7996 AsA JTSM

DISCONTINUITY DETECTION IN REGRESSION SURFACES

Peihua Qiu and Brian Yandell, University of Wisconsin - Madison
Peihua Qiu, Department of Statistics, University ol Wisconsin, Madison. W1 53706

KEY WORDS: Jump surfaces, Leasl squares
plane, Jump detection criterion, Image processing.

ABSTRACT

We consider the problem of locating jumps in
regression surfaces. A jump detection algorithm is
suggested hased on local least squares estimation.
This method requires O(Nk} computations, where
N is the sample size and & is the window width of
the neighborhood. This property makes it possible
to handle large data sets. The conditions imposed
on the jump location curves, the jump surfaces and
the noise are mild.

1 Introduction

In computer image analysis, a very important prob-
lem involves detecting the edges of objects, or equiv-
alently. detecting the discontinuities of the underly-
ing “intensity function” (the brightness of each point
in the image is expressed by this function). In me-
teorology and oceanography, the equi-temperature
surfaces of the high sky and the deep ocean are usn-
ally discontinunous. From a statistical view point, all
of these problems could be regarded as applications
of estimation of two dimensional (2-D) jump regres-
sion surfaces (JRS). The purpose of this paper is to
develop a method to detect the jump locations of

the 2-I> JRS.

The research on jump regression models is cur-
rently under rapid development. In one dimensional
(1-D}) case, McDonald and Owen (1986) suggested
a “split linear smoother”™ which provided a discon-
tinnity preserving curve estimator. Hall and Titter-
imgton (1992) proposed an alternative but simpler
method to detect the jumps by establishing some re-
lations among three local linear smoothers. Miiller
(1992), Qiu (1994), Wu and Chu (1993), among
many others, discussed various kernel-type methods.
These methads were all based on the difference be-

tween two one-sided kernel smoothers. Eubank and
Speckman (1993) treated the 1-D jump regression
model as a semi-parametric regression model and
proposed estimates of the jump locations and magni-
tudes. Wang (1995) proposed detecting jumps with
wavelet transformations.

In 2-D case, Russian scientists did much theo-
retical research in this area. Korostelev and Tsy-
bakov (1993) investigated jump location detection
and fitting jump surfaces under several kinds of de-
sign and jump boundaries. They suggested approxi-
mating jump location curves by piecewise polynomi-
als and then estimating the coefficients by maximum
likelihood estimation. O’Sullivan and Qian (1994)
suggested detecting object boundaries by defining
a contrast statistic. Muller and Song (1994) pro-
posed “maximin” estimators of the jump boundaries
of the d-dimensional (d > 1) jump surfaces under the
condition that the number of such jump boundary
curves (surfaces) is known. Qiu (1992) suggested
a so-called Rotational Difference Kernel Estimalor
of the jump location curves of the JRS. Both of the
above two methods were based on two one-sided ker-
nel smoothers along a direction and the estimators
were obtained by maximizing the jump detection cri-
teria with respect to this direction. This makes the
computation quite expensive, Jump detection in re-
gression surfaces is directly related to edge detec-
tion in computer image processing. Gonzalez and
Woods (1992). Qiu and Bhandarkar (1996), Rosen-
feld and Kak (1982) and Torre and Poggio (1986)
presented an excellent overview of computer edge
detection techniques.

In this paper we make another attempt to de-
lect the jump locations of the JRS. Our method is
based on the local simple least squares (LS) fitling.
At a point in question, a LS plane is fitted in a neigh-
borhood. The LS coefficients of this plane give an
approximation of the gradient direction of the JRS
at this point. They carry both the continuous and
the jump information about the JRS. We then try
to delete the continuous information from the LS
coefficients by considering two small neighborhoods
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way, the jump information is extracted. Based on
that a jump detection criterion is derived. Compu-
tation of the jump detection criterion can be up-
dated easily from one point to the next. The whole
algorithm requires O(N k) calculations, with N the
sample size and k the window width of the neigh-
borhoods. Clomparing with the existing derivative-
based edge detectors in image processing literature,
we explicitly characterize the jump information in
the edge detection criterion and eliminate the effect
of the continuous variation of the intensity function
on the edge detection. We also establish the sta-
tistical consistency of the edge detection procedure
and provide the rate of convergence. The conditions
imposed on the edge curves are mathematically ex-
plicitly expressed. These efforts. we think, might be
helpful to the further development of edge detection
techniques.

The rest of the paper is organized as follows.
In the next section we describe the model and the
jump detection method. Numerical examples are
discussed in Section 3. In Section 4, we give some
concluding remarks.

2  Jump Detection Algorithm

Observations {z;;} come from the following model

Zij = fla;, .!,rd,-) + €4, A S R | (Zl)
where {(2;,y (i/n,j/n),i,j = 1,2,---,n} are
ecually Rpmed (IF‘R]UD points in [l) l] [0, l} {G,J} are
i.1.d. random numbers \\1th mean 0 and variance o?
. The regression illll(’.ll()ll
f(x. y) is continuous over [U 1]% [0, 1] except on some
curves, which are called the jump location curves
{(JLCs) hereafter. In the simplest case that f(x, y)
has a unique JLC which divides [0, 1] % [0, 1] into 2
connected regions ¢ and Q» with €4 [1Qs = @ and

QU =1[0,1] x [0,1], fz,y)
fle,y) =gle.9) +C

The sample size is N = n?

can be expressed as
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where g(r, y) is continuous over [0, 1] x [0, 1], C'(x, y)
is continuous over y. dQ) []€2 is the JLC with
82; denoting the boundary of the region €;,7 = 1,2.

The regression function f(wv,y) considered in

this paper is not restricted to (2.2). But it is similar

m that it is continnous over connected regions and
discontinuous on their boundaries (namely, JLCs).
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Figure 2.1: At any point on the JLCs, there exist
two orthogonal lines crossing at this point and two
vertical quadrants formed by these two lines belong
to two different regions in a small neighborhood.

The following assumption (AS) 1s imposed on the

JLCs.

{AS) At any point (x,y) on the JLCs, there exist
two orthogonal lines which cross at (x,y) such that
two vertical quadrants formed by these two lines be-
long to two different regions in a small neighborhood

{c.f. Figure 2.1).

At any design point (@, y;), (+1 <i,j <n—1,
we consider its neighborhood N (24, y;) with window
width & = 20+ | < n, where ( is a non-negative
integer.

N(2i,45) 1= {(@ire, Yjre), 8,8 = —- -, 0, -, £},

A least squares plane is fitted in this neighborhood
fla, Y= d(? 4 + | !?h i) (x —x;) + Bgi“ﬂ(y - yi).

After some calculations, we have

A(1,4) 1
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where  z = Dgtmmt Yits,jtts Zits,, =

Il

Zf:q- Ziks, Aty St = Zizfc Zigs, g4t g
Seee(@its — )% 52 = Tl (e —y)? Tt
is not hard to check that ;’33"“7.),,[?5""” and ;‘3&’-’” are
uncorrelated, Furthermore, they have the following
property (proof is omitted):



Theorem 2.1 In model (2.1), suppose that [(x.y)
has continuous first order partial derivatives over
(0,1) % (0, 1) except on the JLCs at which it has
the first order right and left partial derivatives.
The JLCs satisfy the assumption (AS). The window
width & satisfies the conditions that lim, .. k = o0
and limy oo k/n = 0. I there is no jump in

N (i yj), then

m/logloghk

AT = Ll y) + 0(=—5—), as.
i " [ logloghk
A9 = fi ) + O(YEE), s

If (5, ;) 1s on a JLC, then

B = p & g) + BTG 5) G ) +
m/loglogh
(_)[ T) .5,
A = (&, 8) + RO, 5) + 720y, 5) +
O(%@L—) .5,

where (#;,y;) is some point around (#;,y;) which
satisfies (i) it is on the same side of the JLC as
(v;.y;) and (ii) the distance between (#5,9;) and
(v;,y;) tends to zero; C(3,j), Ce(i, j) and Cy(i, j)
are the jump magnitudes of f{r, J) and itc ﬁlet order
7 are two

: ¢ gl 7 )
@ and y partial derivatives; h(f“” and hY

2);

o v (g
constants satisfving \/(f?(l? ) )2 + (hy 'J) 2= 0(n/k);
v and 7o are two constants between —1 and 1.

is due to

Toglogh
n oglogh
the term O( %]

In Theorem 2.1,
noise. We could see that the slopes ,d,‘}‘i‘i"” and ;}él )
carry hoth the continuous and the jump information
of the JRS. We try to extract the jump information
in the following way for a particular lattice point
(xi.y;). The angle formed by #;; = (B, g
and the positive direction of x-axis is denoted as
0 & [—n/4,7Tw/4]. Two neighboring design points
(xx,ynve) and (e, yxs) are determined by the fol-
lowing formulas.

If 7/4 <8 < 3n/4orbr/4 <0 < Tr/4, then
I f i, k
ry1 = —_— YN = ¥Yi + —
N “Uoptan MHL =4 n
13 :
P = Bl NS == — 24
. G — N2 =Y n (2:4)

Il —=/4 <8< n/dordnf4 <0< br/4 then

I

‘[l.
rNL =2+ —, yni1 =y + —-tané
n : n

k ko _

rye =¥ — —, Ynz2 =1y; — — -tanf (2.5)
Toon

If the two points determined by (2.4)-(2.5) are not

exactly the grid points, we just choose two grid

points which are closest to them instead.

(wni,yn1) and (2ys,ynve) have the following
properties: (1) they are two design points on the line
through (2, y;) and with slope ;‘?gi"”/,‘ﬁgi"”; (2) they
are closest to (x;,y;) among the points on that line
which neighborhoods have no overlap with N (x;. y;).
Notice that @;; is the gradient vector of the fit-
ted LS plane. The underlying JRS increases most
rapidly along a near-by direction. If (2;,y;) is on a
JLC,| then assumption (AS) gnarantees that the JLC
could not be in Ny, yn1) and N(xyo, yn2) when
n is large enough. In other words, (@ny,ynv1) and
(22, yne) are on two different sides of the JLC. We
then define the following jump detection criterion
(jfj,

A}_,- = TH.T?'H{“F,'J‘ = L_"Nl“, HF” = F,\QH} (2[})
where Uy, = (/JjENU‘ ;‘?:_z,NU)

H(N2) 5(N2) : , ‘
(8,77, 85 77) are gradient vectors of the fitted LS
planes at (xx1, ynv1) and (@ n9, yn2) respectively and
|| -] is the Enclidean norm.

and Uyo =

If there is no jump in these three neighbor-
hoods, then 7;;, Ty and #xs should be close to each
other. Hence d;; is small. If (a ?‘JJ) is on a JLC,

N ’1'11901‘0111 2 1 dij \/[h "” h(” )2C i, 7)
= () (n/k)C which tends to 111f1111tx when n in-
creases. Hem_e ‘5u could be used to detect the jumps.

A large value of §;; indicates a possible jump at
(#4,y;). For any constant & > 0,

P(dij > b)

P (||5; = vl > )

= P ((;,3 — ANDY2 4 ()

= BIPLGA -5
D, 0y

IA

— B5) > 8?)

)2 + (ﬁéfj) o BE)N”)? > b?l

1,7} {N1) 7
(B =B ()
)?)/ %, is approximately x3 distributed under
the assumption that there is no jump in N (x;,y;)

; (N1) i
UN{(2n1, un1). Ny = Lo

Therefore a natural threshold value of §;; is

For fixed ,t'}i'i"” and ﬂéi “

(N1
AN

Here %, = var(f]




3 . . . b 1 . . .
where 3, isa l—a, quantile of the \5 distribution
and @ 1s a consistent estimator of .

Suppose that (x;, y;) is on a JLO with jump
magnitude C'(7, 7). Then the values of most kernel-
type jump detection criteria (e.g. Miller and Song,
1994) are about C'(i, J) al this point while our crite-
rion is of order O{n/k) which tends to wfinity with
the sample size. Hence &;; is more sensitive to the
jumps. This property has two benefits. One is that
d;; visually reveals the jumps better. The other is
that our jump detector is more robust {o the selec-
tion of the threshold. The threshold could be cho-
sen a little bit larger than usual without missing the
jumps when the sample size is larger since d;; is quite
large in this case.

The design points {(x;, u;) @ &5 > b, j =
(3 + 1)/2.---.n — (3k = 1)/2} could be Hagged
as jump candidates. Two modification procedures
(MPs) are also snggested to make the detected jump
bhoundaries thin and to delete some scattered decep-
tive candidates.

We summarize the jump detection method in
the following algorithm.

The Jump Detection Algorithm

~—

At any (v yp) with (41 < i, 5 <n—(, fita LS
plane i N(x;. ;) by formula (2.3).

2, Use (2.4)-(2.5) to determine two ncighboring

design points of (x;,y;). (3k + 1)/2 < 4,5 <

n— (3 —1)/2.

4. Use formula (2.6) to calculate é;5.

4. Use formula {2.7) to deftermine the threshold
value b.
3. Flag the design point (v, y;) as a jump candi-

date of it satisfies d;; > b,

6. Use modification procedures to determine the fi-
nal candidates.

Theorem 2.2 If o, in (2.7) is chosen such that (i)
limy, g vy = 0: (i) Himy, oo log (o ) /log(log(k)) =
—oc; and (1) iy, e h)g;[(r,\'.,,)/k2 = 0, then the de-
tected jumps are a.s. consistent in the Hausdorff
distance and the convergence rate is O(n~og(n)).

The proof is based on the following facts.
Iirstly, from Theorem 2.1, we know that the
Jjump information in the jump detection criterion

§ij is of order O(n/k). Secondly, the threshold
value b in (2.7) is of order O(ny/—log(a,)/k?).
(We use the fact that x5, = —2log(ay) here.)
Thirdly. the order of the standard deviation of §;;
i O(ny/log(log(k))/k*). So the jump information
dominates the randomness in the jump detection cri-
terion as long as k tends to infinity with n.

3 Numerical Analysis

In this section we do some simulations with an ar-
tificial example. The regression function f(x,y) has
the expression

f(l y) =—-05-— y+ ji(l = 05)3 + I{y>_(m_n.5)2+(_]‘5} v

There is one JLC y = —(:1?—0.5)2—1—0.5 with constant
Jump magnitude 1. The regression function and the
JLC are plotted in Figure 3.1.
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Iigure 3.1: (a) The jump regression surface used in
the example; (b) the jump location curve.

10000 observations {zj,7,j = 1,2, -, 100} are
generated from z; = f(i/n,j/n) + e; with n =
100 and i.i.d. random numbers from N (0,0.5%). We
then use formulas (2.3)-(2.6) to calculate the jump
detection criterion {d;;}, initially with & = 7. The
gradient vector #;; of the fitted LS plane at each
design point is shown by Figure 3.2.

Then a threshold is calculated by formula (2.7)
with o, = 0.001 which is the smallest number in
most % tables. The (lagged jump candidates are
plotted in Figure 3.3(b) by black points. We no-
tice that the detected jump boundary is quite thick
and there are some scattered candidates also. We
then nse two modification procedures to modily the
set, of candidates. 'The results are plotted in Figure
3.3(c) and (d). As a comparison, we plot the real
JLC in Tigure 3.3(a). We notice that there are some
breaks here or there in the detected jump boundary
in Figure 3.3(d). The detected boundary is not thin



Figure 3.2: The gradient vector v;; of the fitted LS
plane at each design point.

enough at some places. These imply that there is
sotte room for our MPs to be improved.
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Figure 3.3: (a) The real jump location curve;
(b)detected jump candidates by criterion (2.7): (c)
the modified jump candidates from those in (b) by
the first MP; (d) the modified jump candidates from
those in (c) by the second MP.

The above experiment is then repeated 1000
times. The number of times of each design point
to be in the final candidates set is plotted in Figure
3.4, We can see that the results are quite impressive.

Theoretically, we can nse the Hausdorfl distance
to measure the performance of our algorithm. In re-
alitv, this distance could be very hard to compute. In
the following, we use the average orthogonal distance
of the points in the final set of candidates to the real
JLC's as a performance measurement. "This measure-
ment is averaged again for 1000 replications. The re-

Figure 3.4: The number of times each design point
1s detected in 1000 replications.

sults for several n,k and ¢ values are presented in
Figure 3.5. From the plots, we could see that the av-
eraged performance measurement (APM) decreases
wlhen n increases for each o2 value. This may reflect
the consistency of the algorithm. For fixed o value,
the best k (k with smallest APM) does not appear
to change much with n. That verifies the conclusion
in Theorem 2.2 that k should be quite stable when
n increases, to achieve the biggest accuracy of the
detected jumps. The best k increases with ¢ value.
That implies that for noisier data more observations
are needed in each window to reduce the randomness
in the jump detection criterion. We also notice that
APM is much smaller for smaller 0? value. These
are intuitively reasonable.
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Figure 3.5:
(APMs) from 1000 replications with several n, k. and
o’ values. (a) 07 = 0.25; (b) 0 = 0.5; (¢) ¢ = 0.75;
(d) o? = 1.0.

Averaged performance measurements



4 Some Concluding Remarks

We have presented a jump boundary detection algo-
rithm with local LS plane fitting which is intuitively
appealing and simple to use. It can handle relatively
large data sets. Simulations show that it works well
in practice,

We leave some parameters such as the window
width used in the algorithm to be adjustable to the
users.  Much future research is needed to provide
some guidelines on the selection of these parame-
ters. As we mentioned, the modification procedures
presented in the paper are only two of the possi-
ble ones. More careful modification procedures are
needed to make the detected jump candidates match
the real jump boundaries better. Another very im-
portant issue is the relationship between jump loca-
tion detection and jump surface fitting. If we put
more structure on the jump locations, then fitting
the jump surfaces would be easier. But some real
applications are also excluded. It may be important
to work out some methods to fit the jump surfaces
under mild conditions on the jump locations.

We discussed jumps in the regression functions
in this paper. In some situations jumps in deriva-
tives are also interesting. (The so-called “roofl-
edges” in image processing correspond to the jumps
in the first order derivatives of the regression func-
tions.) We think that the coefficients of the fitted
local polynomials of order & + | contain useful in-
formation about the jumps in the k-th derivatives of
the nnderlying regression functions. This kind of re-
lationship need be investigated further. Generaliza-
tion from 2-D to general d-dimensional cases seems
to be straight forward theoretically. But it may not
he easy to make the algorithm applicable in high
dimensional cases, How to apply some dimension
reduction techniques to the jump regression models
is another future research topic.
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