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Summary. At least two common practices exist when a 
negative variance component estimate is obtained, either 
setting it to zero or not reporting the estimate. The con- 
sequences of these practices are investigated in the con- 
text of the intraclass correlation estimation in terms of 
bias, variance and mean squared error (MSE). For the 
one-way analysis of variance random effects model and 
its extension to the common correlation model, we com- 
pare five estimators: analysis of variance (ANOVA), con- 
centrated ANOVA, truncated ANOVA and two maxi- 
mum likelihood-like (ML) estimators. For the balanced 
case, the exact bias and MSE are calculated via numerical 
integration of the exact sample distributions, while a 
Monte Carlo simulation study is conducted for the un- 
balanced case. The results indicate that the ANOVA esti- 
mator performs well except for designs with family size 
n = 2. The two ML estimators are generally poor, and the 
concentrated and truncated ANOVA estimators have 
some advantages over the ANOVA in terms of MSE. 
However, the large biases may make the concentrated 
and truncated ANOVA estimators objectionable when 
intraclass correlation (Q) is small. Bias should be a con- 
cern when a pooled estimate is obtained from the litera- 
ture since 0 < 0.05 in many genetic studies. 
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Introduction 

Intraclass correlation is a measure of the degree of resem- 
blance among groups, which are often family members, in 

Correspondence to: C. S. Wang 

genetic studies. Since Fisher (1918, 1925) introduced the 
concept of the intraclass correlation, its estimation and 
the properties of its estimators have been extensively 
studied and documented (e.g., Fisher 1925; Snedecor and 
Cochran 1980). Many applications of the intraclass corre- 
lation are found in genetic studies (Kempthorne 1957; 
Falconer 1989). For example, if randomly chosen males 
are mated to several randomly chosen females with one 
offspring per mating then the intraclass correlation coef- 
ficient is defined as the correlation between sire-family 
members. 

A commonly used method for correlation estimation 
is the analysis of variance (ANOVA) for balanced data or 
its analog for unbalanced data (Henderson 1953). The 
properties of the ANOVA estimator are well known. The 
estimator is biased downward (Ginsburg 1973; Ponzoni 
and James 1978), but the bias is usually small. Large- 
sample variance formulae of the ANOVA estimator have 
been derived for both balanced data (Fisher 1925; Os- 
borne and Paterson 1952) and unbalanced data (Smith 
1956; Swiger et al. 1964). Negative estimates of correla- 
tion can occur due to sampling errors even if the model 
is correct (Leone and Nelson 1966). The probability of 
obtaining a negative estimate depends on both the design 
and the size of the correlation. For a small correlation 
and small samples, the probability can be substantial. In 
animal genetic studies, intraclass correlation is often used 
to estimate heritability, which is non-negative by defini- 
tion. Two common practices arise when a negative esti- 
mate is obtained. Some practitioners simply treat a nega- 
tive estimate as zero while others may not report it to 
avoid embarrassment (Searle 1971). Strictly speaking, all 
these and others practices yield different estimators of the 
intraclass correlation. To the best of our knowledge, there 
have been no systematic studies to quantify the effects of 
these practices. Therefore, the basic objective of the pres- 



80 

ent study is to compare  the ANOVA est imator  and its two 
common variants,  along with two maximum likelihood- 
like est imators in terms of bias, variance and mean 
squared error  (MSE) via numerical  integrations using the 
exact distr ibutions of the est imators for the balanced 
case, and via Monte  Carlo simulations for the unbal-  
anced case in small samples. This approach  is in accor- 
dance with Searle's (1988) call for assessing the small- 
sample propert ies  of est imators of variance components  
in a general unbalanced mixed model  setting by use of 
numerical  and s imulat ion means because analytical  stud- 
ies are either difficult or else impossible. 

Models and estimators of  the intraclass correlation 

First  consider the one-way random effects ANOVA mod-  
el: 

yij = # + a~ + % (i = 1, . . . ,  s, and j = 1 . . . . .  ni) (1) 

2 2 2 where a i ~ i i d  (0, o-i), eij ~ iid (0, o-2), o-y = o-a ~- O'e, and 
E(y~) =# .  Usually, ai and % are assumed to follow a 
normal  distr ibution.  

The vector (nl ,  n2, . . . ,  n s )  is the n-pat tern  of sub- 
group sizes, and the da ta  are unbalanced whenever the n~ 
are not  all equal. In the argument  which follows we shall 
refer to a i as families without  loss of generality. 

The intraclass correlat ion is defined as (Fisher 1925; 
Snedecor and Cochran  1980): 

Q (Yij, Yik) ---- Coy (Yij,  Yik)O-Yij o-Yik = 0-2/(0"2 "J[- O'e2)' (2) 

where j and k are different members within a family. The 
z_>0. limit of ~ are from 0 to 1, for o-, 

A broader  definition of the intraclass correlat ion coef- 
ficient is as follows. Da t a  yij are distr ibuted about  a com- 
mon mean with a common variance, o-y2, and Yij in the 
same family have a common correlat ion coefficient, 0, 
called the intraclass correlat ion coefficient (Snedecor and 
Cochran  1980). This alternative from of the one-way ran- 
dom model  is also called a common correlat ion model  
(CCM) (Donner  and Koval  1980). This model  is more 
general in that  it permits negative values of ~. Estimates 
lie in the range - l / ( n -  1) to 1. 

Both the ANOVA and CCM models  can be formulat-  
ed in a mult ivar ia te  setting, in which the relat ionship 
between the two models  can be more clearly seen. F o r  
both models, let Yi = (Yw Y~e . . . . .  Y~-i)' denote a vector 
of measurements  taken on the i th family, i = l ,  2, . . . ,  s. 
Further ,  we assume that  Y i ~ i i d  (ui, Zi) , where # i =  
(#, # . . . . .  #)' is a vector of length n~. The covariance matr ix  
for the ANOVA model  is ZAI , of order  n~ x ni, where ZJ~i 

2 and Z ~  = o-a z for j # k. The intraclass correlat ion is O'y 

,0 = a2/o-y2. The covariance matr ix  of the CCM is Zci, 
where 2~ i _- o-y2 and ZJc k = 0 o-y2 for j # k. 

The two models  differ in terms of the covariance 
structure and, consequently, in terms of the lower limit of 
o. The ANOVA model  specifies the lower limit of 0 to be 
zero, while the C C M  permits negative values of 0. In fact 

2 2 the ANOVA is a special case of the C C M  with ~ = o-a /O-y " 
This difference has implications when the M L  est imator  

is considered. 
Historically,  the ANOVA est imator  of the correlat ion 

from both ANOVA and C C M  models  is closely tied to 
the analysis of variance. Fo r  both  models, the s tandard  
analysis of variance is given in Table 1, in which 

s 
k - N - Z n 2 / N  and N = Z ni, the total  number  of ob- 

S - - 1  i = 1  
servations. When nl = n for all i, k = n, and the balanced 
case is obtained (Snedecor and Cochran 1980; Fisher  

1925). 
The ANOVA est imator  of 0 for both  models is 

OA = a~/(a~ + ~) 
= ( M S A -  MSE) / [MSA + (k - 1) MSE], (3) 

where ~e z = MSE and ~z = ( M S A - M S E ) / k .  The limits 
of 0A are from - 1/(n - 1) to 1. The negative lower limit 
guarantees the existence of some negative estimates of the 
estimator.  The probabi l i ty  of obtaining a negative esti- 
mate was derived by Leone and Nelson (1966) and Gill  
and Jensen (1968). The common practice of setting a 
n e g a t i v e  0A to zero is equivalent to equating the negative 
side of the sampling dis tr ibut ion of 0A to zero. Thus, we 
define an estimator,  a 'concentrated est imator ' ,  due to 
setting negative estimates to zero as 

0AC = max {0, 0 A } '  (4) 

The practice of not  repor t ing the negative estimates is 
essentially a t runcat ion of the left tail at zero. So, an 
estimator,  say a ' t runcated est imator '  due to not  report-  
ing negative estimates, is defined as 

OAT = 0A if ~A --> 0, undefined otherwise. (5) 

Similarly, we define the ML-l ike  est imator  from the C C M  
as  

MSA(s  - 1)/s-MSE 
0CM = MSA (s - 1)/s + (k - 1) MSE ' (6) 

and the ML-l ike est imator  from the ANOVA model  as 

0AM = max {0, 0CM}" (7) 

Table 1. Analysis of variance 

Source df MS EMS 

Under CCM Under ANOVA 

Between s -- 1 MSA 
families 

Within N -  s MSE 
families 

~(1 +(k- t )~)  oy +ko~ 

~ (t - ~o) ~ 



It is well known that in the balanced case the ANOVA 
estimator (0A) is the restricted maximum likelihood 
(REML) estimator derived from the CCM, while 0AC is 
the R E M L  estimator from the ANOVA model, due to the 
fact that the variance component  estimators are R E M L  
estimators. 0CM is the ML estimator from the CCM in 
balanced data (Rosner et at. 1977). Similarly, 0AM is the 
ML estimator from the ANOVA model in the balanced 
case, since the corresponding variance component  esti- 
mators are the ML estimators (Herbach 1959), and ~2 _> 0 
by definition. For  unbalanced data 0A and 0gc are not 
REML, and OCM and 0AM are not ML. We call them 
REML-like and ML-like estimators, respectively. These 
estimators differ basically in two ways. Differences of 
estimators from different models (0A VS 0AC and 0CM VS 
0AM) are caused by concentrations, whereas differences 
between ML and R E M L  arise because R E M L  takes into 
account the loss in degrees of freedom associated with the 
estimation of the fixed effects. 

o 

p4 
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Distr ibut ions  o f  e s t imators  

The distributions of the estimators are both parameter- 
dependent and design-dependent. In this study, due to 
analytical intractability, no efforts were devoted to deriv- 
ing the first and second moment statistics of the estima- 
tors. Instead, numerical calculations were used to exam- 
ine some of the properties of the estimators. As pointed 
our earlier, 0AC concentrates the left tail of the distribu- 
tion of 0A at zero, as 0CA t o  0CM, while OAT c u t s  off the tail 
of 0A below zero. Relationships between sampling distri- 
butions of the estimators are shown numerically in Fig. 1 
for a design of 20 families each having five family mem- 
bers and ~ = 0.10 as an example. These differences in 
distributions should result in differences in bias, variance 
and the MSE of the estimators. 

The exact density function for 0A in the balanced case 
was provided by Donner  and Koval (1983) as follows: 

fA (r)  = C (1 - -  r)[s (n - 1) - 2]/2 [1 + (n -- 1) r] (~ - 3)/2 Q - (s, - 1)/2, 

- 1  
- -  < r < l  (8) 
n - 1  

where 

C = n [ l +  s - ]  ~(s 1 ) / 2 I s ( n - l ) ]  [s(n-1)l/z 

(n - 1) 0 J L ~ J  

Q = (s - i) [1 + (n - 1) r] [1 + (n - 1)01-1 + s (n - i) (2 - r) 
( 1 - 0 )  -1 and F(c 0 is gamma function of cc 0AC results 
from the concentration of 0A. Consequently, the density 

A 

P ~  

-0.15 0 0.15 0.30 0.45 
Estimates 

Fig. l. Distributions of estimators generated from the exact 
sample distributions of the estimators. The example is taken as 
a design of 20 families each having five family members and 

=0.t0 

function of 0AC becomes 

gAc(r) = f(r), 0 < r < 1 (9) 
0 

= ~ f(r) dr, r = 0 .  
- 1 / ( n  - -  1 )  

The density function of OAT, due to the truncation of OA, 
appears as 

hAT(r) = f(r) f(r) dr, 0 < r < l .  (10) 

This is a conditional density, and the condition is the 
existence of OAT, because 0AX is not defined while 0A is 
negative. By a similar approach we derive the probability 
density functions for the ML from the CCM, and for the 
ML from the ANOVA model (0AM), in the balanced case 
a s :  

cPCM (r) = [(s -- l)/s] s(,- 1)/2 (Q/R)(~n- 1)/2 f(r), 

- 1 / ( n  - 1) < r < 1, ( 1 1 )  
and 

r/AM(r ) = (p (r), 0 < r < 1 (12) 
0 

= ~ cp (r)dr, r = 0  
- U ( n  - 1 )  
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respectively, where R = ( s -  1) [1 + ( n -  1) r] [1 + (n - 1) Q]- 1 
+ ( s - 1 )  ( n - l )  ( 1 - r )  (1 -0 )  -1, and Q is the same as in 
(8). 

Numerical integration and Monte Carlo simulation 

Numerical integrations were performed for balanced 
data using the exact distributions of the estimators. We 
considered many design combinations for N = 50, 100 
and 200. For example, design combinations (s x n) for 
N -- 100 were 2 x 50, 4 x 25, 5 x 20, 10 x 10, 20 x 5, 25 x 4 
and 50 x 2. Limits of 0A and 0eM are from -- 1/(n - 1) to 
1, and from 0 to 1 for 0AC, OAT and 0AM. For comparison 
purposes, intraclass correlations ranged from 0 to 1 in 
increments of 0.01. For each design-parameter combina- 
tion and each estimator, we calculated exact bias, vari- 
ance and MSE. Integration subroutines were adapted 
from IMSL (IMSL, Inc., 1989). All calculations were in 
double-precision Fortran. 

For unbalanced data, we conducted a simulation 
study using four levels of Q (0.025, 0.1, 0.2, and 0.5) and 
two sample sizes (N = 50 and 100). The three family sizes 
(n) within N chosen were 2, 5 and 10 respectively. Two 
n-patterns were simulated for each of the above combina- 
tions: the unbalanced but fixed (Table 2) and the Poisson 
random distribution. In total, 12 design combinations or 
48 design-parameter combinations were considered. The 
estimated biases, variances and mean squared errors of 
five estimators were calculated based on 1000 indepen- 
dent simulation runs conducted for each of 48 combina- 
tions. The one-way random effects ANOVA model (1) was 
used to generate the data. Normality of family and error 
effects was assumed throughout the study. The simula- 
tion programs were written in S language (Becket et al. 
1988). 

As mentioned before 0AC and 0AM are REML and ML 
estimators, respectively, from the ANOVA model in the 
balanced case. It is of interest to compare the perfor- 
mances of 0AC and 0AM with their counterparts, the true 
REML and ML estimators, in unbalanced data. For this 
purpose, a parallel simulation study was carried out with 
a similar design as the above. Simulation runs conducted 

Table 2. The n-patterns used in the simulation studies 

Codes n-patterns 

Pl 
P2 
P3 

P4 
P5 
P6 

1,1 ,1 ,1 ,3 ,3 ,3 ,3 ,5 ,5 ,5 ,5 ,7 ,7 ,7 ,7 ,9 ,9 ,9 ,9  
6,6,6,10,10,10,10,14,14,14 
1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1  
2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,  
3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3  
3 ,3 ,3 ,5 ,5 ,5 ,5 ,7 ,7 ,7  
6,6,10,14,14 
1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,  
3,3,3,3,3,3,3,3 

for each combination were 300, instead of 1000, because 
of computing constraints. The simulation was done using 
SAS and its variance component procedures (SAS Insti- 
tute Inc., 1985). We do not repeat here the definitions of 
the REML and ML procedures of SAS, because they are 
well understood. 

Results and discussion 

In the first three subsections which follow, the exact re- 
sults of five estimators computed from their exact sam- 
pling densities are presented in terms of bias, variance 
and mean squared error, respectively, in the balanced 
case. The detailed results are only given for N = 50 de- 
signs, since patterns of differences between estimators for 
N = 100 and 200 designs resembled that of N = 50 de- 
signs, though as N increasd, differences between estima- 
tors became smaller. There are in total ten pair-wise com- 
parisons for five estimators. We emphasize four pre- 
sumably meaningful comparisons (0c~4 vs 0AM, 0A VS 0AC, 
0A vs OAT and 0CM VS 0A) here. 

In the fourth subsection, the results generated from 
the simulation with unbalanced data are presented, and 
comparisons are made with the corresponding exact re- 
sults of balanced data. The fifth and last subsection em- 
phasizes comparing the performances of 0AC and 0AM 
with their counterparts, REML and ML estimators in 
both balanced and unbalanced cases. 

Biases of estimators 

Figure 2 gives the exact biases of five estimators for 
N = 50 designs based on numerical integration. Biases 
are both negative and positive and the horizontal line in 
the figure indicates the zero bias. The criterion used for 
comparison here is absolute bias. As mentioned earlier, 
0g was biased downward whereas 0Ac and 0gx, which 
concentrate and truncate the distribution of 0A, intro- 
duce upward biases. Some positive bias cancelled out 
with the negative bias. The remaining bias could be either 
positive or negative, and could be either greater or 
smaller than that of 0A, depending on the severity of 
truncation and concentration. For small n and small 0, 
biases of 0gc and OAT were huge. Another interesting 
point regarding 0A and 0CM was as follows: 0A had nega- 
tive bias, and 0cM failed to take account of the loss in 
degrees of freedom associated with the estimation of fixed 
effects, introducing further downward bias. So the abso- 
lute bias of 0cM was always larger than that of 0A. The 
difference in bias of these two estimators was given by 
Fisher (1925) and Wang et al. (1991). Furthermore, 0AM 
concentrated the distribution of 0cM producing upward 
bias. The tradeoff of downward verses upward bias re- 
sulted in a complicated pattern of bias comparison be- 



0.1 

k . ,  

0 0 

E 
'~ -0.1 
0 

"0 -0,2 

- 0 . 3  

i5 

Estimator 
5 

Desiga 0.08' 
(s x n) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0,025' 

-0.03- 

-0.085" 

-0,4 

-0.2 
0.2' 

Estimator 
k .  

0 0,15' 5 

E 
" 0.1' 

4 

'6 cos- 2 
g) 

0 3 

-0.05 

-0,2 

, , , , , , - 0 . 1 4  

0 0,2 0,4 0.6 0.8 1 -0.2 

Design 
sxn) 

x2 

1 t I I I I 

0 0.2 0.4 0.6 0.8 1 
Intraclass correlation 

Estimator 
Design 

5 \ (sx n) 

4 

2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 

1 

I I 1 1 1 1 

0 0,2 0,4 0.8 0,8 1 
Intraclass correlation 

0.1 

0,05 

-0.05' 

83 

Estimator 
Design 
(s x n) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-0.I , , , , , , 

-0.2 0 0.2 0.4 0,6 0.8 1 
Intraclass correlation 

Fig. 2. Biases of estimators. The design label refers to number of families (s) and family 
size (n) respectively. The figure legend for estimators is: 1 =0CM, 2 = OAM, 3 = CA, 
4 = 0AC and 5 = OAT respectively 

tween the two ML estimators (with a similar phe- 
nomenon for 0,  vs Oac and 0A vs OAT). These non-uniform 
patterns of comparison between estimators imply that 
turning points or 'watersheds' must exist so that the order 
of comparisons change with respect to 0. The precise level 
of such watersheds would then depend on the design. 
Under fixed N, watersheds increased as s increased. 
Watersheds decreased as sample sizes (N) increased with 
either fixed n or fixed s. This confusing picture became 
clearer as Q increased. The basic difference in terms of bias 
for large ~ was between two classes of estimators, the two 
ML estimators vs the three ANOVA estimators (Fig. 2). 
For small Q, particularly for 0 < 0.10, a common situation 
in genetic studies, relative bias, defined as bias over para- 
metric value, of OAC and O A T  could be as large as 15- 
1000%. The bias of 0CM was large for small s. In general, 
from a bias perspective, 0A was preferred with a relative 
bias usually < 10%. 

Variances o f  estimators 

Figure 3 shows variances of five estimators given N = 50. 
Variances of 0AC and OAT are uniformly not greater than 

that of 0A, and similarly for 0AM compared with 0CM, since 
truncation and concentration reduce variance. The above 
variance differences quickly diminish as Q increases. Fur- 
thermore the variance of 0AC is definitely not smaller than 
that of OAT, since truncation of a distribution reduces 
more variance than concentration. 

The comparison of the variances of 0cu and 0A, name- 
ly ML and EML estimators from the CCM, yielded a 
conclusion of non-uniform patterns. In other words, 
weatersheds existed in this variance comparison. For 
N = 2 designs, watersheds were around 0.01-0.02, and 
watersheds increased to 0.88 as n increased. This implied 
that for small n the variance of the 0CM was greater than, 
or equal to, that of 0A, and vice versa for large n designs. 
But the difference was small except for s = 2 design set- 
tings, an unlikely situation in practice. A similar situation 
existed for the variance comparison between OhM and 

A C "  

Mean squared errors o f  estimators 

As discussed earlier, all five estimators are biased. In such 
situations, a global criterion, such as MSE, is usually used 
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Figure 3. Variances of estimators. The design label refers to number of families (s) and 
familiy size (n) respectively. The figure legend for estimators is: t =0cM, 2 = OhM, 
3 = 0A, 4 = 0he and 5 = OAT respectively 

to compare performances of estimators. The numerical 
results are presented in Fig. 4. It was clear that the MSE 
of 0AC and 0AM were always smaller than that of 0A and 
0CM, respectively. The reason was that 0AC (or 0AM) con- 
centrated the sampling distribution, reducing the vari- 
ance, and either increasing or decreasing the bias. In the 
case of increasing bias (decreasing bias leads to decreas- 
ing MSE), variance reduction was more than enough to 
offset the squared bias increase, hence the MSE de- 
creased. The differences for both comparisons were large 
for small n. The situation for the MSE comparison be- 
tween 0A and 0AT was similar. However, the increased 
squared bias in the lower range of Q was larger than the 
variance reduction. Consequently, watersheds were cre- 
ated, making the comparison between 0A and OAT non- 
uniform. 

Watersheds were also observed for MSE comparisons 
of 0CM VS 0A and 0AM VS 0AC, and ranged from 0 to 0.31. 
For example, for design 5 x 10, the MSE of 0CM was 
greater than that of 0A if ~ >_ 0.24, and vice versa for 

< 0.24. A similar phenomenon was observed by Rosner 
et al. (1977) and O'Neill et al. (1987) in comparing perfor- 

mances of interclass correlation estimators in terms of 
MSE. 

Finally we may approximately rank the estimators in 
terms of MSE in descending order as 0c~, 0AM, 0A, 0AC 
and OAT, except for n = 2 designs (Fig. 4). In the small n 
and small ~ case, two concentrated estimators (0ac and 
0AM) had some advantages over their counterparts (0A 
and 0c~). 

A comparison of  performances of  five estimators 
in the unbalanced case with that in the balanced case 

The patterns of comparisons among five estimators in the 
unbalanced data were similar to that in the balanced 
data, as shown in Figs. 2-4.  For this reason, we do not 
give extensive tables for all design combinations. Instead, 
only the results from one design combination (s = 20 and 
Pl n-pattern) are presented in Table 3, along with the 
exact results from numerical integration, in terms of rela- 
tive bias (RB), variance and mean squared error. RB is the 
bias of an estimator divided by its true value. 
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Fig. 4. Mean squared errors of estimators. The design label refers to number of families 
(s) and family size (n) respectively. The figure legend for estimators is: 1 = ~cM, 2 = ~AM, 
3 = ~A, 4 = ~AC and 5 = ~AT respectively 

Notice the closeness between the results of balanced 
da ta  and that  of unbalanced da ta  for each of the five 
estimators. In general, the former had less bias, less vari- 
ance and less MSE than the latter, as expected. The differ- 
ences, in terms of variance and MSE, between balanced 
and unbalanced layouts were usually no greater than 
_+ 10% of relative error  though occasionally was up to 
_+ 15%. This finding was true for other layouts not  pre- 
sented in the paper,  including the results from the ran- 
dom Poisson n-patterns.  

A comparison o f  6~A c and OAM with true R E M L  
and M L  estimators in the unbalanced case 

Results from the simulat ion for the unbalanced case are 
summarized in Tables 4 and 5, along with the appropr ia te  
exact results computed  from the ecaxt sampling densities 
for the balanced case. The exact results of the balanced 
case served as a reference basis for comparisons.  Table 4 
gives relative biases of estimators.  The values of RB in 
Table 4 exceeding -t- 10% are italicized. 

The dominant  feature of Table 4 is that, in general, the 
RB of R E M L  (ML) estimators and ~AC (~AM) in the unbal-  
anced case were of the same magnitude,  and their RB 
were similar to that  of R E M L  (ML) est imators in the 
balanced case. Some differences existed in case of Q = 
0.025; however, these differences did not  exhibit any par-  
t icular pattern. In  other words, the true R E M L  (ML) 
est imator  was no better than ~ac (~AM), in terms of bias, 
for the layouts considered in this study. 

Mean squared errors (Table 5) between ~ac (~AM) and 
R E M L  (ML) est imators in the unbalanced case were very 
close, generally less than _+ 10% of relative error. The 
largest relative error  between ~AC (~AM) and R E M L  (ML) 
est imators was 31.97% (31.39%), when ~o = 0.025 with a 
design of s = 5 and a P5 n-pattern.  It is also clear that  the 
MSE of the above ment ioned est imators in the unbal-  
anced case very similar to that  of their counterpar ts  in the 
balanced case. 

The results obta ined above were essentially the same 
as those of Swallow and M ona ha n  (1984) in compar ing 
the performances of ML, R E M L  and ANOVA estimators 
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Table 3. A comparison of five estimators between balanced and 
unbalanced designs 

n i(n) ~ a Parametric values of 0 
(s = 20) 

0.025 0 . 1 0 0  0 . 2 0 0  0.500 

RB (%) P1 b 

Variance P1 
(lO -3 ) 

MSE P1 
(lO -3 ) 

5 (Equal)c 

5(Equal) 

5 (Equal) 

1 --41.55 --16.68 --11.18 -7.28 
2 49.44 --9.33 --10.54 --7.28 
3 1.62 --4.18 --4.07 --4.25 
4 78.25 1.67 --3.60 --4.25 
5 188.25 19.75 --0.59 --4.25 

1 -45.44 -15.20 -10.12 -6.14 
2 46.52 -8.60 -9.62 -6.14 
3 -3.06 -2.80 -3.04 -3.12 
4 74.23 2.42 -2.67 -3.12 
5 190.34 18.89 -0.26 -3.12 

1 5.571 7.858 10.799 13.892 
2 2.598 6.107 10.271 13.892 
3 5.890 8.215 11.120 13.709 
4 3.084 6.698 10,704 13.709 
5 3.006 5.724 9.843 13.709 

1 5.511 7.605 10,033 12.051 
2 2.608 6.023 9,618 12..050 
3 5.829 7.953 10.339 11.890 
4 3.095 6.587 10.010 11.889 
5 3.051 5.688 9.295 11.882 

1 5.679 8.136 11.299 15.217 
2 2.751 6.194 10.715 15.217 
3 5.890 8 . 2 3 2  11.186 14.161 
4 3.467 6.701 10.756 14.161 
5 5.221 6.114 9 .844  14.161 

1 5.640 7 . 8 3 6  10.443 12.994 
2 2.743 6.097 9 .988  12.993 
3 5.829 7.961 10.376 12.133 
4 3.440 6.593 10.039 12.132 
5 5.316 6.045 9.295 12.125 

a 1 = ~CM, 2 ~--- OAM, 3 = ~A, 4 = OAC and 5 = 
b Based on 1000 simulation runs 

Exact results from numerical integration 

OAT 

Table 4. Relative biases of estimators of Q under both balanced 
and unbalanced layouts (%) 

Design Estimator Parametric values of Q 

s ni(n ) 0.025 0 .100  0 . 2 0 0  0.500 

20 5(equal) REML(~AC) a 74.23 2.42 -2.67 -3.11 
Pl REML b 49.33 -4.25 -8.07 -6.19 
Pl ~Ac c 78.25 1.67 --3.60 --4.25 
5(equal) ML(~AM) a 46.52 --8.60 --9.62 --6.14 
Pi MLb 20.88 -16.25 -15.73 -9.51 
Pl 0AU ~ 49.44 --9.33 --10.54 --7.28 

10 10(equal) REML(OAC) 43.60 -1.11 -4.59 -5.85 
Pe REML 46.32 0.91 - 3.26 - 3.28 
P2 ~AC 50.08 --3.75 --7.42 --7.22 
10(equal) ML(OAM ) 9.51 -16.65 -15.27 -11.35 
Pa ML 9.20 -15.21 -14.27 -8.84 
P2 OAM 15.14 -- 18.85 -- 17.98 -- 12.72 

10 5(equal) REML(dAC ) 120.62 8.76 -3.83 -6.44 
P4 REML 115.98 15 .80  -2.93 -6.30 
P4 QAC 129.66 12 .78  --0.39 --6.53 
5 (equal) ML(~AM ) 68.23 -- 11.02 -- 16.75 -- 12.49 
P4 ML 61.25 -- 5.70 -- 16.37 -- 12.64 
P4 ~AM 76.00 - 7.49 - 13.43 - 12.56 

5 10(equal) REML(~AC ) 76.10 1.16 -8.27 -12.27 
P5 REML 111.63 8.17 -4.71 -7.98 
P5 ~AC 80.13 0.29 -- 6.60 -- 12.06 
10(equal) ML(OAM ) 11.76 --26.88 --27.98 --23.03 
P5 ML 34.54 -- 22.98 -- 26.41 -- 19.03 
P5 QA~a 13.67 --28.07 -- 26.47 --22.81 

a REML and ML estimators in the balanced case, exact results 
from numerical integration 
b REML and ML estimators in the unbalanced case, based on 
300 simulation runs 

~AC and ~AM as defined in the text in the unbalanced case, based 
on 1000 simulation runs 

of variance components for the one-way random model 

with unbalanced data. 

Conclusions 

(1) We compared the performance of five estimators of 
intraclass correlation in small and moderate samples. All 
estimators were biased. The ANOYA estimator had 
downward bias. The ML estimator from the CCM had 
further downward bias than the ANOVA estimator, par- 
ticularly for small s. The resulting biases of the concen- 
trated and truncated estimators from the ANOVA esti- 
mator  were large for small Q. Hence, the ANOVA 
estimator was preferred from the bias point of view, be- 
cause the bias of the ANOVA estimator was usually not 
greater than 10% of RB, even for very small samples 

(N = 50). 

(2) Three concentrated and truncated estimators (0AM, 

0AC and OAr) had smaller variances than their counter- 
parts (0CM and 0A), because the concentrat ion and the 
truncat ion reduced the variance. The differences were 
largest when n was small, where the t runcat ion and the 
concentration were the severest. 
(3) Three ANOVA estimators (0A, ~AC and ~AT) generally 
had advantages over the ML estimators (~CM and 0AM) in 
terms of MSE. However, for the cass of small Q combined 
with small n, the situation was similar to the variance 
comparison, i.e., the concentrated estimators had less 
MSE than their counterparts. 
(4) The estimators from the unbalanced designs performed 
comparably to those of the balanced ones, given the set- 
tings in this study. The difference between ~kC (~AM) and 
REML (ML) was small in the unbalanced case. 
(5) The choice of estimator of the intraclass correlation is 
largely based on personal preference and judgement. All 
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Table 5. Mean squared errors (MSE) of estimators of 0 under 
both balanced and unbalanced layouts (10-3) 

Design 

s ni(n) 

Estimator Parametric values of 0 

0.025 0.100 0.200 0.500 

20 5(equal) REML(~AC) a 3.440 6 .593  10.039 12.132 
Pl REML b 2.563 5 . 9 5 3  9 .428 14.170 
Pl 0AC c 3.467 6 .701 10.756 14.161 
5(equal) ML(OAM)" 2 . 7 4 3  6 . 0 9 7  9 .988  12.993 
Pl MLb 1.919 5 .561  9 .695  15.709 
Pl 0A~ ~ 2.751 6.194 10.715 15.217 

10 10(equal) REML(0AC) 2.215 5 .958 10.997 19.235 
P2 REML 2.485 5 .546  11.802 18.930 
P2 ~AC 2.317 6 .219  11.095 20.157 
10(equal) ML(OAM ) 1.565 5 .313  10.774 21.528 
P2 ML 1.732 5 .754  11.354 20.657 
Pz 0AM 1.614 5 .549  11.080 22.795 

10 5(equal) REML(OAC ) 6.868 11.565 18.240 25.776 
P4 REML 7.525 12.782 18.799 24.358 
P4 0gc 7.524 12.191 19.069 27.346 
5(equal) ML(OAM ) 4 . 7 8 5  9 .672  17.493 28.947 
P4 ML 5.261 10.485 17.765 27.846 
P4 ~AM 5.302 10.130 17.903 30.528 

5 10(equal) REML(~AC ) 4.603 10.891 20.547 42.094 
P5 REML 7.069 12.128 20.052 43.017 
P5 ~6gc 4.850 11.164 21.859 43.252 
10(equal) ML(OAM ) 2 . 4 9 9  8 .311 19.016 49.675 
Ps ML 3.888 8 .967  18.354 49.811 
P5 ~A~ 2.645 8 .652  19.848 50.719 

a REML and ML estimators in the balanced case, exact results 
from numerical integration 
b REML and ML estimators in the unbalanced case, based on 
300 simulation runs 
c ~AC and ~AM as defined in the text in the unbalanced case, based 
on 1000 simulation runs 

est imators are inadmissible in the sense that  no one esti- 
mator  is dominan t  over others in terms of MSE. There is 
always a tradeoff between bias, variance and MSE. Due 
to the dependency of the est imators on design, there are 
no simple answers. It is quite striking that  the M L  estima- 
tor from the common correlat ion model  generally had 
deficiencies in every aspect. If one prefers MSE efficiency 
of the estimators,  then the concentrated and t runcated 
est imators were superior to their counterparts ,  especially 
for small n and small 0. However,  this MSE efficiency was 
the by-product  of the bias deficiency of the estimator.  The 
larger the MSE efficiency, the larger the bias deficiency. 
Recall that  the biases of ~AC and OAT were usually not  less 
than 20% when Q _< 0.10. On the other hand, the bias of 
estimators,  0A is preferred for its smaller bias, usually not  
greater than 10%. 
(6) One of the major  aims of quanti tat ive geneticists is to 
estimate genetic parameters  of a popula t ion;  for example, 
the intraclass correlat ion in this study. Given limited re- 
sources, it is usually difficult to obta in  an accurate esti- 
mate from a single experiment. Thus some geneticists 
tend to gather  information from li terature and try to get 

a pooled estimate which is hopefully better than a single 
estimate. The common practices of treat ing a negative 
estimate as zero or not  report ing a negative estimate 
could introduce sizable biases in this pooling process, 
especially for small 0. In this regard, we recommend the 
report ing negative estimates of 0A to avoid a large poten-  
tial bias being introduced. 
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