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1. INTRODUCTION

A torus neighborhood matrix W has been used extensively in
spatial analysis (Besag and Moran, 1975, Mardia and Marshall,
1984, Besag, 1977, Moran, 1973a). Until Martin (1986) the justifi-
cation seemed to be merely a mathematical convenience.

In time serics analysis, circular assumption provides an ap-
proximate diagonalization of the covariance matrix, Fuller (1976).
Extension of Fuller’s (1976) result to higher dimension is given by
Martin (1986). Martin demonstrated the approximate diagonaliza-
tion of spatial autocovariance matrix and Taam and Yandell (1987)
provided the same result with a slightly different formulation of the
covariance matrix.

The objective of this note is to discuss this approximation and
its application in several aspects of spatial analysis in 2-dimension.
In the next section, we introduce some definitions and notations.
In section 3, the approximation is examined. Section 4 discusses
the applications of this approximation.

2. DIAGONALIZATION OF NEIGHBORHOOD

MATRICES

We express the circulant and non-circulant neighborhood ma-
trices for rectangular lattices, W and M, in terms of building blocks
B, and II,. While most of this work generalizes to more compli-
cated modgls, we restrict attention to the one step rook case.

Let us define the n x n primitives ~

soe OIn_] = UIn—l
Bo=| § S mam = | 3]

Bn + B’(_‘n—])T'

(2.1)

I

where I,_; is an (n — 1) X (n — 1) identity matrix. Note that I,
is a circulant matrix (Davis 1979), with the following eigenvalue-
eigenvector decomposition:

I, = P$,P* and IT = Pe.P* (2.2)
with * denoting conjugate transpose,

{P}jr = n~¥exp(2ri Jjk/n) an orthogonal Fourier matrix, and &,
diagonal with {®,),, = exp(2wik/r) for j, k = 0,1,2,.-+,n — 1.
Let us introduce the matrix functionals

In if k=0
J(k,n) = B if k>0) and

BT i k<0
(2.3)
I, if k=0
F(k,n) = i k>0
075 i k<0

Note that B} =0, Il = I,,lI2~! = I, and I}, = B, + BT
for j < n. Therefore,

J(0,m) if z=0
F(z,n)= { Jz,n)+J(z=n,n) if z>0 (2.4)
Jz,n)+J(n—z,n) il z<0

. Le_t us define a lexicographic indexing system for an r x ¢ two-
dimensional latlice where we assign the numbers j = 1,... N

=rc
to the elements (u,v) of the lattice, that is,
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Juv) = 14+ecutv, u=0,1, ..., r—1,

v=01:.-,¢-1,

(2.5)
oruj = [(j—1)/c), vj = (j = 1) mod e.

For simplicity, let us look at the “rook case” neighborhood
matrix . We consider a rectangular lattice in which neighbors at
the boundary arc only those rook neighbors within the rectangle.
This leads to unbalanced weights, which can be represented as the
neighborhood matrix

M =Le(B.+B7) + (B,+BT)el,

J(0,7) @ [I(1,¢) + I(=1,¢)]
B r)+3(=1,n)]®3(0,c).

I

I

(26)

&

This has an exact diagonalization (Conte and deBoor, 1980, p.206),
based on the building blocks B, + BT = Q, ¥, Q7, where the
orthogonal matrix Q,, and the diagonal matrix ¥,, are defined as

{Qn}ji = (2/(n+1))¥sin(mjk/(n + 1)) and
{‘;’ﬂ}kk = QCOS(‘”‘:/(” 5 1)): jx k= 1!"’|ﬂ-

The exact diagonalization M can be written as the Kronecker prod-
uct M =(Q,@Qc)[I, ®¥c + ¥, @1c)(Q- Q)T = Q¥QT with

¥ diagonal, {¥},, = 2[cos(mur/(r + 1)) + cos(muef(c+ 1)), k =
1,---,N, and

{Q};, = 2((r + 1)(c + 1)) dsin(ruy e /(r + 1))
Sin("-v}'vl'/(c"' 1))! hk=1,--- N,

See also Besag’s discussion of Bartlett (1978). Note, however, that
M* cannot be diagonalized by the same Q since there is no matrix
that can diagonalize By, + B4 for all 1 < k < N. Such a diag-
onalization would prove useful for simplifying the computation of
the spatial covariance. Therefore, it seems appropriate to consider
approximate diagonalization of M.

The circulant matrix which we use to approximate M is

W=I&(.+07) + (I, + 1T @1,

=F(0,r)®[F(1,c)+ F(-1,c)] (2.7)
) +[F(1,r) + F(=1,r)] @ F(0,¢),
which is diagonalized by Py,
Py =PNWDPY
(28)

=L @@ +2) + (¢ +9])B1,

with {On},, = 2[cos(27u;/r) + cos(2rvp/c)). The orthogonal
matrix Py that diagonalizes W is the Kronecker product of the
matrices that diagonalize the II’s. That is, Py = P, ® P,, with

(29)  {Px)j = (re)~Rexp(2ni((wjue/r) + (vju/c))),

which is again a Fourier matrix. Note that



Pyl @ UHPy = (e P e )P ep:

[3

(P, IP}) @ (PN{PY)

]

= G’;’,@d‘:,

for all j < m, and k < me with m; = [r/2] and m¢ =
Further, Py dingonalizes 114 for all k.

[e/2).

3. APPROXIMATE DIAGONALIZATION OF CO-

VARIANCE IN 2 DIMENSION

We argue as in Fuller (1976) and Martin (1986) to show
element-wise convergence of our approximate diagonalization of the
covariance matrix for the 2-dimensional case. Since Whittle (1954)
indicated that a one-dimensional bilateral scheme (two directional
correlation) can be represented by a one-dimensional unilateral
scheme, we concentrate on the two dimensional cases.

Suppose we have an r x ¢ rectangular lattice with observations
{Yi,},t=0,1,..,r—1and s =0,1,.--,c~ 1 coming from some
spatial process. We define the covariance matrix T' as

r = ri CZ_: 73, k)30, r) ® I(k,c),

j==(r=1) k=(e-1)

(3.1)
and its circular counterpart I'; as

by = i‘j i 50, E)F (4, r) @ F(k,¢) (3.2)

j==-m, k=-=m,

where 7(j, k) = Cov(Yy,,Yi4j:4x) and J and F are defined in
(2.3). Note that the layout of T has not specified & spatial model.
In addition, the 7(j, k) here is not the same as 4] of Martin (86)

N 2
> o {@wafme
g==M u=1
2-dimensional Fourier matrix Py defined in (2.9) diagonalizes T'y
as

but I'y is equivalent to Martin's Vp =

A=Py,Py = 3. Y G He et (3.3)

j==-m, k=—-m,

where Au = TR ST 108) o
exp(2mi(jug/r + kVifc)) and £ =1,2,--- N. The approximation

“of I’ by I'; is shown in the following theorem.

Theorem 1. Suppose that we have a rectangular r x c lattice
from a stationary process and suppose that y(j, k) = y(—j, —k) for

k,j =0,41,£2,.... Suppose that % is absolutely summable with
[= =] oo

respect to both indices, z Z |7(k, )] = g < co. Let Py, T\ T,
i=1 k=1
and A be defined as in (2.9), (3.1), (3.2), and (3.3) respectively.
Then each element of [P} (I'y — I')Py| — 0 as min(r,c) — oo,
where | A is the matrix 4 with entries equal to their absolute values.
The proof of this result which is given in the Appendix is
similar to the proof of theorem 4.2.1 in Fuller (1976) and the one
in Martin (86). The approximation rate depends on the grid size
as seen in the following:

Corollary 2. Under the same assumptions as in Theorem 1, the
convergent rate of the elements of the absolute difference between
T and I'; is of O(1/q) with ¢ = min(r, ¢).

The proof of this corollary is given in the Appendix as well.
Remark There is no restriction that the spatial models be au-
toregressive or moving average, conditional or simultaneous. The
general assumption needed is the summability of the covariance
function.

4. Applications
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4.1 Doundnry Problem

In time serics, there are three ways to handle the boundary
problem. One approach is Lo assume a circular structure on the
observed series. The other two approaches are the conditional like-
lihood and exact likelihood. In the current note, we discuss only
the circular (torus) approximation for lattice data. For further dis-
cussion on boundary problems in spatial data, sce Griffith (1983,
1985) and Martin (1987).

Assumption on a torus structure not only provides a good ap-
proximation of the covariance but also avoids the boundary prob-
lem in modeling autoregressive moving average spatial process.

When one considers modelling spatial processes on an infinite
size grid, there are two groups of auforegressive moving average
models. One uses the conditional argument, Besag (1974,1977),
Besag and Moran (1975), and Moran (1973a,1973b). Its basic first

order auloregressive model is defined as

E(YilallY's) = p )Y,
JEN()

(4.1)

where Yj represents the response at the 7** location and p is the first
order autoregressive parameter. N(i) is the index set associated
with the immediate neighbors of i.

Another group uses the simultaneous argument, Whittle
(1954) and Tjostheim (1978, 1983). Its basic first order autore

gressive model is
Yi =p Z Y+
JEN(I)

(42)

Again, N(i) is the index set associated with the immediate neigh-
bors of 7 and ¢; is a white noise process. These two groups of models
rely on the fact that these processes come from an infinite lattice.
When one is given a finite rectangular lattice, the parameter esti-
mation requires the exact form of the covariance. Often times there
is no easy closed form of the covariance function for these spatial
models. Hence, the idea of using a circular structure (torus) and .
letting the size of a torus go to infinity has been discussed in Be-
sag and Moran (1975) and Moran (1973a). We have used that
idea and derived the exact expression for the covariance function
7(7, k) under the first order autoregressive processes. Besag (81)
obtained equivalent expression through autocovariance generating
function. This fits in with our discussion of approximate diagonal-
ization of spatial covariance matrix. Moran, Besag and others have
also pointed out that when the size of the torus goes to infinity, the
spectral representation of this process gives the same representa-
tion of the infinite lattice process. Therefore, we use this concept
to show that a simple covariance matrix denoted by T'; soon to be
defined can approximate I'y, which in turn approximates I' because
of Theorem 1.

For simplicity, let us assume simple first order models and rook
case immediate neighbor structure. Let us define T'; as

I, o*(I—- pW)~? for a conditional AR(1)

(4.3)

c*(1— pW)~2 for a simulianeous AR(1)

where W is defined in equation (2.7) Note that the entries in
T'; are not the same as the entries in I'; because I'; has a circu-
lar structure but its entries are the theoretical covariance, 7(j, k),
which can be expressed in spectral representation. The entries of
I'; however are the true v(j, k) plus some extira terms. Again the
entries differ from 'T,T of Martin (86). These extra terms are later
showed to be negligible. We show that the covariance matrix 'y
for the first order process can be used to approximate Ty in the
following theorem.

Theorem 3. Assume that a process is conditional AR(1). Suppose
T’y is defined in (3.2) and I’y is defined in (4.3). Let 0 < p < 1/4,
then each element of |I'y — I'z| — 0 as min(r,c) — co.

The proof is given in the Appendix.




Remark: Using triangular inequality, this theorem implies that
we canuse I'y to approximate I when the lattice js Inrge. Note that
the form of Ty is very simple and its eigenvalues and eigenvectors
arc readily available, )

. IRcca]l the approximate covariance matrix of the first order
simultancous £5iv 38 i i i
e P\(‘;’:m;_ ;\.utorcgre. sive process SAR(1) given in (4.3)is Ty =

Cor(.:llary 4. 1f the process is a first order simultaneous autore-
gressive, SAR(1), Theorem 3 also holds,

The proof is essentially the same that of Theorem 3.
Caution: -

Finally, let us examine one more definition of a covariance
matrix. CIiff and Ord (1981, p.148) and Ripley (1981, p.89) define
the covariance of the spatial process on a lattice without an explicit

t:cat.m'cnt on the boundary and use a neighborhood matrix without
specifying the weights for the boundary plots.

Let us denote the covariance of a rectangular lattice with trun-
cated boundary as I's. That is

I's= o¢?(I-pM)~! for CAR(1)
= o?(1— pM~T(I— pM)~! for SAR(1)

where M is defined in (2.6). This matrix I'z is used in likelihood
estimation in Ord (1975) and in Besag's and Ripley’s discussions
of Bartlett (1978). However, one should be careful with the use of
these two covariance matrices. In the CAR(1) model, the difference

e~ 3(l'y = Ts)
= (I-pW)"' = (I-pM)"}

= (I-pW) ' [po(W = M) + p*(WM - M?)
+A(WM? = M?) + -]
= (I-pW) " [p(W - M)|(I - pM)~".

The term in the square brackets does not vanish no matter how
large r,c are. In fact, each element of 0= 2|T'y — I's| — |p||W = M| is
positive. That is each element of o=2|Ty — I'z| > G(r,¢,p) > 0 for
any (r,c) and p > 0. By the triangular inequality, one can see that
each element of the absolute difference |I'; — I'p| — [ — I'3| and
I — T3] — |T3 — I'3| are bounded below by some positive constant
for whatever size lattice. Hence, I's is not a good approximation to
the theoretical covariance. Furthermore, the process determined by
this covariance (I'z) has not been identified in the literature. One
possible interpretation is to consider it as a process that comes
from a r x c lattice bounded with zero on all sides. In example
4 of Guyon (1982), Guyon has pointed out the inconsistency of
estimating autocorrelation under this covariance structure (T'3).

Remark: Numerical comparison of I' and T'; with SAR(1) and
CAR(1) models show that for moderate sized lattices (11x11) and
moderate correlation (p = 0.1), the approximate v(j, k) values are
quite close (accurate to 5 decimal places). For somewhat smaller
grids (8 x 8), the approximation is good (3-5 decimal places) for
Jvk =0,1,2,3. The approximation may even be useful for grids
as small as {6 x 6) if one is only interested in a few decimal places
for j,k = 0,1,2. When p = 0.24 which is near its upper limit
for stationarity, the approximation is not very good even for large
grids. Torus structure is not meant for small lattices,

4.2 Expression for 7(j,k)

Expressions of ¢(j, k) for conditional and simultaneous AR(1)
given by Besag (81) can be obtained using a torus structure.

From Moran (1973a, 1973b), the covariance of conditional
AR(1) on an r x ¢ grid with diflerent parameters for the vertical
and horizontal correlations is expressed as

B i _aij"f" cos(k0) )cos(j05)d0,df,
Laal o Jo 1=2picos(f,) — 2pacos(fs)
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where p; measures the row (east-west) autocorrelation and p; mea-
sures the column (north-south) autocorrelation. :
Note that 4(3,0) # 2(0,7) il p1 # pa.

Using the spectral representation given in Whittle (1954), the
covariance of simultaneous AR(1) with one parameter is defined as

o @ T cos(k0y)cos(30;) dO,do;
i) = 53 [ Ttk & oG

where the variance of the white noise is ¢? and the autoregressive
parameter is p.

Suppose that (j, k) is the covariance function of a CAR(1)
process with one parameter p. It can be written in the following
expression.

oo a
Wiky= o) o2+ 3
=0 m=0 -
25+3+k 2m+j 25—-2m+4k
2m+j m s§—m

i ; 25+j+k 25+j+k
2 254+ k
4 ; g ( s+ ) ( ! .
(4.4)

This is obtained by expanding (I — pW,)™! and collecting the
terms of I1{, ®@I1X, where the subscript “co” means that the matrix
is of infinite size. One can consider a r x ¢ torus and let r and ¢ go
to infinity.

1l

(I-pWe)™! = lim (I-pWy)™!

(45)

oo
lim %" p*(Wy)*
k=1

r,c—c0

where N = re. Recall that Wy =L @ (I, + IT) + (II, + TI7) ®L..
Hence,

(Wa)? = LeM?2+0%7 +21,) + 21, +07)
® (I.+07) + (M?+1n7T 391, ©1,,
(Wx)® = Lo+ 03T 430,407

+ 3(I, +7) @ (M. +107)?
+ 3(I, +07)? @ (M.+17)
+ M +07 430, +07)] @ L

and so on. Then one collects the terms in the infinite sum of (4.5)
which leads to

In(1+4p* + 36p* + --)
Le(M+07)p+9° + )

(M, +0T)@I(p+ 96" +--) ete.

Since we are dealing with an infinite torus, the v function is given
above in(4.4). Note that

o [I-pWeo) ] e = T

i.e., the rc x rc submatrix is the theoretical covariance matrix of a
CAR(1) process on a r x ¢ rectangular lattice.

If we follow the same argument, we can obtain the covariance
function for the first order simultaneous autoregressive process.



(3. k)

oS (254 j+ k4 1Y ¥
=0 m=0

25+ 3+ k 2m+
2m+ 3 m

a3 (25 + 5+ k4 1)p" Y

=0

25+j+k 2s+j+k
s+ 7] 5 ’
This is obtained by expanding (I — pWoo)™? and collecting the

terms. Similarly, one can find an expression for CAR(1) with two
paramelers as in the first example.

§—Mm

FE

25*2:71+k)

1l

Remark: One advantage of these expressions is the saving in nu-

merical evaluation of v(j, k). They require no numerical integra-
tion.

4.3 Applications in Field Trial Experiment
In field trial experiments, the use of this torus approximation
in maximum likelihood estimation is common. For instance, Mar-
dia and Marshall (1984), Besag (1974), Besag and Moran (1975)
and Besag and Kempton (1986) used I'; in one model or another.
One model is given by ¥ = Dr + £ + ¢ where Y is the
response, I represents the design matrix and 7 the corresponding
effect, ¢ is the mean zero white noise process with variance o2, and
£ is a random variable representing the spatial component with
autocovariance (7, k).
E(Y) = .Dr
V{Y) = V() +ell=0i(I+vE)
One can use I'y to approximate ¢?vZ and use maximum likelihood

approach to estimate all the parameters.

4.4 Characterization of Spatial Process

In practice, the torus assumption seems unrealistic and un-
canny. Nevertheless, the torus assumption provides a basis of the
development of Markovian processes and the spectral represen-
tation of nearest neighbor processes discussed in Moran (1973a,
1973b), Bartlett (1971), Whittle (1954) and Besag (1974). Detail
discussions on non-toroidal spatial processes are given by Tjostheim
(1978, 1983, 1983).

APPENDIX

Prior to the proof of Theorem 1, let us break down the F and
J notation in terms of the Il’s and B’s.

wH =L @ (u} +1:7)
=F(0,r) @ (F(k,c) + F(—k,c)),
Wi = (MG + 0T e L
= (F{U,r) + F(-jr)) @ F(0,c)
Wi = (0 @ if) + (17 @ 17)
= (F(4,r) ® F(k,c)) + (F(=j,r) ® F(~F,c)),
Wit = (¢ 1ET) + (07 @ %)
= (F(j,r) @ F(=k,c)) + (F(~j,r) @ F(k,c)),
Wi, Wy, W3 and Wy represent the horizontal, vertical, and the

two diagonal neighborhoods, respectively. Let us similarly define
the non-circular neighborhood matrices as M's.
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MY = 1, o (Bt + B;7),
MY = (Bl +BIT) 0L,
mUP = (Bl o B*) + (B! ©DB!T) and
Mit = (Bl @B!") + (BI" @ B)).
With the covariance being radially symmetric,

15 k) = (=j, k) and o(—j, k) = 7(4,=Fk) for j = 0, 1,--+,r =1
and k=0,1,.--,c— 1. Let us define

mn(k) = 7(0,k),

72(5) = 7(3,0), (A-l)
~vs(4, k) = 7(j, k) and ’
va(d, k) = v(4,—F).

Then (3.1) can be written as
I = 4(0,0)Iy

c-1
+ 3 nEmP

k=1

r—1 .)

+ E; ya(i)MY (4.2)
=

r—1 e-1 i
+ [ra(, EME)

j=1 k=1

+ 70, M),

and similarly for T'y of (3.2). With the assumption of radial sym-
metry, the diagonal matrix A in (3.3) becomes:

A = 7(0,0)Ix
me

+ 3 mB)E @@+ 85
k=1

+ 3 mG)N(@+ ¥ ) eL)
j=1

e=1 r-1

+ 3 T {nGhi@iedh) + ¢ et

k=1 j=1

+ 70, D@ @ 0k + (@ eet)]},

Let us now show the asymptotic diagonalization of T in (A.2)
by Py in (2.9).

. Proof of Theorem 1. Without loss of generality, let us assume

both r and ¢ are odd. The proof is similar for either one or both
of r and ¢ even. Recall that m, = [r/2] and m. = [¢/2)].



i =1
k k
ror = 30 nmWE = 3 nmmi?
k=1 k=1 =

me

r=1
+ W = YnGME
j=1 j=1

my Mc

+ 30 Sl OWEY + 2l W)
ji=1 k=1
r=1 ¢-1 . )
=3 bl ME 4 3G MEY)
=1 k=1
= S (k) = mle— oMY
k=1

&S ) — male - HMEH
j=1

m, Mme

+ 3% Al k) - pelr = die = E)

j=1 k=1 £=3
- - . 3 r—j.k
M8 4 (G, k) - el = 5, BME Y
i’ - je=k
+ b k) = elGre— MG}

Note that the diagonal elements of Pj(I'y — T)Py are larger than
the ofi-diagonal elements on the same row. That is

[P (D) = T)P.g] < [P}, (T3~ T)P.,| for p# £

Thus it suffices to show that [P}, .(T1 -T)P,|—0asrandc—
for each p.

[P,.(Ty = T)P .|

= ‘ Zc[-n(k) —71(c— i:)}??kcos(z—}ku”)
k=1

+ 3 lra(d) = vale = N Zeos(2E ju,)

j=1
+3° 3 2cos(2((jup/r) + (kva/e)))/re
=1 k=1 (A4)
x [(r = )k(ra(5, k) = va(d,c — k)
+ j(c = k)(7a(j, k) — 7a(r = 3, F))
o+ ik(y3(, k) = va(r = J,e = k)]
+ 2cos(27((juu/r) — (kvpfe)))/re
% [(r = N)k(rva(i k) = 130G, e — F))
+ (e = k)(ya(d, k) —va(r — i, k)
+ jk(va(3. k) = va(r — jye— F))]|

me

< (2/re) {Z rklyi(k) = n(c — k)

k=1
+ 3 eilrai) - 7alr = )l
i=1

m, m. 4

+ 33 5710 - i)kl k) = 1elGic - )]

J=1k=1£=3
+j(c = k)li.fl(]!k) - 'TI(T' - J:k)l
+3kye(3, k) = ve(r = J,e = k)])

(A5)

To show Lhe bound in (A.5) goes to zero, we need the following
lemma.
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LEMMA 5 (Two Dimensionnl Kronecker Lemima)

Let {a;} and {&]} be two increasing acquences of positive num-
bers. Let {X;;) be alattice sequence of non-negative real numbers,

which satisly Torey Yj=y Xij = X < oo, then Yisi i %_“‘[‘:X.‘,‘

0, T, &X;j — 0 for all j and i ;-‘L}\',-j — 0 for all § as
min(r,¢) — oo.

Proof of Lemma 5. Lel S, . = Z;:,):jzlx.-,- be the finite
sums. Then
> (4
ai by
dodan 7
=1 §=1
T €
e
=3 3 ;—'—(S.'.,' = Sijo1 = Si-1g + Sic15-1)
i=1j=1
. sr‘c o Sr,c—l -5 —1,et+ Sr—l,c—l

e—1
b.
+ z E’:[Srj = S!'-l,j - Sr,j—l + Sr—l,j—l]
j=1 (AG)

r=1
+ ; g—:—[Si,c = Sie-1— Si-1,e Sizise-i)

r ¢ e ks
£3) b—‘L(S.'.j = Sij-1=Si-15+ Sic1-1)

ar

i=1 j=1
= Sr,e = Sr,:-l S Sr-:l,c
r—1e=1
(ai+1 = ai)(bj41 — b;)
+ Sij-
;Z:D arb, i

Note that {a;} and {b;} are increasing, 8o both (ai4+1 ~a;) and
(b;41 — b;) are positive. Without loss of generality, let Sp; =
S0 = So,0=0and ap = by = 0. Since the §;; — X as i, j — oo,
the expression in (A.6) goes to zero as r,c — 0o. Because the Xj;

are non-negative, the convergence of the marginal sums to zero
follows.

By applying the above lemma with Xji = |y(7, k)|, it is ob-
vious that 1w, 2k (k) — ma(e = k)l/e, 2775 252 (d) — 7a(r =
fr and T Ti Ty 25(k)|vel(r = 4, — k)l/re go to zero as
min(r,c) — co because of the absolute summability of 7. To show
that

m, m.

4
@/re) YD Y Ik(r = Dl k) = el = k)|

Jj=1k=12=3
+j(C = k)h’t(.?u k) T 'Yl(r - J,k)” —0,

we examine one of these terms:

@/re) S S Tk = s, k) - malie = B
j=lk=1
<(@/ra) 35 Y (kr = K)Inali, )]
j=l k=1

+ lys(ie = k)]

< (2)S o+ g — B} — (o2 +2)

k=1

where gi. = Z;D.;l [v(7, k)| < oo, and €; and e are the double sum-
mations with weights jk, which go to zero by Lemma 5. Applying
the one-dimensional Kronecker Lemma to terms involving g;. gives
convergence to zero. Hence, the proof is completed for r and ¢ odd.

Note that if either one or both of r and ¢ is even, replace m,

or m, in (A4) and (A.5) by m; —1 or m. — 1. Then the proof can
still be carried through.

Proof of Corollary 2. From the absolute summability of v, we
have |y(k, )| = O(1/rc). Let us examine the upper bound in (A.5)

%__.——.——-—'——-—_———



m,

Y B0 - mte - Bl = 00 /r0)

k=1

and
}: 2 1y3(5) = 2alr = i)l = O(1/re)..
For £ = 3,4, -
z%_: :]zliiﬁhtu,k) —yi(r == k)]
i=1
= 2§0(1/r)0(1/c)0(1/rc) = 0(1/rc)
i=1k=
end

3R
j=1k=1

My Me

= 3.5 .1 -0(1/r)0(1/)0(1/re) = O(1/c))

J=lik=1

|'T£(J- k) = ye(d,c = k)]

The bound becomes O(1/re) 4+ O{1/rc) + 2[0(1/r) + O(1/c) +

O(1/rc)], which is dominated by O(1/g).

Proof of Theorem 3. Without loss of generality, let us assume
both r and ¢ are odd and ¢ > r. Let m, = [r/2] and m, = [¢/2].
The difference between Ty and I'y is

;-1

>[40, ke) + 5 (kr, 0))In

k=1

+ 3 [3(0, ke = 5) + (0, ke + )T @ (I + 11T)
i=1

+ S ke = £,0) +y(kr + £0)II+ T O L
=1

My Me

+ 3 S ke + £ ke +5) + (ke + £ ke = )

=1j=1
+ (k=& ke j) + 9(kr — £ ke = 7))

x (07 + 1) @ (M + 07

The largest absolute value of elements in each row corresponds to
the y{kr — m,,0) or v(0, k¢ — m.) element. It is enough to show
that 352 | 7(kr — m,,0) goes to zero as r — oo in order to have
T2 = T3] — 0 element-wise. It suffices to show that the covariance
function is absolutely summable. If 332, |¥(7,0)] < oo, then

(== o0
= Z-y(kr—m,,O)SZh(kr-—m,,O! < oo
k=1 k=1

and hence hm S, =0.
From the expression given in (4.4) for the CAR(1),
L

S a0 =Y

k=1 k=1s=0

25+ k 2L 2s—20+ k
2t i 5§—1

with the identity

we have

St =55 ()

k=1a1=0

With a crude upper bound on the fractorial term, ( 25+ k) <
5

2204k we then have

(-]

S0 < 33 = St Yoy
k=1

k=18=0 k=1 =0

4p
SO -167) ©
Therefore, y(k,0) is absolutely summable
We can follow the same argument and obtain the summability

result for r > ¢ and for even r or ¢. This implies that each element
of [Ty = T'y| — 0 as min(r,¢) — oo.
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