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ABSTRACT 
Markov  chain  Monte  Carlo (MCMC) techniques  are  applied  to  simultaneously  identify  multiple  quanti- 

tative trait  loci  (QTL)  and  the  magnitude of their effects.  Using a Bayesian approach a multi-locus 
model is fit to  quantitative  trait  and  molecular  marker  data,  instead of fitting  one  locus  at a time.  The 
phenotypic trait is modeled as a linear  function of the  additive  and  dominance  effects  of  the  unknown 
QTL  genotypes. Inference  summaries  for  the  locations of the QTL  and their  effects are derived  from 
the corresponding marginal posterior  densities  obtained by integrating  the  likelihood,  rather  than by 
optimizing  the joint likelihood  surface.  This is done  using MCMC by treating  the unknown  QTL geno- 
types, and any  missing  marker  genotypes,  as  augmented  data  and  then by including  these  unknowns in 
the Markov  chain  cycle  along  with the unknown  parameters.  Parameter  estimates  are  obtained as means 
of the  corresponding  marginal  posterior  densities.  High  posterior  density  regions of the  marginal  densi- 
ties are  obtained as confidence  regions. We examine  flowering  time  data  from  double  haploid  progeny 
of Brassica napus to illustrate  the  proposed  method. 

P LANT breeders and molecular biologists are  inter- 
ested in using molecular markers to identify ge- 

netic loci associated with quantitative traits (quantita- 
tive trait loci or QTL) . Over the past few  years statistical 
issues related to the identification of QTL have become 
topics of increased research,  leading to the develop- 
ment of various linear models, test statistics, and confi- 
dence regions for  the quantitative trait loci. 

Likelihood based methods have been developed to 
identify a single QTL for  a phenotypic trait. Two  key 
approaches to this problem  are  the single marker t-test, 
also  known  as point analysis (SOLLER et al. 1976),  and 
interval mapping (LANDER and BOTSTEIN 1989).  Under 
the single marker t-test approach,  the hypothesis of no 
difference between the two parental genotypes is tested 
at every marker locus using a t-test, identifying markers 
closely linked to  the putative QTL. The main disadvan- 
tages of this procedure  are  that  the exact location of 
the QTL cannot  be estimated, and  the  gene effects are 
under estimated when the locus is far from marker loci. 

The interval mapping  method models the unknown 
genotypes of the putative  QTL conditional on flanking 
markers. Estimates  of parameters and unknown geno- 
types are  obtained by an EM algorithm (LANDER and 
BOTSTEIN 1989). The profile likelihood of the QTL  is 
used to obtain a  support interval for  the likely location 
of the  gene. The LOD score test  statistic, defined as the 
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logarithm of the likelihood ratio to the base ten, tests 
for the presence of a putative  QTL at every locus. Under 
the hypothesis  of no QTL, the asymptotic distribution 
of the LOD score at any  locus is proportional to a chi- 
squared distribution when the  required regularity condi- 
tions hold. The locus corresponding to the maximum 
LOD score is the estimated location of a QTL if the 
maximum LOD score exceeds the chi-squared threshold 
at any predetermined level of significance. CHURCHILL 
and DOERGE (1994a) suggested randomly permuting 
trait values to determine  the exact nulldistribution of 
the LOD  statistic. DUPUIS (1994) extended the work of 
LANDER and BOTSTEIN (1989), giving joint large sample 
confidence intervals for a single  locus and its  effect  as 
LOD support intervals and Bayesian Credible Sets. 

Many quantitative traits may be modified by multiple 
genes having effects  of different magnitudes. A step- 
wise approach has been used to locate multiple QTL 
for  both single marker t-test and interval mapping  meth- 
ods. After a single locus model is fitted,  the residuals 
are  examined  for  the  presence of a second QTL, and 
so on. However, it is  well known that  the stepwise fitting 
of models result in biased estimates of gene effects. The 
step-wise approach may identify ghost (false) QTL when 
there is actually no QTL or when there  are two or more 
QTL (KNOTT and HALEY 1992; MARTINEZ and CURNOW 
1992).  Hence, we need  a  method  that can look for 
multiple QTL simultaneously. 

Several recent works examined  approximate  meth- 
ods to infer multiple QTL effects. HALEY and KNorr 
(1992) used a multiple regression approach to fit a 
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model with two QTL by searching  the  chromosome of 
interest in two dimensions. They found results similar 
to the maximum likelihood method using simulated 
data. Interval mapping  combined with multiple regres- 
sion have been used to detect multiple loci (ZENC: 1993, 
1994; JANSEN 1993; JANSEN and STAM 1994), with some 
selected markers outside the interval as cofactors in 
regression to reduce  genetic variation. In all these ap- 
proaches,  the  appropriate significance threshold to 
compare test statistics is typically approximated by the 
asymptotic distribution of the LOD statistic (but see 
KNon and HALEY 1992; CHURCHILL and DOEKCE 
1994a). 

Bayesian approach  to linkage analysis  has been used 
previously  (THOMAS and CORTESSIS 1992; HOESCHELE 
and VANRANDEN 1993a,b). While the maximum likeli- 
hood analysis  implicitly  assumes prior linkage between 
a  marker and QTL, a Bayesian approach formalizes this 
by incorporating  the  prior linkage information into  the 
analysis. Computing  the likelihood involves summing 
over  all  possible combinations of QTL genotypes. The 
EM algorithm, as suggested by LANDEK and BOTSTEIN 
(1989), overcomes this computational difficulty by cal- 
culating the  expected QTI, genotypes that would  max- 
imize the likelihood. In this paper we illustrate a Bayes- 
ian approach using MCMC and simply sample from the 
joint posterior of the unknown parameters and missing 
data.  Inference summaries for  the loci and their effects 
are based on their marginal posteriors. In computing 
the  confidence intervals, non-Bayesian approaches do 
not properly account  for  uncertainties  in  the other pa- 
rameters.  Hence,  the  confidence intervals for  the loci 
do  not have their  nominal coverage probabilities. The 
Bayesian approach  at least addresses this concern by 
averaging over such uncertainties since it considers the 
marginal posterior of the loci  given the  data,  although 
it may not completely overcome it. 

HOESCHELE and VANRANDEN (1993a,b)  computed 
the  posterior probability of linkage between a QTL and 
a single (or a pair of) marker(s)  for  daughter  and 
granddaughter designs in animal models. THOMAS and 
COKTESSIS (1992) estimated the LOD scores for linkage 
in  a large pedigree using a Bayesian approach via the 
Gibbs sampler. However, they do  not discuss confi- 
dence intervals for  the locations of multiple loci and 
their effects, or estimate the  number of loci affecting 
the trait of interest. 

This paper is organized as  follows. We first propose 
a stochastic model describing the distribution of data 
conditional on  the unknown multiple QTL genotypes. 
Next, standard  genetic theory is used to describe the 
distribution of such unobserved genotypes given  ge- 
netic parameters and the existence of multiple QTL. 
As part of our Bayesian  analysis, a  third level in the 
hierarchy is a probability distribution over the genetic 
parameters. MCMC  is used to study the resulting joint 
posterior of the parameters given the  data,  and esti- 

mated marginal posteriors are  the basis for QTL esti- 
mates. Bayes factor is used to estimate the  number of 
QTL. This proposal is illustrated using phenotypic trait 
data  for Brassica  napus, on days to flowering. 

QTL MODEL 

Consider a simple linear additive model  for  a  pheno- 
typic trait. At each marker locus and  the putative QTL, 
associate 1 with one homozygous parent type, -1 with 
the  other homozygous parent type and 0 with the het- 
erozygote. Consider a quantitative trait expressed by a 
single gene, subject to environmental variation. The 
observed phenotype y1 for  the ith individual in a sample 
of  size n may be given by the following linear model: 

yL = p + aQ + S ( 1  - I Q I )  + E', (1) 

where E ,  is a  random, mean 0, deviation with variance 
02, and ( p ,  a ,  b )  determine  the  expected response given 
the QTL genotype Q. The location of the putative lo- 
cus, its genotypes and effects can be estimated from 
this model by assuming an  appropriate distribution for 
the traits (LANDER and BOTSTEIN 1989). When the 
quantitative trait is expressed by multiple genes acting 
independently, Model (1) may be extended to 

5 

yL = p + c + c 6,(1 - I Q , I )  + Ei. (2) 
I =  1 ,= I 

For notation,  let Q = { Qj];=I denote  the QTL genotypes 
for  the ith individual, and let a = and 6 = 

denote  the additive and  dominance effects of the 
s loci, respectively. The genetic parameters  are  the QTL 
loci A = and  the  model unknowns H = ( p ,  a,  6, 
a'), where Xi  denotes  the distance of the jth QTL from 
one  end of the linkage group.  Interaction terms can be 
incorporated in the above model  (Equation  2) when 
there is evidence for epistasis between the putative loci 
(KNOTT and HALEY 1992). Specifying the  error density, 
such as normal, leads to a  corresponding probability 
density 7r (y, I Q, H )  . 

Assume that  a linkage map has been developed for 
the  genome. For convenience we consider only one 
linkage group with ordered markers (1, 2, . . . , m} and 
known distances D = {Dk)r=,,  where Dk is the genetic 
map distance between markers 1 and k.  Define M ,  = 
{A&};:=, as the  marker genotypes of the zth individual. 

In practice, we observe the phenotypic trait yt and 
the  marker genotypes MA but  not  the QTL genotypes 
Q. However, the probability distribution of the QTL, 
genotypes, given the location of the putative loci, the 
marker genotypes and  the distance between the mark- 
ers, can be modeled in terms of recombination between 
the loci and the markers. Suppose the jth QTL is be- 
tween markers k, and l + k, (Dkl 5 A, < Dl+,?,), and that 
no  other QTL lies in this marker interval, which is a 
reasonable assumption given a  dense  map.  Under  the 
Haldane assumption of independence of recombina- 
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tion events ( O n  1991), this QTL genotype is condition- 
ally independent of nonflanking  marker genotypes and 
other QTL genotypes given the genotype of flanking 
markers kJ and 1 + ky With n denoting  a probability 
density or mass function,  the QTL genotype distribu- 
tion for  the ith individual becomes 

d 

~ ( Q I A ,  Mi, D) = n ~ ( Q J A ~ ,  M, D) 
j= 1 

(assuming  the loci segregate independently) 
5 

= n ( Qjl A,, Mik],  M % k j +  1, Dk,, Dk,+ I )  ( 3 )  
,= 1 

(by Haldane  independence  assumption). 

Each component in the above product can be  obtained 
in terms of recombination between the markers kJ and 
k, + 1, kj and  the  jth QTL, and  the  jth QTL and ki + 1 
(KNAPP et al. 1990). 

The likelihood of the  parameters A and 8 from the 
ith individual may be expressed as 

L(L 8 I yu Mi, D) = C n(yz9 Q = qz I A, 8, Mu D) 
4, 

= C r (y t I  Q z= q i z  Q)n(Q = qiIA,  Mz, D ) ,  (4) 
<I2 

with the sum over the set of  all  possible QTL genotypes 
for  the ith individual, qt = (qJ E { -1, 0, 11’. When the 
data y = {yj}:=, are n independent observations, the like- 
lihood becomes a  product of factors of the form given 
by Equation 4. This can be expressed, after suppressing 
the  notation  for  conditioning on (Mj]~=l and D, as 

n 

L(L ~ I Y )  = n C n(yi I  Q = ~ i ,  Q ) ~ ( Q  = qiIA), ( 5 )  
r = 1  q< 

a familiar mixture  model likelihood. 
Our aim is to make inference  about A and 8 using 

this likelihood,  but evaluating this likelihood is not triv- 
ial. The likelihood is a finite mixture of densities and 
becomes very difficult to evaluate when there  are multi- 
ple QTL. JANSEN (1993)  demonstrates  the EM algo- 
rithm  for maximizing the likelihood in 8 with A fixed. 

Rather  than  attempt optimization of the likelihood 
surface, we apply Bayesian  analysis and therefore  inte- 
grate this likelihood, modified by a  prior, to produce 
inference summaries for all the  components in the 
model. We can infer the position of QTL and their 
corresponding effects. In  addition, we can estimate the 
number of QTL using Bayes factor for  model selection. 
The definition of  Bayes factors and justification for its 
use are given in the section HOW MANY QTL. 

The extent to which the  choice of  the  prior distribu- 
tion over the  parameter space affects the final inference 
is a  measure of robustness and requires  checking in 
each application. The  prior could be chosen based on 
related studies or information  from  the  literature.  Here 
we use diffuse normal priors (specific details of prior 

for  the B. napus data  are provided in the subsection 
Prior distribution). Bayes theorem combines the  data 
and  the  prior to produce  a posterior distribution over 
all unknown quantities. With Q = {Q]:=l denoting  the 
QTL genotypes for all the n observations, the posterior 
density of A, 8 and Q is given by 

n(A, 8, Qly)  0~ n(ylQ O)n(QIX).ir(A, e ) ,  (6) 

with n (y I 9, 8 )  = nn (yt I Q, e), the  data probability mass 
given the QTL genotypes; x( Ql A) = n7r( Q l  A) ,  the 
probability mass of the QTL genotypes of  all the obser- 
vations  given their locations (and M and D ) ;  and ..(A, 
e ) ,  the  prior density of the genetic parameters. We  as- 
sume prior  independence of the  parameters 

1 

n(A, 8 )  = n ( A ) n ( p ) n ( d  n b ( q ) ~ ( S , ) l .  
I= 1 

A natural choice for  prior of A when no information 
regarding  the locations is available is the uniform distri- 
bution  for s ordered variables on [O, D,]. Specifjmg  a 
conjugate prior  for p, {aj};=], {6,);=, and o2 makes its 
form simple while increasing diffuseness makes the 
prior objective. 

In the Bayesian approach we infer  the  genetic param- 
eters based on their marginal posterior distribution, 
which can be obtained from the joint posterior (Equa- 
tion 6) by integrating over the  other unknowns. Exact 
solution to such high-dimensional integrals are diffi- 
cult,  but Monte Carlo approximation, as described in 
the following section, is quite feasible. 

PARAMETER ESTIMATION 

Markov chain Monte Carlo methods  are used com- 
monly to evaluate complex integrals involving  likeli- 
hoods and to summarize posterior distributions in 
Bayesian problems. Here we use MCMC to study the 
joint posterior density given by Equation 6, by con- 
structing  a Markov chain with this target distribution. 

The target distribution (6) lives on a high-dimen- 
sional product space. The QTL distances A = {A,};,, 
range from 0 to the maximum length Dm, such that 0 
5 AI < A2 < * * < A,, 5 D,. The QTL genotypes are 
elements of a discrete space, Q C 1-1, 0 ,  l)’xn. Each 
additive and dominance effect, and  the overall mean p 
vary in  the real line, and  the environmental variance 
oz > 0. We construct  a Markov chain over the resulting 
product space. Various approaches have been sug- 
gested to construct such Markov chains,  for  example, 
the Gibbs sampler (GEMAN and  GEMAN 1984); Metropo- 
lis-Hastings algorithm (HASTINGS 1970) and hybrid 
schemes (TIERNEY 1994). Our method is a Gibbs  sam- 
pler, with Metropolis steps to update QTL positions. 

Algorithm: The Markov chain is a  random  sequence 
of states 

(x0, Q, eo)), ( A I ,  QI, O ,  . . . , (A”, qV, e”) 
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started at  an arbitrary point (Xo, @, 8') having positive 
posterior density, and proceeding by simple rules that 
modify the  three unknowns X, Q, and 0. Each step in 
this chain is a cycle  of three smaller steps first updating 
A then Q, followed by 8. The step  updating A is a Me- 
tropolis-Hastings step. The steps updating Q and 8 are 
Gibbs sampler steps. More specifically,  given the cur- 
rent state (A, Q e),  we proceed as  follows. 

Updating h: Elements of X are modified one  at a 
time using the Metropolis algorithm. For the  jth locus, 
a proposal AT is generated from a uniform distribution 
on  the interval (max(A,-,, Ai - d), min (A,+,, A, + 4). 
This distribution is denoted by u(Ai, A;) and maintains 
ordering of the loci (note A. = 0, and AI+, = Dm). The 
tuning  parameter d > 0 affects the  conditional variance 
of the proposal. The proposal is accepted with probabil- 
ity min(a, l ) ,  as  given  below in Equation 7. 

where X ,  = {A,,: 1 j' 5 s, j f j ' ] .  If the proposal is 
not accepted,  the state remains unchanged,  and  the 
algorithm proceeds to update  the  next QTL position. 
The unknown loci can be updated  more  than  once 
between updates of the  other  parameters. One update 
per cycle  is sufficient. However, if there is evidence that 
the  chain is mixing slowly (i .e. ,  slow convergence to the 
equilibrium distribution),  then  more  than  one  update 
of X between other updates will improve mixing. 

Updating @ The conditional  independence of the 
QTL genotypes Q (see Equation 3 )  imply that  their 
updates can proceed separately for each individual. 
Hence  for each individual i and QTL j ,  draw the QTL 
genotype Qi from its full conditional density 7r( Qjl X, 
Q(-]>, 0, y) ,  where = {aj,: 1 5 j' 5 s, j f j ' ] .  For 
instance, the full conditional  that  an unknown geno- 
type  is 1 is Bernoulli with probability p ,  given by 

p ,  = ITTT(Q/ = 1 I x, 0, y) 

- - IT(Q] = 1 I A,)1~(y,l0, Q, QJ = 1) 
ZqIT(Qj = qlA,)IT(y,IQ, Q, Q/ = 4) 

. (8 )  

Updating 6: We update  each  component of 0 by con- 
sidering  their  corresponding full conditionals. The pa- 
rameter p is updated from its full conditional  IT(^ I A, 
Q a,  6, u', y). If this full conditional is completely 
known and is  easy to sample from,  then we sample p 
directly from this full conditional as in a Gibbs sampler. 
For example,  for  the Brassica data to be discussed later, 
this full conditional is  Gaussian  given by Equation 20 
in APPENDIX A. Hence  updating p is equivalent to draw- 
ing  a  random sample from this  Gaussian distribution. 
If the full conditional is not easy to sample from,  then 
a Metropolis-Hastings algorithm can be  used. 

To update a = {al];=,, each component ai can be u p  
dated using its  full conditional .ir(ajl A, Q p, 6, o', 

y), where = (a6 1 5 k 5 s, k f j .  For the Brassica 
example this  full conditional is again Gaussian (Equation 
21, APPENDIX A) and can be easily updated. The domi- 
nance parameter S = {Sir;=, can be updated as CY. We 
have considered double haploid Brassica progeny in the 
example and  hence S = 0. The variance o2 can be u p  
dated from its  full conditional r(a2 I A, Q, p, a,  5, y). This 
full conditional is an inverse gamma distribution for our 
example (Equation 22, APPENDIX A).  

Missing marker data: In practice, some marker data 
are missing. The missing marker genotypes affect the 
model of QTL genotypes given the markers. For a single 
individual, the probabilities of QTL genotypes can be 
computed  on whatever marker  information is available 
for  that individual. However,  all contributions to the 
likelihood are based on  the  (flanking) markers at com- 
mon  recombination distances from the putative QTL. 
By incorporating  the missing marker genotypes as fur- 
ther unknowns in the MCMC approach, these recombi- 
nation distances need  not  be  recomputed  for every indi- 
vidual. 

The MCMC approach  handles  the missing data very 
naturally. Partition the  marker genotypes as  known and 
missing, M = (A@,  IC). Further, assume that  the esti- 
mated distances between markers are  not affected by 
missing marker genotypes. We  now consider  the un- 
knowns to consist of ( A ,  Q 0, M ) .  The equilibrium 
distribution of interest is 

Updating  the loci ( A ) ,  genotypes (Q, and the unknown 
parameters (8) proceeds as before. In addition,  the 
missing marker genotypes are  updated individually 
based on  their full conditional densities. For instance, 
suppose  the kth marker  corresponding to the ith indi- 
vidual is missing. 7r(M;k = 1 I A, Q, 8, y MT, D) is the 
full conditional  that this missing marker genotype is 1. 
This full conditional is Bernoulli with probability qjk 
given by 

Further discussions on this probability are provided in 

Justification: The MCMC algorithm isjustified by the 
fact that i f f  is any function of the unknowns that is 
square  integrable with respect to the equilibrium distri- 
bution IT, then 

APPENDIX B. 

1 lV 

N,=, 
,fv = - C f(X', Q, et)  "* &cfcL Q 6) Iyl ,  

almost surely  as N +  w, (10) 

where (Xf, Q, 0') are samples from the Markov chain 
(e.g., TIERNEY  1994). 

Estimates: Suppose we are  interested  in estimating 
the location AI .  We can use the empirical means off(AL, 



Bayesian Model for QTL via MCMC 809 

g, 0') = A:. By ( lo) ,  x, = EEIAi/N is a simulation 
consistent estimator of E, ( Al I y) , itself a statistic and a 
Bayes estimator of the unknown QTL location. Esti- 
mates of other loci and parameters arise similarly  as 
empirical averages  of the  corresponding MCMC sam- 
ples. 

The marginal posterior densities of the parameters 
of interest (p ,  a,  6, a') can be  obtained from the sample 
values either by Rao-Blackwellization (GELFAND and 
SMITH  1990; LIU et al. 1994),  or by kernel density  estima- 
tion. For example, the Rao-Blackwell  density estimator 
of 7r(cy1 Iy) is 

l N  

N [=I  
T ( ~ I  Iy) = - C ~ ( a 1  Ih', Q, P, Sf, ( d 2 ,  y). (11) 

On the other  hand, we choose to estimate the marginal 
posterior density of A1 using a histogram kernel 

where h is the bin-width of the histogram, Dm is the 
length of the linkage group,  and Z(%b] (x) = 1 if a < x 
5 b and 0, otherwise. Marginal posterior density esti- 
mates of other unknowns can be obtained similarly. 

Confidence intervals: Confidence intervals for the 
parameters of interest can be obtained as high posterior 
density (HPD) regions (BOX and TWO 1973). The HPD 
region with  coverage rate 1 - a for A is defined as a 
region R in the  parameter space of A such that 7r( A E 
R l y )  = 1 - a and, for A' E .R and A' 6 8, ~ ( A ' l y )  2 
7r (A2 I y) . RITTER (1992) describes a  method  for calculat- 
ing  approximate HPD regions from MCMC samples. 
Simply, for each simulated A', calculate the posterior 
density 7 r t  := 7 r ( A f  I y) and rank order these values  as 7 r ( l )  

no). Define P as the smallest index  for which q t * )  

> 1 - a. The approximate HPD region is defined by 
the  point cloud formed by the sample vectors  with  mar- 
ginal posterior values larger than or equal to 7r t* .  Mar- 
ginal HPD regions for any component A,, or any other 
parameter, can be computed similarly, using smooth 
density estimates of the  corresponding marginal. 

Implementation issues: The asymptotic variance of 
fN is an estimate of the Monte Carlo variance (GEYJZR 
1992) and is given by (GREEN and HAN 1992) 

> .. .  > Next, form cumulative sums qn = 

a 

NVar 6) c p d f ) ,  (13) 
f = " m  

where pt is the lag tautocorrelation. This is very difficult 
to compute in practice. GEYER (1992) suggests  various 
time series approaches to estimate the Monte Carlo 
error. 

Another major implementation issue is to determine 
the  length of the  chain ( N )  . TIERNEY (1994) and SMITH 

and ROBERTS (1993) suggest examining the series f ( A f ,  
Q, 0') using time series plots or autocorrelation plots. 
This could provide evidence that  the chain is not suffi- 
ciently long. Further, to ensure  that we are using only 
those samples after the chain has attained equilibrium 
distribution,  a common approach is to discard the ini- 
tial few runs (burn-in  period)  and consider only the 
remaining samples for estimation purposes. Subsam- 
pling the chain at regular intervals is also a common 
practice to reduce serial correlation between the sam- 
ples.  GEYER (1992) and TIERNEY (1994) provide detailed 
discussions on implementation issues. 

HOW MANY QTL? 

In the frequentist approach,  the LOD score is used  as 
a test  statistic to detect QTLs. CHURCHILL and DOERGE 
(1994a) state that  the finite sample size and distribution 
of the quantitative trait could cause one to doubt  the 
reliability  of the asymptotic distribution of the LOD 
score. Here we present  an alternative approach to de- 
tect QTLs  based on Bayesian model selection criteria. 
Instead of calculating the likelihood of the parameters, 
which is hard to compute, we use the samples from the 
Markov chain to calculate Bayes factor (JEFFREYS 1961; 
KASS and RAFTERY 1995).  In particular, we suggest  se- 
lecting the  number of QTL affecting the trait by run- 
ning MCMC under different models (example, models 
with s = 1, 2, * ) and comparing them using Bayes 
factors. 

Let modell  and model, be two models that  are to be 
compared. The posterior odds in  favor of modell 
against modelr for data y can be expressed, using Bayes 
theorem, as 

n(modell Iy) - 7r(modell) 7r(yImodell) 
7r ( model2 I y) 7r ( model,) 7r (y 1 model,) 

- 
9 (14) 

where the first factor is the  prior odds, and 

is the ratio of marginal probabilities of y given the two 
models and is called the Bayes factor. When the QTL 
genotypes are known, the marginal probability of the 
data under modell and model, can be written as 

.rr(ylmodel,) = J r(yIA,, 0JT(Aj ,  0i)d(Aj, OJ, (16) 

with prior 7r(Ai, 0,) and  data probability density 7r(y I A,, 
0,) under model,,j = 1,2. Note that  the posterior proba- 
bility  of  model, is 

7r (model, I y) cc 7r (y I model,) 7r (model,) 

with some arbitrarily chosen prior  model,). For in- 
stance, a uniform prior can be used for  a finite collec- 
tion of models j = 0, 1, . . . , J.  

KASS and RAFTERY (1995) suggest using the harmonic 
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I TABLE 1 

Bayes  factor for double  haploid  progeny 

LOD 

0.0 
0.5 
1 .0 
1.5 
2.0 
2.5 
3.0 
5.0 

10.0 

50 

50 
15.81 

5 
1.58 
0.5 

0.16 
0.05 

0.0005 
5e-9 

100 

100 
31.62 

10 
3.16 

1 .0 
0.31 
0.10 

0.001 
1 e-8 

200 

200 
63.25 

20 
6.32 
2.0 

0.632 
0.2 

0.002 
2e-8 

n = sample size 

mean estimator of T ( J ~  model,) that is given by (NEW- 
TON and RAFTERY 1994) 

j = 1, 2 .  (17) 

This consistent estimator may be unstable, with infinite 
variance. Taking h to be an arbitrary density on  the 
target space, the  more  general 

may be more stable, being asymptotically normal pro- 
vided s h2(x)/(7r(yl  x)..(%)) dx < m (KASS and RAFTERY 

1995). We use h(X, Q 0) = h(X)7r(Q)X)7r(B) with h(X) 
a  normal density restricted to 0 5 A, 5 * * ‘= x, 5 

Dm with center  and variance acting as a  tuning param- 
eter. 

The harmonic  mean estimator (17) is unstable be- 
cause the  “complete likelihoods” ~ ( y l  @, d’) are  nor- 
mal ordinates and  hence  drop quickly for  extreme Q‘ 
or 0‘. Noting that any harmonic  mean of likelihoods is 
a consistent estimator for  the marginal probability of 
the  data, we obtain another estimator by integrating cr‘. 
This results in the  harmonic  mean of the heavier tailed 
t densities (when the  prior  for o2 is inverse Gamma, 
BERNARDO and SMITH 1994, page 139). For an alterna- 
tive approach if 7r(h I Q 0, J )  were  known completely, 
see FRUHWIRTH-SCHNATTER (1995). 

Frequentist significance tests can be used to reject a 
hypothesis. For example, when testing Hn, one QTL 
affects the trait us. H I ,  more  than one QTL affects the 
trait, one may reject Ho. Bayes factors offer a way to 
evaluate evidence in favor of a null hypothesis, particu- 
larly in situations comparing  more  than two models. 
Further, Bayes factors provide a way  of incorporating 
external (prior) information to evaluate the hypotheses 
of interest (KAss and RAFTERY 1995). 

Interpretation of LOD score using Bayes  factor: The 

1 2  3 4 5  6 7 8 9  10 

Marker Loci 

FIGURE 1.-Order of markers (horizontal axis) and LOD 
score (vertical axis) obtained from MAE’MAKER/QTL for 
days to flowering with 8 weeks vernalization. Dotted hori- 
zontal line corresponds to LOD  score of 3.0. 

LOD score can be interpreted  in terms of the Bayes 
factor (KAss and RAFTERY 1995, page 778), 

LOD N -1ogln(&2) - %(dl  - &) loglo(n),  (19) 

where d, is the  number of parameters in modelj, and n 
is the total number of observations. Recall that LOD = 
loglo(L1/Ij2) with I, = T ( J ~  i1, 8,) and 8, and Ai the maxi- 
mum likelihood estimates under model,. 

Table 1 shows  Bayes factors for commonly used LOD 
scores and sample sizes n = 50, 100, 200. A Bayes factor 
near 1 (say, between 0.3 and  3) does not favor either 
model. In practice, BIZ larger than 100 (smaller than 
0.01) decisively supports  modelI  (model,), following 
JEFFREYS (1961). For example, when n = 100, a LOD 
score of three decisively  favors model,, (Bayes factor of 
0.1) but LOD 1.5 would not favor either  model. How- 
ever, when the sample size  is 200, a LOD score of 1.5 
would substantially favor model,. 

FLOWERING TIME IN BRASSICA 

The data and model structure: The Brassica genus 
has been widely studied  for disease resistance, freezing 
tolerance, flowering time and seed oil content,  among 
various other traits of economic  importance.  Here we 
analyze double haploid (DH) progeny from B. nupus 
to detect QTLs for flowering time. A double haploid 
line from the B. nupus cv. Stellar (an  annual canola 
cultivar) was crossed to a single plant of  cv. Major (a 
biennial  rapeseed cultivar) that was used as a female. 
One  hundred five DH lines, the F1 hybrid and progeny 
from self-pollination of the  parents Major and Stellar 
were evaluated in the field for flower initiation. The 
plants were divided into  three  groups  and each group 
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TABLE 2 

LOD scores (from stepwise  regression using EM algorithm) 
and  Bayes  factors (using normal weighting  density in 

Equation 19) for Brassica model  selection 

Models LOD LOD (BF) BF 

0- 1 8.375 8.57 2.8e-7 
1-2 1.715 2.48  0.12 
2-3 0.706 1.50  1.1 

LOD(BF) is the  approximation of LOD using the Bayes 
factor. 

was exposed to one of the  three  treatments: no vernal- 
ization, 4 weeks vernalization and 8 weeks vernalization. 

Materials and methods and preliminary analysis  of 
the  experiment  are given in FEFUZEIRA et al. (19954. 
DNA extraction and linkage map  construction  are given 
in FERREIRA et al. (1995b). To illustrate MCMC,  we con- 
sider only flowering data  for 105 progeny from 8 weeks 
vernalization treatment  and genotypes of  10 markers 
from linkage group 9. One  out of 105 phenotypic data 
was missing and  9% of the  marker genotypes were  miss- 
ing. Figure 1 shows the profile along linkage group 9 
of the LOD score for flowering time for 8 weeks vernal- 
ization obtained using the EM algorithm for  a single 
QTL model (LANDER and BOTSTEIN 1989). We can ob- 
serve that  the LOD score has two peaks, the  larger be- 
tween markers 9 and 10 (LOD = 8.37) and  the  second 
around marker 6 (LOD = 6.91), suggesting the possibil- 
ity of two QTL in  that linkage group. We fixed a QTL 
at  the  higher peak and  found  an increase in the LOD 
score of 1.715 for a second putative QTL around 
marker 6. Fixing both these QTL and looking for  a 
third led to only an increase of  only 0.706 in  the LOD 
score (see  Table 2). We further examine this using 
MCMC. 

A  number of models could be compared. We exam- 
ine  the following: (1)  there is no QTL us. there is at 
least one QTL, (2) there is only one QTL us.  there  are 
at least two QTLs, and ( 3 )  there  are only two QTLs us. 
there  are  at least two QTLs. Earlier investigations 
showed some evidence of increasing variance with in- 
creasing days to flower. Further, it appeared  that puta- 
tive genes  at QTL might have a multiplicative effect, 

that is, additive on a logarithmic scale. Therefore, we 
use the following model  for  the  number days  to  flow- 
ering  for  the zth DH line: 

, 
yi = p + c a,Q, + E , ,  

I =  I 

where yz is log of the  number of  days to flower, and p, 
al and 4, are defined as earlier. Note that since the 
DH lines are homozygous at every locus, there is no 
dominance term 6; in the above model. The random 
errors E ,  are assumed to  have independent Gaussian 
distributions with mean 0 and common variance o*. 

Prior distribution: The Bayesian formulation of the 
problem  requires specification of prior distribution on 
the set of model  parameters 19 = (p ,  a,  o*) and the loci 
A. For simplicity we assume prior  independence of the 
model parameters. When some information  about  the 
unknowns is available, the priors may be chosen by 
putting  more weight in a desired range. For example, 
it is believed that alleles from Stellar parent result in 
shorter time to flowering than alleles from Major par- 
ent.  The overall mean p is given a Gaussian prior, cen- 
tered  at zero with variance 10 to make the distribution 
diffuse. The QTL effects a,, j = 1, . . . , s, are given 
independent normal priors, also centered  at 0 with 
large variance (10) allowing for  the possibility  of  ex- 
treme QTL effects. The phenotypic variance o‘ is as- 
sumed to have an inverse gamma prior. In the absence 
of prior  information  about  the QTL locations, any  posi- 
tion along  the linkage group could be a possible  posi- 
tion for  the QTLs. Hence A,’s are assumed to have uni- 
form prior  along  the  entire linkage group  9 such that 

The full conditional densities of the  parameters un- 
der  the above priors are given in MPENDIX A. For each 
analysis, the Markov chain ran 400,000 cycles and was 
sampled every 200 cycles, without any initial burn-in, to 
give a working set of 2000 states. Time series methods 
to estimate the Monte Carlo error using Tukey-Hanning 
window suggested that these are large enough samples 
to  precisely estimate posterior quantities. Table 3 gives 
the  parameter estimates and estimated Monte Carlo 
standard  errors for the single, two and three QTL 
models. 

0 < A I  < < A, < a , , .  

TABLE 3 

Parameter  estimates  and  Bayes  factor for  the  three  models  relative  to  the two QTL model 

S P 0 2  Effect Locus Effect Locus Effect Locus BF 

1 3.060 0.081 -0.165 71.9  0.12 

2 3.061  0.078 -0.066 42.2  -0.128  76.4 

3 3.060 0.080  -0.041  38.6 -0.044 57.8 -0.111 77.9 1.1 

(0.010) (0.027) (0.034) (0.045) 

(0.005) (0.010) (0.047) (0.026) (0.044) (0.070) 

(0.021) (0.004) (0.060) (0.019) (0.067) (0.035) (0.050) (0.016) 

Monte  Carlo  standard errors in  parentheses. s, the  number of QTL in  each  model; BF,  Bayes factor. 
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Single QTL model: The starting value for the single 
putative locus was A: = 24  cM. A single QTL  was esti- 
mated to be at x, = 71.9 cM between markers 9  and 
10. The estimated effect was a, = -0.165  cM,  implying 
that  the logarithm of  days to flowering is decreased if 
the QTL  has  alleles from the Stellar parent. This is 
consistent with the initial knowledge about flowering 
time of the  parents. The histogram estimate of .ir(hl I y) 
is presented in Figure 2.  We observe that  the marginal 
posterior density  of X1 appears to be bimodal with a 
high mode between markers 9  and 10, and  a smaller 
one between markers 5 and 6, which is consistent with 
LOD scores obtained from the EM algorithm (Figure 
1). The autocorrelation  function of the single locus (Xl)  
subsampled at every 100th and every  200th  cycle  of the 
chain is shown in Figure 3. Autocorrelation between 
the every 100th subsample was significant even at lag 
30. However, autocorrelation between  every  200th sub- 
sample was  very small. The marginal posterior of the 
effect a I  using Equation 11 is shown in Figure 4.  From 
these marginal posterior densities, the  corresponding 
confidence intervals  were obtained as  HPD regions. 
The 90% HPD confidence region for XI was the  union 
of  two intervals: (41, 44) cM between markers 5 and 6, 
and (62, 83) cM between markers 7 and 10 (repre- 
sented using parentheses in Figure 2). This gave further 
support to the possibility of  two loci on chromosome 9 
controlling days to flowering. To explore this, we fit a 
two QTL model. 

Two QTL model: The starting values for the two loci 
were A: = 24  cM and A: = 59 cM. The first  locus A1 was 
estimated at 42.2 cM between markers 5 and 6,  and 

2 

8 4 2  

0 
9 

1 2  3 4 5  6 7 E 9  10 

Marker Loci 

FIGURE 2.-Single QTL model. Marginal posterior density 
of the location of a single putative QTL, as obtained  from 
MCMC,  is shown. The estimate of the location is shown by 
X. 90% HPD confidence interval is shown by parentheses. 

............. ...................... .............._. . . . .. . . . ..  ... . . . . ."". . . . . . . . . . .. . . . . .. "...". 

0 5 10  15  20  25 

Lag 

FIGURE 3."Single QTL model.  Autocorrelation function 
of the single locus (A,) from  the single QTL  model subsam- 
pled  at  (1) every 100th run  and  (2) every 200th run of the 
chain. 

locus h2 at 76.4  cM,  between markers 9  and 10. The 
effect a2 of  locus X2 was nearly twice that of al.  The 
locus X2 having the larger effect corresponded to the 
high mode in the single QTL model. The posterior 

I 
I I I I I I 

-0.30 -0.20 -0.1 0 0.0 

Effect 

FIGURE 4.-Single QTL  model. Marginal posterior density 
of the QTL effect a, estimated by Rao-Blackwellization. 
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TABLE 4 

Posterior correlation of the parameters from 
a two QTL model 

Locus 2 p Effect 1 Effect 2 0' 

LOCUS 1 0.163  -0.017  -0.152  0.157  0.010 
Locus 2 -0.154  0.080  -0.141  -0.163 
P -0.181  0.181 0.047 
Effect 1 -0.987  -0.050 
Effect 2 0.071 

correlation between the parameters  are shown in Table 
4. Posterior correlation between the two loci was small. 
However, their effects were  highly correlated. The  joint 
HPD regions for  the loci were obtained by first estimat- 
ing  the  joint posterior density of A = (Al ,  A,) from 
their histogram. The  joint HPD regions for  the loci and 
effects are  presented  in Figures 5 and 6  superimposed 
on scatterplots of the Markov chain realizations. The 
marginal posterior distributions of the loci are shown 
in Figure 7. The locus with the  larger effect is estimated 
at 76.4  cM, between markers 9 and 10, while the  one 
with the smaller effect is estimated at 42.2  cM, between 
markers 5 and 6. The locus with the  larger effect corre- 
sponds  to the higher peak in  the single QTL model 
(Figures 1 and 2) and is highly concentrated, likely due 
to the large effect of this locus. The distribution of the 
other QTL is somewhat concentrated  but has a larger 
tail, possibly due to its small effect. We fit a  three QTL 
model to investigate whether  there is evidence for any 
more loci. 

Three QTL model: The starting values for the loci 
were A: = 24  cM, A: = 42  cM and A: = 59  cM. Marginal 
posterior distributions of the  three QTL (Figure 8) indi- 
cate that loci 1 and 3 correspond to those in  the previ- 

I I 1 I  I 

2 

1 

1 2  3 4 5  6 7 8 9  10 

Locus 1 

FIGURE 5.-Two-QTL  model. Joint 50, 90 and  95% HPD 
confidence  regions  for A = (Al ,  A2). 
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FIGURE 6.-TweQTL  model. Joint 50, 90 and 95% HPD 
confidence  regions  for  the  effects (a1, ap)  obtained from their 
joint posterior  density. 
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Marker LOCI 

FIGURE 7.-Two  QTL  model. (A and B) Marginal  posterior 
densities of the  location of two putative  loci.  Estimates  of the 
loci are shown  by X. 90% HPD confidence  intervals  are  shown 
by parentheses. (C) The joint posterior  density of the  effects 
of the  loci.  Each  point  corresponds  to a sample  obtained  from 
MCMC. 90% HPD confidence  region  and  marginal  posterior 
densities  are  also  shown. 
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FIGURE 8.-Three-QTL model. (A-C) Marginal posterior 
densities of the three putative  loci are shown.  Estimated loca- 
tions are shown by X. 90% HPD confidence intervals are 
shown by parentheses. 

ous model. The distribution of putative locus 2 is  bi- 
modal with modes in the same regions as the other two 
loci. This seems to indicate  that  there may be only two 
QTL supported by the  data in this linkage group. Note 
that  the effects  of  loci 1 and 3 are similar to the corre- 
sponding effects in the two QTL model  (Table 3) .  

Model  selection: Examining the plots of loci and ef- 
fects (Figures 2-8) suggested a two QTL model. LOD 
scores obtained from the stepwise regression approach 
using EM algorithm (LANDER and BOTSTEIN 1989) did 
not  support  a two-QTL model  at  the  threshold of 2 
(Table 2).  The harmonic mean estimate of  Bayes factor 
(Equation 17) comparing one  and two QTL models was 
0.01 1. Comparison between two and three QTL models 
resulted in a Bayes factor of 1.8. Preliminary investiga- 
tions with normal weighting densities h (in Equation 
18) resulted in  a Bayes factor of 0.12 to compare one 
and two  QTL models. Comparing two and  three QTL 
models gave a Bayes factor of 1.1. Using the  harmonic 
of multivariate t densities (in Equation 18) gave  Bayes 
factors of 0.12 and 1.23 to compare one  and two, and 
two and  three QTL models respectively. 

We were concerned  that  the estimates of  Bayes factors 
were not very stable when there were  several QTL in 
the model. Ten  repeated  runs of the Markov chain 

found  the  harmonic  mean estimate of  Bayes factors 
comparing one  and two  QTL in the range 0.00028- 
0.55, and for  comparing two and  three QTL in the 
range 1.8-440. Hence, five repeated  runs of the  chain 
were obtained to study the stability of the estimates 
using normal and multivariate t weighting densities 
(Equation 18). Both these approaches gave stable esti- 
mates of  Bayes factors. Estimates from multivariate t 
weights  were found to be more stable than normal 
weights. 

All the  three  approaches to estimate Bayes factors 
favored a two  QTL model over a single QTL model. 
These estimates did not distinguish between a two or a 
three QTL model  but  supported  both  the models 
equally. Hence, we infer  that  the two QTL model is 
appropriate. 

A small  simulation  experiment: To investigate the 
performance of the MCMC method  for  the flowering 
data, 100 parametric  bootstrap  data sets, with  two  QTL 
and true  parameters as those estimated from the flow- 
ering  data, were simulated. Both one  and two  QTL 
models were  fit for each of the 100 simulated data using 
the same chain  length, burn-in and subsampling as the 
flowering data. Bayes factor comparing the two models 
favored the two QTL model 72% of the times. Note 
that  the effect of one of the QTLs, in the two QTL 
model  for  the flowering data, is very small (-0.066). 
Hence it is not surprising that  the two QTL model is 
not  supported 28%  of the time. We also observed the 
number of times the estimates of the two loci from the 
100 data sets  were  within the  corresponding 90% HPD 
confidence region obtained  for  the flowering data and 
observed that 95% of the estimates were contained 
within the  90% HPD confidence region from the flow- 
ering  data. This is shown in Figure 9. For the effects of 
the two loci, we observed that  92% of the estimates were 
within the 90% HPD confidence region. 

DISCUSSION 

In this paper we have fit a model  that allows for multi- 
ple loci, instead of fitting one locus at  a time or account- 
ing  for other putative loci by using markers as cofactors. 
Simultaneous fitting of multiple loci leads to multi-di- 
mensionality problems (HAL,EY and WOTT 1992; JAN- 

SEN and STAM 1994; ZENC 1994). We have handled this 
by using the MCMC approach to simultaneously look 
for multiple loci and their effects. The marginal poste- 
rior distribution of the  parameters of interest can be 
obtained, which is not,  available  with other existing 
methodologies. Inference  for  parameters is based on 
the marginal posterior densities. Mean and high poste- 
rior density region from the marginal posteriors are 
obtained as parameter estimates and inference regions, 
respectively. The parameter estimates, standard  errors 
and Monte Carlo errors were not affected by consider- 
ing  burn-in  period of 5000, 10,000 and 50,000 initial 
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FIGURE 9.-Simulated data. Estimates  of the two QTL from 
100 parametric bootstrap data sets for Swk vernalization data. 
Also shown are the 50,  90 and 95% HPD confidence  region 
for the loci from the flowering data. 

samples. Hence we did not use  any burn-in period. Re- 
jection rates for A from the Metropolis-Hastings step 
were -50%. Bayes factors were used to estimate the 
number of  QTL affecting the trait. Using a time-shared 
DEC-ALPHA machine, we found  that  the time to simu- 
late a  chain of length 400,000 was - 10 min for  a single 
QTL model, 25 min  for  a two-QTL model and -75 min 
for  a three-QTL model. 

We first considered  a no QTL model and estimated 
y and cr2 for this model using the MCMC approach. 
Bayes factor to compare this model with a single QTL 
model was 2.8e-07, strongly favoring a single QTL 
model over none.  Hence we proceeded with  single-, 
two- and three-QTL models as described in the previous 
section. Preliminary studies of the harmonic  mean esti- 
mators of  Bayes factors, by repeated  runs of the Markov 
chain, suggested some instability for  comparing two- 
and three-QTL models. The harmonic  mean of multi- 
variate t densities and  the weighted harmonic mean 
reported  here were more stable across simulations. 
However, further investigation of these and  other ap- 
proaches is under way. 

Although we have analyzed data  from  a  double hap- 
loid population in this paper,  other  population designs 
can be readily incorporated by considering  the  appro- 
priate distribution ~ ( Q l h ) .  The model  considered in 
this paper assumes no epistatic effect of the markers 
or QTL. However, epistatic effects can be included as 
interaction terms in the model. The  approach de- 
scribed here looks for QTL in one linkage group only. 
It is possible to search a  genome consisting of distinct 
linkage groups by a simple extension of these methods 

by at each cycle selecting a linkage group with probabil- 
ity proportional to its length  and  then selecting a pro- 
posal locus uniformly along  that linkage group.  In addi- 
tion,  the  approach used here can be generalized to 
consider other distributions of traits, such as t (BESAG 
et al. 1995) and generalized linear models by suitably 
altering T ( J  18, 9) .  

Model checking is  very critical in any  statistical ap- 
proach, especially in complex hierarchical models as 
this one. This includes  checking sensitivity to  the  prior 
and goodness of various model assumptions. Currently, 
work is under way to use a Bayesian model  determina- 
tion criterion to estimate the  number of QTL (s) by 
incorporating  them as further unknowns in the analysis. 
This would enable  one to estimate the posterior distri- 
bution of the  number of QTL and hence estimate the 
number of QTL affecting the trait without having to 
consider Bayes factors to estimate this quantity. We are 
also working on extending  the search to more  than one 
linkage group by considering  the  entire  genome as a 
whole. 
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APPENDIX A 

Full conditional  densities: The parameters are up- 
dated in a cycle using the following full conditional 
densities. 

",*I x, 

- N  

j *  = 1 ,  . . . , s (21) 

where q = 0 is the  prior mean of p, and r2 = 10 is the 
prior variance of p and a?. 

APPENDIX B 

Missing  marker  data: Each  missing marker genotype 
is updated individually  based on its full conditional. 
The Bernoulli probability qjk that  the kth missing 
marker for the ith individual is 1 is given by 

q Z k  = T ( M i  = 1 I x, Q 8, w,  y) 

= T ( w i  = 1 11, Q, 8,  K, yJ 

(by independence of the individuals) 

If k is not  a flanking marker for any  putative  QTL, 
this Bernoulli probability is  given  by 

Each component in the above probability can be ob- 
tained in terms of recombination between marker k 
and its flanking marker(s) (KNAPP et al. 1990). 

If marker k - 1 (or k + 1) and QTL j flank marker 
k, then qzk can be written in terms of recombinations 
between k - 1 (or k + I ) ,  kandj.  


