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Abstract

We show that variable kernel regression estimators converge in weighted centered
L, norm. This weighted norm, suitably standarized, converges to a standard normal,
allowing us to develop a class of goodness of fit tests for a parametric regression curve
against a general smooth curve. This result works well for sample sizes of 200 or more

in simulations, although is less reliable for moderate samples as p increases.

1. Introduction

Consider the model

vi=gt)+e,1<t<n
with ¢ some smooth function with two uniformly bounded derivatives and {t;,1 < i < n}
design points on (0,1). We restrict attention to design points of the form t; = Q(:i/(n + 1)),
with ) = F'~! and F a continuous distribution function. We wish to estimate ¢ by a variable
kernel estimator and show the asymptotic normality of its weighted centered L, norm on

[a,b], with 0 < @ < b < 1 and p > 1. The estimator is of the form

n

gu(l) =D Wit)ys,

=1
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with Wi(t) = ((tig1 — )/ ha(8:)) K ((t — t:)/hn(t;)) and K a kernel satisfying

K K is bounded and vanishes outside of a finite interval
0.2 K’ exists and is bounded

o3 o0 Bt =1

C.4 [ LK (t)dt =0

€5 [ 2K (t)dt < oo and [ 12K (t)dt # 0.

We want to have a local estimator, i.e. with W;(t) = 0 for large |t — ¢;|. Thus the
local bandwidth h,(¢) needs to be bounded. We assume that h,(t) is essentially A,¢(¢),
where {(t) is a smooth function and A, — 0 as n — oo. If {(¢) is unbounded on (0,1) let
h,(t) = min(6, A\, l(1)), where § > 0 is small enough. It will be clear from the proof that for
n large enough ¢,(t) does not depend on 6. We also assume

C.6 infecici—c £(t) > 0 sup.gey (1) <oo forall 0<e< :
C.7 SUP.cic1—e |€(E)] <00 forall 0<e< %,
" where £ is the derivative of £. We further need F' and ¢ to be smooth functions. Let f = F’

and assume for all 0 < ¢ < %

CS infeﬁtﬁlue f(t) > 0
C.9 SUD, <1 |f(t)] >0
C.10 ¢, ¢® exist and SUP,<ic1—e 0 (]g'(1)], lg®(t)]) < oo.

We do not want to assume that the “errors” ¢,1 < ¢ < n are independent and/or



identically distributed random variables. We need only that the sum S(z) = Yicic, &

behaves nicely. Assume there is a Wiener process and a positive constant o such that

S(z) — oW(z)] = Oyla(n)),

C.11 SUPo<p<n
where a(n) is an increasing, regularly (or slowly) varying sequence. There is a considerable

literature on approximations on partial sums. We refer to surveys by Csorgoé and Révész
(1981) and Philipp (1986).

Let
b
L(p) = [ 9a(t) = g()P()dt,
where w > 0 is a weight function, and suppose

C:12 SUP,<ich |9(n) (1) — go()| = 0 as  n — oo,
with g (t) = (nAn)2[Ega(t) — g(t)] and go(t) an appropriate continuous function. Our

main result is the following
THEOREM. Assume that C.1-C.12 hold, a(n)(n)\i)_% —0asn —ooand 1 < p < oo.
Then, as n — oo,

(RAa)E In(p) — mn) [(0220)7 B N(0,1),

where N(0,1) is a standard normal random variate and o, independent of n and m,, are as
defined in Lemma 3.

The theorem is tailored for goodness-of-fit. Usually we can choose the design distribution
and {(t) in the definition of the bandwidth. The value of g is given under the null hypothesis.

Thus we know everything in m,, and o. but o. However, we can estimate ¢ by &, such that



(6 — 0)? = O,()\,). Hence the result remains true when ¢ is replaced by o, in m, and o.,.
An important special case is the problem with uniform design points (F'\(t) =¢, 0 <1t <
1) and uniform weights (¢(¢) = 1). Here,
Ega(t) = ((n+1)Xa) 7 DO K((t =i/ (n+ 1))/ An)g(if (n + 1)),
=1

and hence

sup |Egn(t) — )™ fol K((t — 2/ \)g(z)dz| = O(n~tA,) 1),

a<t<h
If n is large enough, then f(tt/_)%//\n K(u)g(t — ul,)du = [ K(u)g(t — ud,)du. A two-term
Taylor expansion and C4 give

sup 16 [ K(u)(g(t — uhs) — g(t))du — gD () N2 f_ °; WK (w)du| = 0(A2).

a<t<b —o0

Hence

sup [6g(m (1) — (nA3)zg? () ]_ Z w K (u)du| = O((nh,)77) + o((nA3)7).

a<t<b

C.12 holds if (n)\i)% — Co > 0 with 6go(2) = ¢ (1) [ u?K(u)du or if n\3 — 0 with

—0Q

‘go(t) = 0. The bandwidth A, = an_% has received special attention in the literature
because it minimizes the mean squared error (cf. Marron and Hardle (1986)).
Assuming that {¢;,1 < ¢ < n} are independent, identically distributed random variables

with E|e;|” < oo for v > 2, the Komlés-Major-Tusnady construction yields C.11 with a(n) =

1/v

. . 1 .
n'/v. Assuming v is large enough, we can always have n/*(nA2)~2 — 0. For example, in

1
2

the optimal case of A, = Con~2, we need v > 10/3. The independence of ¢;,1 <1 < n, can

be relaxed; for example, we can get similar results for m-dependent random variables.



Section 2 proves the main result, with lemma proofs relegated to section 4. Section 3

contains results of simulations for modest sample sizes.

2. Proof of Theorem

Without loss of generality we can assume that K(u) = 0 if |u| > 1. It is easy to see that
Wi(t)=0,t € [a,b] if t; € [a — 6,b+ 6]. Hence by C.6, hn(t) = X L(2),1 € [a,b] if n is large
enough. Also, in the definition of g,, we can restrict the summation to (n+1)F(a—6) < <

(n 4+ 1)F(b+ 6). Hence we can write g,(t) = Egn(t) + 7,(t), with

_ 7_1# (n+1)F(b4+8) Q(%)_Q(n%)l{ t“Q(nx?)
0=, mF@e-8) Q7)) («\nE(Q(Jq))

)dS(z).

Therefore (nA,)5I,(p) = [ |(n)\n)%§ (1) + g(ny(t)[Pw(t)dt. First we consider (nA, )2, (1).

LEMMA 1. Assume C.1, C.2, C.6, C.7 and C.11 hold. Then

t—0)
Al(Q(757))

(n+1)F(b+6) T T
sup Ry (t) — /( o=t YdoW ()|

a<t<h n+1)F(a—6) n+1 n—+1
= Op(a(n)).

Elementary observations give

il (n+1)F €T 1 tiQ(nil")
s TG K g iy W (@)

o=

/f;b+§[f($Jf($)]"ff((i — )/ (b)) doW ((n + 1)F()

—&

= (nAn)~
2 ((n+1)/n)iTV(t), with

IO(t) = o f"'( W @)K ((t = 2)/(Anl()))dW (2),



We show in the next two lemmas that we can extract f3(£)¢(t) from the integral, and can

essentially consider only the asymptotics of
b
Zn(a,b) = / IT@(#) + gy (£) Pro(t)dt, with

rO) = Ao b0 [ K (- )/ (k@)W (z).
LEMMA 2. We assume that C.1, C.2, C.6-C.10 hold. Then

sup [T(8) = TP (1)) = 0,(An?).

a<t<b

LEMMA 3. We assume that C.1, C.2, C.6-C.10 and C.12 hold. Then
A 2073 (Zn(a, b) — my) 3 N(0, 1),

with center and asymptotic variance, respectively,

_/ / oL 2D$+g(n)( Nw(t)p(z)dtdz,

“ _/ / / / o[ ()L(t)] Dy + o[ f(OUD] T2 D(z + y) + g5 (1)
xw? (1)) W(((u); z,y) — o(z)p(y))dedydudt,

where D? = [ K?(t)dt, p(z) = (ZW)_%e_“”z/z, ((u) =D7% [ K(y)K(y + u)dy and
U(u;z,y) = [20(1 — u?)] Lexp(—(a? + y* — 2uzy)/(2(1 — u?))).
Now we are ready to prove the Theorem. Let p > I. For any h,g € L,(a,b)

b
127 [Cllg(t) = ()P he(t)dt <



[ la) — o+ [ 19(0) = ho) P dd ][ b P,
By Lemma 2, [} |IT(t) + gy ()7 = ITE(E) + oy () Ph(8)dt < 0(A77/2) + 0,17 ). Hence
by Lemma 3,

@20 H [ L) + g6 OF o)t~ ma} B N (0,1,

and Lemma 1 implies the Theorem.

3. Simulations

We simulated I,,(p) using programs developed by Joan Staniswallis and used in her joint work
with one of us (Stansiwallis and Yandell, 1990). We used a rescaled version of a function

used by Wahba and Wold (1975),
g(w) — 4.26[6—3.253 _ 46—6.53: o 36—9.75.7:]-

Independent, identically distributed N(0,0?) contaminating errors for sample sizes n = 50,
100 and 200 were generated with the random number generator RNOR residing in the Portable
Statistical Library CMLIB. Noisy observations of ¢ on [—1,2] were used by the kernel smoother
in order to avoid boundary modifications to the kernel. The spline fit to the presmoothed
data and the global spline fit used only the region [0,1].

One hundred independent realizations of size 50, 100 and 200 respectively of the locally
adaptive smoothing spline were generated to provide the g,(t) values. We used Simpson’s

one-third rule to numerically compute I,,(p) values for p = 1(0.5)5 . For simplicity we used



uniform weights, i.e. w(t) = 1. All simulations were performed on the Statistics Research
VAX at the University of Wisconsin, Madison.

Figure 1 shows QQ plots of I,(p) for p = 1,2,3,4 and n = 50,100 and 200. Results
for n = 50 were not very encouraging and discrepancy from normal distribution was quite
prominent. Results for n = 100 were a little closer, but still not satisfactory enough. All these
clearly indicated the need for using a sufficiently large sample size for achieving normality.
Therefore, we ran the simulation for n = 200 and found out that the plots were much more
satisfactory. In fact, deviation from normality was not prominent until p = 3. The singularly
interesting feature of the simulations was the increase in discrepancy of I,,(p) from normality
with the increase in p.

These simulations reveal several important features. The rate of convergence depends on
p and actually decreases as p increases; the rate of decrement slows down with an increase

in n. The rate of convergence is very slow even for a moderate value of p.

_4. Proof of Lemmas

PROOF OF LEMMA 1. Simple integration by parts implies that

(n+1)F(b4+6) O 2Ly — O( 2 t — Of -2
nA, sup |-£— Q(”H) XQ(”H)K( Q(”ﬂ:1)
agt<b An J(n+1)F(a-5) Q(:57)) Ad(Q())

Also,

)dW (x)

[0 QD - Q) 1 1= 2
() F@-6) Q) Al(Q(F))

= [ @U@+ (n+ 1)) = W) ) K~ )/ b))V ((n + )P (w).
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Hence integration by parts again proves Lemma 1 by noting

b4-6

sup | [ [n(Q(F(uw) +n7") —u) = F7H(Qu)]e(u) T K ((t = w)/(Anl(w)))dW ((n + 1) F(u))|

B =

= Op((n)\n)_ )7

PROOF OF LEMMA 2. Integration by parts gives
oA FEEOTD(E) = K(( = (b+8)/Qnl(b+ §))W (b +6)

K((t = (@ = )/ (hbla - )W(a—8) — [ W)AK((t ~ 2)/(Mnl(z)).

If n is large enough K((t — (b+ 8))/(Aul(b+ 6))) = K((t — (a — 6))/(And(a — 6))) = 0 and

hence

. até
Pg)(t) = —aA I ()N () W(z)dK((t — z)/(AL(z))).
b—6

A similar argument gives

1 b46 i
—o IR = [ W@ @)K (@ - )/ (Ont@)}

= [T W@ K- 2/l @ @)
% b_f W (2)f~2(2)0 (2)dK ((t — z)/(Ab(2))).

1
It is easy to see o~ A2 [[A)(t) — TV (1)] =

f( i(;;;)/)]/ ?(]) (Wt — uha) = W) — udn) [t — uda) — F3(0) U)K (w/8(t — uhs))

(t=(a=5))/h(n) 1 1
+/ (W (¢ — uhn) — WK (u/0(t — udn))d{F 3 (£ — ud )1 (t — udy)}.
(= (b +8)) /()

Using the continuity of the Wiener process and one term Taylor expension we get Lemma 2.
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PROOF OF LEMMA 3. Note that I'®(¢) = o= fZ(£)¢(t)L (1) is a zero mean Gaussian
process with covariance

b6

EEO@TO(s) = 37 [ K (= 2)/Qnl(2) K (5 = )/ Onl(e)))do.

-6

By C.1 there is a constant C' > 0 such that

ET®@®IO(s) =0 if |t —s| > Chg. (1)
Thus we find that
E(T®) (1)) = £(4 /A w)du + 0(A
ETO()TO(t) = 4(t) / K(y)K(y + (s = 1)/(l(t))dy + 00\n), 2)

and hence
rOR b 1 1
2200 = [ [ lof @ OECP@ Eetgm )P we(e)dtds = mato(a) ()
by (2). Also, for a < ¢ < d < b, arguing similarly to (3),
\EZo(c, d) — f / o F~E(£)0F (1) Dz + geay (1) Pw(t)dt] < C(d — ¢)An. (4)
"We have by (1) and (3) that var(Z,(c,d)) =
[ [ [ ] EcP@reed @) ey + OO o) + BT ) v+

+9(m) (D) g0y (8) P (t)w(s) (W (Ca(t, )5 2, y) — P(2)(y))didsdady,

where T}, = {(t,s) : ¢ < t,s < d,|s —t| < CA,} and (a(t, s) = cor(TO (), IP)(s)). By (1)

i n

and (2) we get var(Z,(¢c,d)) =

f / f] [u(t)u(s)E3 (1)E3 (s) D*ey + u(t)L2 (£) Dty (s)z + u(s)e3 (s) Dy (Lhy+



+9n) (D)gn(8)[7 X w(E)w(8) [P ({m) (¢, 5); 2, y) — B()P(y)]dtdsdedy + O((d — c) A7),

where ((,)(t,8) = D72 [ K(y)K(y + (s — t)/(Auf(t)))dy. Thus we have shown that,
var(Z,(c,d)) = Ao + o((d — ¢)An). (5)

Let Ci = Zn(az-,aﬂ_l) T EZn(a%-,a@-H), with a; = a -+ ‘l:)\n, 0 S 7 S ZI[), with ?:() = [(b—a)/)\ﬂ]
and a;,41 = b. By (1), {,0 < i < ig} are m-dependent r.v.’s, where m is a large enough
constant. Let M = [i}],0 < v <1 and define

M m
= G-y (Mm)s Vi =
j=1 j=1

(it M4(i-1)(M+m)»

for 1 <i <k, = [to/(M + m)], and Yg41 = Z;'():Hko(M+m) ¢; Clearly the {n;,1 < ¢ < ko}

are independent r.v.’s and {v;,1 < ¢ < ko} are independent. By (5) and independence

B =

B(SR, 7:)? = 0(k,A2) = 0(™) and |BG(l < (BCPEn})? = 0()}). Hence E(Tif" 7)* =

0(A2*1) and

ko+1 ko ko ko
ECY. %3 0) =Y Evini + 3 Eniviz1 = O(koA2) = O(AF).
i=1 i=1 i=1 =1

Further observing that Z,(a,b) — EZ,(a,b) = T+ ykotl ¢ we have

1 ko

(Za(a,b) = BEZn(a,b)) = An” 3 i + 0p(1), (6)

=1

An

1,
2

and ATVE(TR 7)? — 0? as n — oo.
In a similar fashion to (4) one can show that E¢! < C'A%, and therefore En! < CM?A;.

1
Now we can easily establish that (32, Eni’")%/)\% — 0,if 0 < o < }. Using the Liapunov

central limit we obtain that (02}\”)*% S ko m; B N(0, 1) and hence (6) implies the lemma.

11
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Figure1: QQ plots for Simulated Data
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