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Abstract

We examine ways to measure to “closeness” of two pixel images, such as comparing a true image to a
reconstruction of that image following blur, noise and distortion. Methods based on simple differences of
intensity between images may be missleading due to slight shifts of a few pixels. We examine the effect
of such local distortions and investigate ways to combine measures of intensity and distance differences.
Methods of estimating local distortion, and blur in the presence of shift, are discussed and demonstrated
on readily available images. Simulations show the promise of this approach to provide objective methods
for comparing image reconstructions.
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1 Introduction

We consider the problem of determining how well one has reconstructed an image. In essence, this
reduces to comparing two images using some objective measure or measures of agreement. Metrics based on
simple differencing of images is flawed by not detecting slight shifts or deformations [3,10]. It is also readily
apparent that one measure may not be adequate to summarise discrepancies, and that one may have to rely
on several measures which elicit different aspects of image reconstruction. No attempt has been made here
to comprehensively review literature on image analysis and image reconstruction. The reader is referred
to [5,9] and recent issues of IEEE Trans. PAMI. Instead, our focus is upon developing inferential tools for
comparing images when, in addition to noise, there may be some shift or deformation.

Suppose that we consider an “original image” and an image “reconstructed” from that original. Alterna-
tively, we could consider two reconstructions of a single image. Some authors prefer to use “template” and
“degraded image”, but we recognize that “template” has many other meanings, and the reconstruction may
actually be an enhancement rather than a degradation. There are many situations where a reconstructed
image may be “close” to the original, but suffer from some combination of blurring, noise and global shift
or local deformation.

We propose a specific model of such a combination and explore several ways of summarizing the deviation
of the reconstruction from the original image with the aim of developing inferential tools to select the “best”
reconstruction or to order several reconstructions. It is important to keep in mind that there probably is
not one “best” reconstruction but rather several, possibly contradictory, ones which would probably have to
be weighed subjectively in any particular practical situation. One way to accomplish this it to establish one
method of comparison between images, and then consider several linear transforms (or filters) which elicit
features of particular interest applied to both original and reconstruction before comparison. The statistic
for evaluation of “best” reconstruction would be a weighted combination of these measures based on various
filters. This idea was used for boundary detection by [5].

Let the original image be = = {(¢, z(t));t € T, z(t) € V'}, where T is the pixel grid and V is the intensity
(brightness) range, and the reconstructed image be y = {(¢,y(t));t € T,y(t) € V}. Usually we consider
theoretically that T = [0,1]? and V = [0, 1]. In practice, T is a 2D matrix indexed by 1 to 256, 512 or 1024,
while V = {0, ---, 255} represents a grey level scale. We consider reconstructions of the form

y@) =[f*rz](t+s) +et+s) = fa:(t + s(t) — u) f(u)du + €(t + s(t)), (1.1)

in which f is the blur window convolved () with the original image 2, s = s(t) is the shift and e is the noise.
The choice of f as the delta function is equivalent to no blur. It is quite likely that the shift is not uniform
over the image, and may be better thought of as local deformation. For completeness, z should be extended
to T(s) = {t + s(t);t € T'} in a natural way.

Our ultimate aim is to determine how “far” y is from z. We proceed by (1) estimating & from y assuming
no shift or local deformation and (2) estimating § by deforming # closer to z. In some cases, f is of unknown
form, or at least has unknown bandwidth. One could assess the “closeness” of the two images by summaries
based on f, 5, and the residuals for «

A(t) = =(t) — 2(t - 3(t))

and for y X
€(t) = y(t — 8(t)) — [f = &](t — 5(2)).

We consider several approaches in the present study. Section 2 considers estimation and detection of
noise and blur, with emphasis on problems that arise when there is an undetected shift or local deformation.
Section 3 examines estimation of global shifts or local deformations of one image relative to the other. Section
4 concerns other approaches to measuring deviation, including the combinations of distance and intensity
metrics introduced by Baddeley [2,3] and examination of the power spectrum. Section 5 compares measures
applied to several images with artificially added blur, noise and/or local deformation.



2 Detecting Noise and Blur

Ignoring shift for the moment, the reconstruction model becomes

y(t) = [f » 2](t) + (1)

We want to estimate the blur and noise, arriving at some measure of closeness of the reconstruction to the
original image. Natural candidates, explored below, involve tests of the bandwidth in the blur kernel f and
of the size of the residual variation €. If the kernel integrates to 1 and is sufficiently smooth, then a Taylor
series approximation yields

ot} s ait) — / () f(u)du + f () F(u)du/2 + €(2),

where £¥ = uT¢ = (u11, ua®a), with £; = 8z/8t;, and #* = uTF", with &;; = §%2/0;0t;,4,j = 1,2. In the
case of symmetric f and continuous & near ¢, y(t) &~ z(t) + [ #%(t) f(u)du/2. If, further, f is separable, then

y(t) ~ z(t) + Am(t)cr?/? + €(t), (2.1)

where f(u) = fi(u1)fi(uz), 07 = [v*fi(v)dv and the Laplacian is Az(t) = #11(¢) + &22(t). Note that the
bandwidth of f is proportional to o;. Clearly if one knew more about the form of f, one could use this
information to improve local approximations, e.g., by deconvolution [8].

Regressing y(t) — 2(¢) on Az(t) with zero intercept provides an estimate of cr?, and of the noise process.
One could then test if the slope were zero (no blur) and determine if the noise were negligible (62 =0), and
use these or various regression diagnostics to examine the blur and/or noise. An interesting approach to
examining patterns in residuals was suggested by Jubb [7]. One could determine the frequency distribution
of “groups” of contiguous “informative pixels” (e.g., é(t) at least ko), and compare this with Monte Carlo
simulations to assess the goodness of fit.

2.1 Neighbourhood Intensity Differences

It is necessary to consider the ramifications of ignoring possible shift when blur and noise are present.
We examine differences in intensity between two images which have been displaced slightly. That is, for
every pixel on one image, one compares the intensity with pixels in the neighbourhood on the other image:

dr(t) = droy(t) = Osr%ilrér{dv(w(i), y(t +9))}.

We consider some of the implications of this for small r. Suppose that dy (a,b) = |a — b|, and let d(t) =
dy y,z(t). Note that do = dp. Throughout the discussion below we use a local Taylor series expansion of the
intensity value near z(t) as

z(t +8) = z(t) + 67 (1) + 675(t)5/2 + o(|6]?)
= a(t) + &0 () + & () /2 + o(16]*),

assuming for the discussion that higher order derivatives of z are uniformly bounded over the image; that
is, we impose a prior belief that the original image curvature does not change too rapidly anywhere.

2.2 Neighbourhoods of Noise and Blur

A reconstructed image which is simply the original plus (independent) noise, y(t) = z(f) + €(t), yields
differences do(t) = |e(t)|. Thus, with no shift, one could simply examine the residual difference of the two
images, estimate the magnitude of noise (MSE) and test for spatial patterns, and evaluate closeness on the
basis of such tests. If, however, there has been some deformation, it may be important to examine differences
in the neighbourhood of . Thus

d-(t) = min((e(t)], min {l=(t) = 2(t + ) — <t +3)[})



- ]
min(le(9)], min {14°(0) + #°(1)/2+ <t + O)])
The derivatives can be bounded by |#%] < rM and |£%] < r2 M for some M (-) and, if the image is sufficiently
smooth, this bound can be uniform. This leads to a crude upper bound

dr(6) < min(le(0)], [2M10) + M (O/2+ min {Ie(t+ D)),

or, forr=1, ‘ )
di(t) < min(le(t)], [M(2) + M(t)/2 + llglli;ll{if(f +d)11)-

If Pr(le(t)| > B8) = @, |[M(t)| < m1, and |M(t)| < mg, then for a square pixel grid with 4 nearest neighbours,

Pr(do(t) > B) = a and Pr(di(t) > m1 + ma/2 + ) < . If we reverse the sense of  and y, we find that
d(t) ~ min(|e(t)], [t {le(d)~ #°(t) - &°(t)/2[})-

Thus only one value of ¢(t) enters and one does not have the exponential decay with 7 as found for d,.

Reconstructions which merely add noise to original images with mild gradient and curvature should yield d,

which decays very slowly, while d, decays very rapidly.
Blurring yields slightly different neighbourhood metrics, namely, dp = [Am(t)la?/Q,

dr ~ min(|Az(t)|0}/2, Ué?éi&rﬂrid(t) +r285(t) /2 + Az(t + §)oF|/2}),
d, ~ min(|Aw(t)|a'f/2,0i1|16i11§r{| — i (1) — 288 (t) /2 + Az(t)o}|/2}).

Note that Az(t+4) ~ Az(t) provided the (uniformly bounded) third derivatives of z are small. Thus d, and
d, should behave similarly for blurred reconstructions for which the original has mild gradient and curvature,
with only mild decay as r increases.

3 Estimating the Shift

If the shift is unknown, then we must estimate it. We consider three approaches: (1) global estimation
of constant shift, (2) local (neighbourhood) search using minimal deviations, and (3) penalised likelihood
estimation of local deformations. The third approach is intermediate between a simple (global) model and
fidelity to the data found in the second approach. For this section, we assume there is no blur or noise, or
rather that these have been estimated and removed using methods of the previous section.

Reconstructions which involve only deformations of the original image, y(t) = z(t + s) with s = s(t), are
approximately

y(t) ~ z(t) + sTz(t) + sTE(t)s/2. (3.1)
One could estimate the global shift (if any) by non-linear least squares applied to (3.1), or more crudely by
ordinary least squares, dropping the #* term. Alternatively, one could simply shift the images relative to
one another and find that shift s which gives the “best” fit, say in terms of minimizing ¥ [y(t) — z(t + 5)]*.
We have used this latter approach with a cascade algorithm along the lines of Jin and Mowforth [6].

If one examines neighbourhoods with r > maxer ||s(t)]|, then d.(t) = d-(t) = 0 in the absence of noise
or blur. The gradient and curvature can play an important part in how fast agreement is determined for
r < |s|. If |s| is small, then one can quickly find the shift. If |s| is large, then

y(t+38) —z(t) = (s+8)Tz(t) + (s + ) TE(t)(s + d)/2
~ () + 80(1) /2 + 675 (t)s + 2°(2) + £°(t)/2.
Clearly, for shifts, d, = d, (allowing for the boundary), but it may be difficult to distinguish deformation
from blur, since blur introduces the Laplacian Az which can be confused with #*. Thus it is important to
remove any blur before estimating local deformation. In the case of local deformation, some nonparametric

approach might be preferred, allowing s(¢) to change smoothly over ¢t € T [1,6]. These are explored in the
next two subsections.



3.1 Penalised Likelihood for Local Deformations

If one considers the original problem with blur, shift and noise, the problem can be formulated as trying
to characterize the displacement s and the underlying image intensity z, if one knows the blur function f.
The simultaneous solution can be formulated as finding z(t) and s(t) to minimise

Z[y(t —f*z())? + Z[f ¥ 2(t) = fra(t+ s(t))? + Av Py (2) + A Pr(s),

teT teT

with Py and Pr penalties to ensure smooth intensity and displacement surfaces, respectively. While one
may choose to estimate s and z simultaneously, we have implicitly proposed above to separate this into the
following two problems: (1) find z to minimize

> () = £+ 2] + v Py (2),

teT

and (2) given z, find s to minimize

> le(t) = 2(t + s()) + Az Pr(s).

teT

It may be important for some applications to consider a broader definition of deformation [1]. Let ro be
a “template” from some set of objects R which is deformed as r = 7(rg). One actually observes y = y(r),
with 4 mapping objects » € R into the image space I. That is, the original image is £ = ¥(rp), and the
reconstructed imageis y = y(7(rp)). A special case has the deformation as a local shift of the original image,
y(t) = z(t + s(t)), although more general types of deformations are possible, subject to suitable regularity
conditions. Amit considers in general the displacement of the object,

r(t) = r(ro(t)) = ro(t + s(t)),

which is finally seen via the map as y(t) = y(ro(t + s(t))). Thus s(T) = {s(t) = (h(t),v(t)),t € T}is a
deformation of the original pixel grid, with h(T") the horizontal and v(T) the vertical displacement. If we
extend z(-) to be zero outside T', our mapping is well defined.

To ensure that the problem is well-posed, we consider S = {(S(t)),t € T'} as a zero-mean continuous
bivariate Gaussian random field and construct a reproducing kernel Hilbert space [1,12] which corresponds
to a model regarding the unit square as an elastic body subject to random forces through linearisation. The
covariance matrix field is specified implicitly by the reproducing kernel, L(s) = (Ln(s), Ly (s)), with

Lu(s) = La((h, v)) = Ah+ (B — 1)(hay + i12) = haz + Bh11 + (8 — )iz

and similarly for L,(s) exchanging 1 and 2, with 8 > 0. Note that the choice § = 1 yields independent
displacement, which may hold in some limited situations.

The estimation of s = (h,v) is rather involved, with a number of approximations presented by Amit et
al. The basic problem revolves around selecting s to minimise

23 Vedy(t), v(ro(t + s()))} + AP(s),

teT

with norm P(s) = ||L(s)||?>. Here A controls the tradeoff between smoothness imposed by the penalty norm
P and fidelity to the degraded image y. The V; are the (non-negative) potentials, evaluated independently
at each pixel location, e.g. squared deviation, corresponding to a Gaussian distribution for Y (¢) = y(t) given
S(t) = s(t).

Computationally, this is a difficult problem, as one has a 2-D spline over a pixel grid which is at least
2562 and potentially much larger. It may be preferable to follow some local smoothing approach [4], with
appropriate modification of the penalty. Instead, we chose to implement the “cascade” algorithm of [6].



3.2 Coarse to Fine Deformation

An alternative to the linearisation above is to estimate local deformations using a cascade of coarse to
fine filters. Loosely speaking, one creates very coarse blurring (large bandwidth) of both images and shifts
one relative to the other on the scale of the blurring. The process uses estimates of local curvature (either
Laplacians or differences of Gaussians) to highlight edges, the key features for detecting local deformation.
The scale of blurring and of deformation is progressively reduced until finally one is examining the unblurred
images on a pixel-by-pixel basis. At each stage, one corrects for the deformation detected at the previous
scale, and progressively refines the estimate of deformation. This idea is a standard approach for image
enhancement, but its application to comparing images appears to be due to [6]. The idea follows most
nonparametric regression schemes of extracting the signal (low order, coarse features of deformation) from
noise (high order, fine features).

The algorithm proceeds as follows. First determine and apply any global shift using methods of the
previous subsection. Then set s(t) =0. Let

G(t,0) = V3¢(t;0,0) = =~ Lo~ 4(1 — |t|?/20%) exp(=[t|*/20?)

be the Laplacian of the two-dimensional Gaussian filter. Apply this to both £ and y for some initial og
to create zg(t,06) = [G(-, o) * z](t) and similarly ya(t,0¢). For each ¢ find §() which yields the “best”
agreement between zg(t, o) and yg(t, o). This agreement might be measured in terms of locally smoothed
correlations, as in [6], or some other measure such as smoothed deviations:

> lza(t +u,06) — ya(t — s(t) = 6(t) + u, 06)*w(y, ow), (3.2)
ueT

with w some density and oy, suitably chosen. Update s(t) to s(t) + d(t), reduce o and oy, by a factor of 2
and repeat the procedure until §(-) is suitably small. Jin and Mowforth point out that replacing (3.2) by

E[:ﬂc(t +u,06) — ya(t + u—s(t +u) — 8(t + u), 06)*w(y, ow),
ueT

is computationally unstable. We have observed this in practice, with fine features irretrievably lost at a very
coarse level.

It may be important for some purposes to use different kinds of filters in place of the difference of Gaussian
or the Laplacian. For instance, pictures dominated by texture features might suggest some other filter to
detect shifts, perhaps along the lines of [5].

4 Other Approaches

4.1 Combining Distance and Intensity

Baddeley (3] proposed a metric for comparing images which combines distance and intensity metrics. Let
dr(s,t) be a distance metric (e.g., Euclidean distance), and let dy (2(t),y(s)) be an intensity metric (e.g.,
|z(t) — y(s)|). For convenience, we only consider symmetric metrics, although the discussion could be easily
generalised to include the nonsymmetric case. Baddeley defined the “A-metric” using information generated
at each pixel. Letting

6x(t) = 8x .y =inf{a > 0:3s € T, dp(s,t) < Aa,dv(z(t),y(s)) < a},

Baddeley suggested the “A-metric” as the supremum of §; (t), Ay = sup,c7 0 (t). As pointed out by Baddeley,
A is a metric which suffers from a lack of robustness to outliers. We propose instead to consider a-quantiles
Ay(a) of {dx(t) : t € T'}. It can be readily shown that A,(a) is a metric, following an argument similar to
Baddeley.

Baddeley noted that Ay is a decreasing function of A, with the limit, corresponding to the L metric,
at some A < sup, ;cp dr(s,t). Note also, the different types of images may have different average levels and



ranges of intensities. Therefore, it seems reasonable to select a neighbourhood size d and determine A based
on intensity differences in the neighbourhood of ¢t € T'. For each t, consider the non-increasing stochastic
process V(d;t) = inf{dy (z(t),y(s) : s € T,dy(s,t) < d}. Baddeley’s metric is dx(t) = max(Vi(t), Ta(t)/A),
with

Va(t) = sup{v : v = V(d;t) > d/A}, Ti(t) = inf{d: v(d;t) = Va(t)}.

Thus one might determine A from the a-quantile of selecting A based on a quantile of the intensities in the
set V(d) = {V(d;t) : t € T'}. Letting V(d)(a) be the a-quantile, we choose A = V(d;a)/d. We have found
that for many 256% images with moderate blurring or noise, a neighbourhood of size d = 6 seems fairly
robust.
Various plots suggest themselves to elicit the tradeoff of distance and intensity. One could plot {(t, T\(t)),t €

T} and {(¢,Va(t)),t € T} to show where discrepancies are found, indicating the relative importance of
distance and intensity. Instead, we propose plotting bivariate histograms of {(T\(t), Va(t)),t € T} on a
logarithmic scale.

4.2 Power Spectrum

As expected, blurring eliminates high frequencies, and uncorrelated noise introduces a uniform back-
ground level at all frequencies. Distortion has minimal effect. Here, feature detail may be lost, and one can
only examine aspects involving low frequency signals versus high frequency noise. The main thing we have
examined here is the cumulative distribution of power. It appears from examination of power spectra for
many images that one can distinguish pure noise from images with structure, but it is difficult to differentiate
among a range of dissimilar images. Figure 1 shows bivariate power functions derived from FFTs of a number
of images along with four types of noise. Notice how the cumulative distribution of power, normalized by
volume and superimposed on the FFT, is nearly flat for noise, but strongly curved for most images. One
can show that blurring tends to reduce the higher frequency components, and noise tends to increase power
uniformly (Figure 2), but finer distinctions seem unlikely.

5 Simulations and Image Comparisons

5.1 Distance and Intensity

The first and second derivatives of images were examined with scatter plots of the bivariate distribution
of the maximum gradient and Hessian at each point using 1gradient from scilaim (Figure 3). The greatest
difficultly of detecting added blur and noise was found with images with large ranges of M and M, such as
the mandrill.

We examined graphical summaries for a number of images using V) (t) and T3 (¢). In general, we found
for blurring, noise and deformation: (1) as blurring increases, the intensity difference increases. (2) noise
tends to yield small distance and intensity differences, except for shot noise which has occasional large
differences. (3) as deformation (global shift or local deformation) increases, the distance difference increases.
At this point, we have mainly considered prefiltering images with gradients (edge and contrast detection)
and detail filters (Laplacian and difference of Gaussians). Detail filters applied to blurred images primarily
found V) () > AT\ (t). Neither detail nor gradient filters were much modified by noise; distance and intensity
values were both low.

Bivariate histograms of {(75(t), Va(t)),t € T} were plotted on a logarithmic scale with a box for (d =
6,V (d; @)) and a line v = At show the relative tradeoff of distance and intensity. Figure 4 shows how intensity
differences V), (t) tend to increase as blurring increases, regardless of the image (here girl, spheres and
dart). Figures 5 and 6 show the effect of noise and blur on several filters as summarized by the distance-
by-intensity histograms.

Noise by itself tended to produce very short distance and intensity differences, as would be expected.
Gaussian, uniform and Cauchy noise seemed to elicit similar responses; shot noise (a small percent of very
large values) sometimes required very large distances to match intensities (not shown). The images used
here and elsewhere in this paper are shown in Figure 7.



5.2 Estimating Blur and Noise by Regression

In some experiments estimates of ¢7/2 were found by regressing y(t) — z(t) on Az(t); see equation (2.1).
For the cases when the image was blurred with a Gaussian filter (of various sizes) a positive slope was
obtained which was highly significant. For the case when independent Gauusian noise was added, a negative
estimate of 0? was obtained, indicating no blur, since the tests are one-tailed. In the cases where both blur
and noise were present, the success of the inference procedure was dependent on the relative amounts of
error introduced by these two deformations.

There have been many investigations into the removal of blur via deconvolution, and we will not dwell
on this subject. Rather, we concentrate on the issue of detecting a shift or local deformation in the presence
of noise and in the presence of noise and blur. We focus primarily on Gaussian noise and shot noise, and on
blurring due to a Gaussian window.

5.3 Estimating Shift and Local Deformation

QOur experience is that global shifts are fairly easy to detect using the cascade algorithm, and are not
affected by either noise or blur. It is only when one considers the possibility of local deformation that one
detects any variation in estimation. Here we have found that the coeflicient of variation (CV) for the ratio
of deviations between the original and deconvolved vs. the original and reconstructed images,

> [yt = &) = =/ Y _[v(t) — ()%,

is about 1% over a range of images subjected to Gaussian noise (Table 1) and about 3% for images with
shot noise.

We also examined an image of a mandrill (primate) along with a deformation which makes the nose
wider and moves it to the right, and shifts the eyes upwards. Our reconstructions recover the major feature
deformations, but, depending on the actual algorithm, tend to obliterate some detail or other (not shown).

We are concerned that our cascade algorithm is not very precise, missing some features entirely and
much rougher than we would expect. In fact, for some combinations of initial and final values of oy, and
o in the cascade algorithm (see equation (3.2)) the deconvolved images are worse than the original! (Table
la, molecule). This is partly due to the inherent inaccuracy imposed upon us by the current computing
environment, scilaim using pixel (0 —255) and integer arithmetic where floating point arithmetic would be
more appropriate. Qur experience with the cascade algorithm suggests that an initial value of o should be
127 or 63 and that o, should be set to (7@ + 1)/4—1 or (¢ +1)/8 — 1. These combinations seem to work
adequately for a variety of images.
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