only be reduced at the cost of
increasing the variance.

Rice [1984b] proposed a method for estimating the optimal finite sample global bandwidth
b? which minimizes the integrated squared error JA/SE(b) of f,(z,b). The choice of the global
bandwidth b is governed largely by the peaks and troughs of f. This global bandwidth results in
a kernel estimate which tracks the observations Y7 in the flat regions of f, rather than averaging
out the contaminating noise. Staniswalis [1985] proposed a method for estimating the optimal
finite sample local bandwidth b%(z) which minimizes the mean squared error MSE(z;b) of
fn(z,b). The local bandwidth b*(z) results in a kernel estimate with a small bandwidth near
peaks of f (reducing bias) and a larger bandwidth in the flat regions of f (reducing variance).
Kernel estimators using data adaptive global and local bandwidth selection procedures have been

shown to exhibit these properties as well (Staniswalis [1985]). However, the local bandwidth
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can be difficult to estimate in places where f(*) has high curvature. Consequently, the greatest
incentive to using a kernel estimator with a local bandwidth over a global bandwidth selection
procedure is in the reduction in variance realized in places where f(*) is very smooth.

The smoothing spline 1,,» which minimizes (3) is a piecewise cubic polynomial with knots

at zy,- -+, x, and two continuous derivatives satisfying the boundary conditions
iy (0) = (1) =0 for i = 2,3.

The smoothing parameter (A) can be chosen from the data by either cross validation or maximum
likelihood methods (Wahba [1985]). Cogburn and Davies [1974] and Silverman [1984] showed
that in the interior of (0,1), the cubic smoothing spline is asymptotically equivalent to a kernel

estimator with a global bandwidth of ~(\) = A'/4 and kernel of order 4 given by
S(u) = 27" exp(—|u|/V2) sin(|u|/v/2 + 7 /4).

Tanner and Wong [1985] point out that it is desireable for 2(\) to depend on the local curvature
of f.

The optimal rate of convergence for IMSE of a kernel estimator with a kernel of order k = 4
is O(n=%?). For general f € C*[0,1], i.e., f that does not necessarily satisfy the boundary
conditions

FO0) = fO(1) =0 for i =2,3, ()

the optimal rate of convergence for the IMSE of 1, y(z) is slower than n~%? (Utreras [1987]).
If the above boundary conditions are satisfied, then the IMSE of ji,, 1(z) can attain the optimal

rate n~8/9,



The penalized weighted least squares criterion (4) combines features of the weighted least
squares criterion (2) and the penalized least squares criterion (3). When b(z;) < n71, j =
0,---,n —1, U(f) reduces to (3) whose minimizer is the cubic smoothing spline. On the other
hand, if A = 0 then U(f) reduces to (2) whose minimizer is the kernel estimator. The following
lemma shows that the minimizer of U( f) is simply the minimizer of the penalized least squares

criterion applied to the kernel-smoothed data. Its proof is relegated to the Appendix.
Lemma 1 The unique minimizer of U(f) among f € W is also the unique minimizer of
n—1 . 1
n=U Y [f(z:) — TP + A fo [fO(2)]Pde
1=0
among all f € W2, whereY; = W™ Yzt w (%) Y;.

Let f,(z; A, b) denote the minimizer of U( f ). The lemma says that f, is a smoothing spline
fit to the presmoothed data (z;,Y;),7 = 0,---,n — 1. Therefore, fn(:c, A, b) can exploit the local

smoothness of f(z) through b(z) and the global smoothness of f through ).

3 Asymptotic Bias and Variance

Of interest are conditions under which the asymptotic IMSE is smaller for fn(:c; A, b) than for
pna(2). In order to get some insight into how to select the bandwidth b(z) to achieve this,

asymptotic expressions are derived for

B() = [[Bfu(e:0,b) - f(2)Pda



and
V) :/E[ﬁl(m;/\, b) — Efo(z; ), b)Pde
where b = b(z). Set
B3 = [[Bpunn(@) ~ f(2)dz
and
Vo(d) = [ Bluna(2) = Buna(2)do .

It is of interest to select b(x) in such a way that
V(A) <Vo(A) for all X >0

without suffering a large increase in B?(\) relative to B3(\).

Lemma 1 of Rice and Rosenblatt [1981] showed that if f(0) = f(1) and f((0) = f(1)(1),

then

n—1

Vo(A) & n~lo? Z A%,

7=0

where
A2 = S——OO(J_E_'bn) 8(’\l+71)% ,j:].,,n—l
M
1 ;J=0

with M = A(27)" and r; = 322 __(j + sn)~*. The following lemma provides an asymptotic

expression for V().

Lemma 2 . If f(0) = f(1) and fM)(0) = fO)(1), then V()\) =n"1o? 1) ;A2 , where

q; =n"! nz_—: X__: Z—: WIW:w (1;(;]:;!) w (Tl!)(a:@) ) cos[27j(m —1)/n] ,

for7=0,---,n—1.



The ¢; are converging to cos(0) = 1 as n — oo. Furthermore, from the bias properties of
kernel estimators (Muller [1985]), for large n, 0 < ¢,,—1 < -+ < go < 1. Therefore, for large n
the expected result that V(A) < V() follows.

The following lemma allows us to compare B#(\) with B2()). the proof is in the Appendix.

Lemma 3

B0 = BiN) + [[rar@)Pde +2 [ Bluna(e) = f(@)lvns(2)de

where vn () is the smoothing spline with smoothing parameter X\ which is fit to (z;, Bias(z;)),

i =0,---,n— 1. Here Bias(z) = E[fu(z,b)] — f(z).

If b(z) is O[n~1/(%k+1)], the optimal rate for minimizing MSE of the kernel estimator, then
Vap(z) = O[n~F/ (k1)) If f satisfies the boundary conditions (5), then k& > 4 ensures that

B*(X\) = B3()). If f does not satisfy (5), then k > 4 is sufficient for B(\) ~ B2(\).

4 Simulations and Data Analysis

4.1 Simulations

The simulations were performed on the Statistics Research VAX at the University of Wisconsin-
Madison. The purpose was to convincingly demonstrate that the locally adaptive smoothing
spline has smaller IMSE that the global smoothing spline. A rescaled version of the function

used by Wahba and Wold [1975] was selected for the simulations

f(m) — 4.26[6—3.251‘ . 4676.5:8 + 36—9.75.’?]‘



Independent identically distributed N(0,c?) contaminating errors for n = 50 were generated
with the public domain random number generator RNOR. Noisy observations of f on [-1,2]
were used by the kernel smoother in order to avoid boundary modifications to the kernel (Rice
[1984a]). The spline fit to the presmoothed data (the LASS) and the global spline fit used only
the region [0,1].

One hundred independent realizations of size 50 of the locally adaptive smoothing spline
(LASS) and the global spline smoother were generated. The LASS were created by generating
raw data, presmoothing with the local bandwidth kernel smoother of Staniswalis [1985], and then
applying a cubic spline smoother. The LASS was applied with the kernels of Muller [1984].

As described earlier, the advantage to using a locally adaptive spline smoother over a global
spline smoother is the reduction in variance where the underlying curve f is very smooth. The
function used in the simulation is a paradigm of the undesireable *wiggliness’ which can result
from locally undersmoothing the noisy data. Figure 1 is a realization of the two locally adaptive
spline smoothers and the global spline smoother for this mixture of exponentials.

The mean squared error of the locally adaptive spline smoother and the global spline smoother
were estimated from these realizations. Figure 2 presents the ratio of local to global MSE. Note
the reduction in variance achieved by the local spline smoother over the global spline smoother
without an increase in bias, particularly for the kernel of order 6. The average (over x) estimated
MSE for the locally adaptive spline smoother are .0063 and .0050 for & = 4 and 6, respectively.
The average estimated MSE for the global spline smoother is .0097. Smoothing the data with

higher order kernels allows the locally adaptive smoothing spline to enjoy a large decrease in



variance without a subsequent increase in bias.

4.2 Data Analysis

The voltage drop data in Ch. 3 (ex. 14) of Eubank [1988] was analysed. Figure 3 is a plot of the
locally adaptive spline smoother for k& = 4, 6 and 8 and the global spline smoother superimposed
on the data. The curve f was assumed to be periodic on [0,1] in order to avoid boundary
modifications to the kernel (Rice [1984a]). Again, it is evident that the higher order kernels
relieve the bias problem of the locally adaptive spline smoother while allowing for a decrease

in variance over the global spline smoother.

5 Appendix

5.1 Proof of Lemma 1

U(f) may be minimized by first solving for f,(z; A, b) such that the Gateaux derivative of U at

A

fn

. { "
#(fai9) = Z=U(fa + 69)ls=0 ,

is O for all ¢ € W7. We proceed in this calculation as in Eubank [1988], treating A and b(z) as
fixed smoothing parameters independent of f.

Then the Gateaux derivative of U at f in the direction ¢ can be written as

ofi0) = -2 5 |0 5w (2 - e o)
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+ 2\ /;)1 f@(2)g N (2)de . (6)

We need to solve for fn such that
&(faig) =0 forall g € W2 . (7)

If f, were a natural spline of order four, then it could be written as

n—1
FulE A,0) = Zﬁtﬁt(ﬁf) (8)

t=0
for some fo,-- -, B,—1 which would depend on b and A\, where ep,---,e,_; form a basis for
the natural splines of order four on the interval [0,1] with knots at zq,--+,2Z,—1. In this case

equations (6) through (8) imply that we need to solve for Bq,---, 8,-1 such that

(nA)™ Z [W B Z ( (_1) ) (Y Zﬁtet(%)) g(z; )]

t=0

1 fn—1
= ] (Z ﬁaﬁf(z)(m)) 9{2)($)d33 (9)
0 t=0
for all ¢ € W7. Using Lemma 5.1 of Eubank [1988], which is attributed to Lyche and Schumaker

[1973], the right hand side of (9) is

n—1

n-1
g(z;) lz ﬂtéjt] s
t=0

§=0

where
1 ) n—1
615(.'.5‘) = Z Qﬁ.’lf‘j -+ Z 6ji(3; e S'L‘J)i ‘
7=0 7=0
Therefore, fg, - -+, fn—1 must satisfy
n—1 n—1 s n—1
(nA)™? Z [W; ™1 Z w| =2 A . Z Biei(z;) ) 9(z;)
i—0 i=0 b(:l’i') t=0
j= i= : =
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n—

=63 ate) |5 5] (10

t=0

for all g € W2.

Equation (10) must hold for all ¢ € W7; it must be that

n-—1 T;— T n—1 ' n—1
(n)\T/Vj)_l Z w ( é(’.’:) ) (Y; - Z ﬁtei(xj)) = GZ ﬁtsﬁ 3 (11)
1=0 el t=0 t=0
for all j = 0,---,n — 1. Rearranging (11), and using the fact that W,;~' 371 w (QZ-E;;E)*) =1,
we are reduced to solving for fg,- - -, f,—1 such that
n—1 N
Z Bi{e(x;) +6nré;1} =Y; ,5=0,---,n—1. (12)
t=0

Observe that the unique minimizer of

n—1

(Y f@)P A [(FO)da
=0
is pna(2) = 055 vier, where the 4o, - -+, -1 satisfy the equations
n—1
> yifedz;) + 60164} =Y; ,5=0,---,n—1, (13)
t=0

(see ch. 5 of Eubank [1988]).

Comparing equations (12) and (13) it is clear that fn( x; A, b) is the natural smoothing spline
of order four fit to the presmoothed data (mi,fﬁ-), 2 =0,---,n — 1. That is, fn(:r:, A, b) is the
minimizer of

nt ST f)) 4 A [ )tz
i=0
The proofs in Chapter 5 of Eubank [1988] may be adapted to show that Y"7=} Bie,(z) is in fact
the unique minimizer of U( f), the penalized weighted likelihood.
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5.2 Proof of Lemma 2

Represent both the spline £, fit to the presmoothed data and the smoothe function f in terms of

a Fourier series expansion:

Faloi )= Y opefrin

§=—00

and

f(2) = i a,eiTHe

§=—00

For computational convenience, let f'n(:z:; A, b) be the minimizer of
n—1 " 1
n=t (¥ — fla:))? + N(2r) ™ / (F®(2))2de , N = A(2r)™.
1=0 0

Referring back to the results and methods in Rice and Rosenblatt [1981], it can be shown

that
0 when s # 0
Csn = R
n~12Y, when s = 0
and
Citon = (J + sn) (N + 1) VY 5> 1.
Here 17’0, s ,f’n_l are the discrete Fourier coefficients of }7'0, s l}n_l; 1e.,

= n—1
Y;=n"1/? Z Yiexp(—2wijt/n)
t=0

= WYY,

where U; = {exp(—2mijt/n)}) =y, Wiy = Wi w (%HT)J), 5, =0,---,n—1,and ¥ =

(Yo, -+, Yo1)T. It follows that va-r(_f"j) = ?UsWWTU; and V = 322 __ var(c,) by Parse-

§=—00
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val’s Theorem. Therefore

V = o?n"trace( AU"WWTUA)
= o’n"Yrace(WWITUAZU*)

where A = diag(Xo, -+, Ap1) and U = [Up -+ - Up_q].

The elements of A = UA2U™ are of the form

n—-1
Ag=n Z A exp(2mit(j — 1)/n) .
t=0
Thus
n-1 n—1n—1
notV =Y (WWTA)y, =3 S (WwT),;4,
=0 1=0 j=0
n—1n—1 | n—1 T — T — n—1
=Y >3 1Y (WwW) w ( q) w ( ! 3) (n_l > A2 exp(2mit(j — l)/n))
[=0 j=0 [¢=0 bi‘ bj t=0

n—1
= Z )‘tzqi )
t=0
with ¢, defined accordingly. Note that ¢; is real valued since w is symmetric and ¢, is symmetric

0.5y T

5.3 Proof of Lemma 3

Using Parseval’s theorem, we can express

BYX) = Z Bias*(cy) .
As in Lemma 1 of Rice and Rosenblatt [1981],
n—1 oo .
BX(X) =3 > Nu(@; +d;) — ajyenl®

j=0s=—o00
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where

cfj =n~Y23 ") Bias(z;) exp(—2mijl/n) ,

&jzz.;“;_ooaj+sna .?:0&"'3”_15

Ais=(F+sn) (N+r)),j=1,---,n—1, Ago =1 and A, = O for s # 0. Here Bias(z) is
the bias of the kernel estimator of f(x) which uses the kernel w and the bandwidth b(z). From

Parseval’s theorem, we recognize that
B = [{[Bitan(@) = f(@)] + var(@)} de

where v, is the smoothing spline fit to (x;, Bias(x;)) and where p, ) is the smoothing spline

fitto (2,Y;)),72=0,---,n — 1. Therefore,

B2()) = B2()) + / [Van(z)]2dz + 2 f [Epna(z) — f(@)]ma(e)de .
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7 Figure Captions

1. Realizations of the LASS and Global Spline Smoothers for Data Simulated from a Mixture
of Exponentials. Solid line is true f; dotted line is LASS with k=4; short dashed line is LASS
with k=6; long dashed line is global spline smoother.

2. Estimated MSE of LASS Relative to Estimated MSE of Global Spline Smoother. Solid
line is k=4, dotted line is k=6.

3. Raw Data, LASS, and the Global Spline Smoother for Voltage Data. Solid line is LASS
with k=4; dotted line is LASS with £=6; short dashed line is LASS with k=8; long dashed line

is global spline smoother.
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