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1. Introduction

The bootstrap idea of Efron (1979, 1982) can be carried
over directly to spatial point processes. Quite often we consider
statistics which have complicated distributions under complete
spatial randomness, and nearly impossible distributions under
suggested alternatives of clustering or a regular pattern. Further,
the parametric alternatives may be too restrictive to adequately
characterize the process at hand.

Consider points Zy, - - - ,Z, ~ PP (L), in which PP (A) is

a spatial point process with intensity {A(x):xeA} for some

index set A (usually a compact subset of R?). Denote by

A(A) =_[7L(x)d x. The distribution of Z; can be uniquely charac-
A

terized by {A}, which we will do since this is most natural,
Complete spatial randomness (CSR) is the isotropic, stationary
“‘null model” A(x)=A, .

We have some statistic in mind,

R@Z,\)
which we wish to study. We fit &, or A in some cases. Then we
draw a ‘‘bootstrap sample”” Z7, - -+ ,Zy ~ PP (1), and compute
R"=R@Z",%) .

Repeatedly draw N such samples and summarize the findings,
say in terms of the bootstrap mean, bias, and standard deviation
(cf. Efron (1982)).

Example 1. We might count the number of points in quadrats
{81, -+ ,8,;1, and use Fisher’s variance to mean ratio,

q e -
R(EZMN=Y(C-CP/C
i=]

in which C;=#{j:Z;eS;} and C =¥ C;/¢. This is known to
have, asymptotically, a xg_l distribution under complete spatial
randomness (or more generally, under stationarity). However,
the distribution is unknown under alternatives.

Example 2. We may focus on the & -th smallest nearest neigh-
bor distance 4, ; Ripley and Silverman (1978) showed that

n(n—l)ndﬁjf Hx)dX —> %3 as n —> oo,
A
with f (x)=AX)/A(A), the density of the point process. Under

CSR, this simplifies nicely, but one would need to know f under
alternatives.

Example 3. Another type of statistic is the empirical distribu-
tion function of nearest neighbor distances, as considered by
Diggle (1983) and others. Rather than perform a number of
simulations to develop an envelope ““test’”” of the null hypothesis
edf , one could draw a number of bootstrap samples and deter-
mine a confidence envelope for the true distribution function.
Due the the undercoverage problem with such procedures (Loh,
1985) one may want to consider summary statistics such as
means and von Mises functionals, again as considered by Diggle
(1983).

2, Bootstrap distribution

Several possible estimates of A present themselves. The
discrete estimate is simply a point mass at each point
Zyy 2,00

AB)=#1{j:Z;eB}, BcA . @1

This implies that A(A)=n. A second possibility is a parametric
class, such as Neyman type A or Strauss processes, with the
parameters estimated from the data. One could convolute such a
process with the simple bootstrap, as described by Efron (1982).

A third class of estimates arises from nonparametric esti-
mation via kernels or splines. In other words, we find the penal-
ized maximum likelihood estimate of

logh(x) = log f (x) + logA(A)

subject to a penalty, say
1 =] [0 ax
A

being bounded. This is simply a density estimation problem (cf.
Silverman (1982)) of minimizing

T g fx)+al(f) .

i=l
Note that A(A )=n, as before. Any other nonparametric density
estimator (e.g. kernel or nearest neighbor) could also be used
here.

In addition there is the question of perspective: does one
view the sample size as fixed given the data, or as random? The
former case is sometimes referred to as a Binomial process, and
one would take bootstrap samples of fixed size m (m =n is not
requ iredﬁ\‘For the latter,

N ~ Poisson(A(A)) and N* ~ Poisson(N) ,

noting that A(A)=N for most practical situations. The fixed



case corresponds very closely to the ordinary bootstrap, while
the latter introduces a new element which does not appear to

have been examined.\Note also that the sense in which sample
size grows is different. One way to allow n to increase is to
have a fixed area A, but let A be a function of ‘‘time’’,

AMX 1) =1 AMX) .

and to take the limit as ¢ —eo, Thus EN =t A(A). Another
option is to increase the size of the area. These have different
practical consequences, and rather different applications.

One might consider other bootstrap approaches to Exam-
ple 1, where the data are summarized by quadrat. One could
consider bootstrapping the counts Cy, -~ - ,C,. However, they
are not i.i.d. if the process is a compound Poisson process, since
some quadrats would have higher expected counts than others.
Another possible bootstrap is a multinomial of the points, with
probability (C;/n) for §;. But this is equivalent to the simple
bootstrap first proposed, conditional on the number of points
being n.

While we may be able to discern new properties of the
classical spatial statistics tools, we are still left with the
identifiability dilemna of the London busdrivers: we cannot dis-
tinguish between a doubly stochastic and a compound point pro-
cess on the basis of one realization.

3. Worked Examples

We explore a few examples to see what we have gained.
Consider Example 1, and a fixed number of points. Then

(Cy, =+ ,Cy) ~Multinomial (n,py, -+ - D)

with (= A(S;)/A(A). A bootstrap sample of size n will have
distribution

(C1, -+ ,Cy) ~ Multinomial (n,p y, - - - vBa)

with g;=C;/n. Thus trivially the bootstrap sample will provide
decent estimates of the underlying distribution, as they have the
same form (see Remark G of Efron (1979)). In particular we
could investigate the variance to mean ratio. Similarly we could
examine the distribution with a random sample size N. Here,
C;~Poisson (A(S;)) and C; ~Poisson(A(S;)=C;). Again, the

distributions are of the same form.

Of more interest, perhaps, is the second example. While
the limiting distribution is proportional to a %%, we must estimate

the proportionality (i.e., J % in all but the simplest models.

This statistic depends on pairs of points, specifically the k-th
smallest nearest neighbor distance. Therefore, with the simple
bootstrap we end up sampling from

dij, 1<i<j<n ,

ijs

with d;; this distance between Z; and Z;, and d;=0. Our

minimal distance is likely to be 0! Further, the results cited by
Ripley and Silverman (1978) require a continuous density. Thus
there is some argument for using a parametric or smoothed
bootstrap, particularly if one is interested in small k.

The third example could be attacked using any kind of
bootstrap, although some continuous form is probably prefer-
able.
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