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Jump Detection in Regression Surfaces

Peihua Qiu and Brian YANDELL

We consider the problem of locating jumps in regression surfaces. A jump detection
algorithm is suggested based on local least squares estimation. This method requires
O(Nk) computations, where N is the sample size and k is the window width of the
neighborhood. This property makes it possible to handle large data sets. The conditions
imposed on the jump location curves, the jump surfaces, and the noise are mild. We
demonstrate this method in detail with some numerical examples.

Key Words: Image processing; Jump detection criterion; Jump location curves; Jump
surfaces; Least squares plane; Modification procedure; Slopes; Threshold value.

1. INTRODUCTION

In computer image analysis, a very important problem involves detecting the edges
of objects, or equivalently, detecting the discontinuities of the underlying “intensity func-
tion” (the brightness of each point in the image is expressed by this function). In mete-
orology and oceanography, the equi-temperature surfaces of the high sky and the deep
ocean are usually discontinuous. From a statistical viewpoint, all of these problems could
be regarded as applications of estimation of two dimensional (2-D) jump regression sur-
faces (JRS). The purpose of this article is to develop a method to detect the jump locations
of the 2-D JRS.

The research on jump regression models is currently under rapid development. In one
dimensional (1-D) cases, McDonald and Owen (1986) suggested a “split linear smoother”
that provided a discontinuity preserving curve estimator. Hall and Titterington (1992) pro-
posed an alternative but simpler method to detect the jumps by establishing some relations
among three local linear smoothers. Chen (1988), Miiller (1992), Qiu (1994), Wu and Chu
(1993a,b), and Yin (1988), among many others, discussed various kernel-type methods.
These methods were all based on the difference between two one-sided kernel smoothers.
The jump regression models were related to the kernel density estimation techniques by
Chu (1994). Shiau (1985, 1987) regarded the jump regression models as partial linear
regression models and fitted them with partial splines. Eubank and Speckman (1994) and
Speckman (1993) treated the 1-D jump regression model as a semi-parametric regression
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model and proposed estimates of the jump locations and magnitudes. Qiu and Yandell
(1994) developed a jump detection algorithm with local polynomial regression. Loader
(1994) suggested a jump detector based on local polynomial kernel estimators. Wang
(1995) proposed detecting jumps with wavelet transformations.

In 2-D cases, Russian scientists did a lot of theoretical research in this area (see
Brodsky and Darkhovsky (1993), Korostelev and Tsybakov (1993), and the references
cited there). Korostelev and Tsybakov (1993) investigated jump location detection and
fitting jump surfaces under several kinds of design and jump boundaries. They suggested
approximating jump location curves by piecewise polynomials and then estimating the
coefficients by maximum likelihood estimation. This method was proven to reach the
“minimax optimal rate of convergence.” O’Sullivan and Qian (1994) suggested detecting
object boundaries by defining a contrast statistic. The boundary curves they considered are
“smooth simple closed” curves. Miiller and Song (1994) proposed “maximin” estimators
of the jump boundaries of the d-dimensional (d > 1) jump surfaces under the condition
that the number of such jump boundary curves (surfaces) is known and the population of
the possible jump boundary curves (surfaces) is also known. Qiu (1997) suggests a so-
called rotational difference kernel estimator (RDKE) of the jump location curves of the
JRS. Both of the described methods were based on two one-sided kernel smoothers along
a direction and the estimators were obtained by maximizing the jump detection criteria
with respect to this direction. This makes the computation quite expensive. Rudemo
and Stryhn (1994) studied two types of two-region image models with a univariate
boundary representation and suggested a nonparametric histogram-like contour estimator.
Godtliebsen and Chu (1995) discussed the estimation of the number of true gray levels,
their values and relative frequencies of a noisy image by binning the original observations.
When the jump location curves are completely known, Shiau, Wahba, and Johnson (1986)
fit the 2-D JRS by the partial spline method.

Jump detection in regression surfaces is directly related to edge detection in com-
puter image processing. Gonzalez and Woods (1992), Rosenfeld and Kak (1982), and
Torre and Poggio (1986) present excellent overviews of computer edge detection tech-
niques. Traditional edge detection operators such as the gradient operator, the Laplacian
operator or the Laplacian-of-Gaussian operator (Marr and Hildreth 1980) represent high-
pass filtering operators. These operators are only suitable for detecting limited types of
edges and are highly susceptible to noise. Some improvements to the aforementioned
derivative-based methods can be found (Johnson 1990; Qiu and Bhandarkar 1996). More
recent edge detection techniques are based on optimal filtering (Canny 1986; Sarkar and
Boyer 1990); random field models (Besag 1986; Geman and Geman 1984); surface fitting
(Haralick 1984; Sinha and Schunk 1992); anisotropic diffusion (Perona and Malik 1990;
Saint-Marc, Chen, and Medioni 1991); residual analysis (Chen, Lee, and Pavlidis 1991),
global cost minimization using hill-climbing search (Tan, Gelfand, and Delp 1989); sim-
ulated annealing (Tan et al., 1991); and genetic algorithm (Bhandarkar, Zhang, and Potter
1994).

In this article we make another attempt to detect the jump locations of the JRS.
Our method is based on the local simple least squares (LS) fitting. At a point in ques-
tion, a LS plane is fitted in a neighborhood. The LS coefficients of this plane give an
approximation of the gradient direction of the JRS at this point. They carry both the
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continuous and the jump information about the JRS. We then try to delete the continuous
information from the LS coefficients by considering two small neighborhoods along the
approximated gradient direction, on either side of the original neighborhood. In such
a way, the jump information is extracted. Based on that a jump detection criterion is
derived. This criterion will be shown more sensitive to the jump structure than those
of the kernel-type methods. This property makes the jump detection more robust to se-
lection of the threshold value, which is desirable in applications. This method avoids
using maximization with respect to the direction at each design point. It saves a lot of
computation and makes it possible to handle very large data sets. Computation of the
jump detection criterion can be updated easily from one point to the next. The whole
algorithm requires O(Nk) calculations, with N the sample size and k the window width
of the neighborhoods. The only condition needed on the jump location curves is that
their curvature has an upper bound. Comparing with the existing derivative-based edge
detectors in image processing literature, we explicitly characterize the jump information
in the edge detection criterion and eliminate the effect of the continuous variation of
the intensity function on the edge detection. The numerical examples in Section 3 will
show the value of the method. We also establish the statistical consistency of the edge
detection procedure and provide the rate of convergence. The conditions imposed on the
edge curves are mathematically explicitly expressed. These efforts, we think, might be
helpful to the further development of edge detection techniques.

The rest of the article is organized as follows. The model and the jump detection
method are described in Section 2. Numerical examples are discussed in Section 3, where
we also compare our method with two popular edge detectors. We give some concluding
remarks in Section 4. The proof of a theorem is given in the Appendix A.

2. JUMP DETECTION ALGORITHM

Observations {z;;} come from the following model
Zijzf(wiayj)_i'eiﬁ i’jzlaza"‘ana (21)

where {(z;,y;) = (i/n,j/n),i,j = 1,2,...,n} are equally spaced design points in
[0,1] x [0,1], {e;;} are iid random numbers with mean O and variance . The sample
size is N = n2. The regression function f(z,v) is continuous over [0, 1] x [0, 1] except
on some curves, which are called the jump location curves (JLCs) hereafter.

We call (z,y) a singular point of the JLCs if it is on a JLC and satisfies either one

of the following two conditions.

1. There exists some constant {; > 0 such that for any 0 < ¢ < (p the neighborhood
of (z,y) with diameter ¢ is divided into more than two connected regions by the
JLGCs.

2. We cannot find a constant py > O such that there exist two orthogonal lines
crossing at (z,y) and two vertical quadrants formed by these two lines belong
to two different regions separated by a JLC in a neighborhood of (z,y) with
diameter pg.

Remark 1. Condition 1 actually defines cross points of the JLCs (Fig. 1(a)). Con-
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dition 2 corresponds to acute angles of the JLCs (Fig. 1(b)). If a JLC has a unique tangent
line at (z,y) (Fig. 1(c)) or a JLC has an obtuse angle at (z,y) (Fig. 1(d)), then (x,y) is
not a singular point.

At any design point (z;,y;),¢/ + 1 < 4,5 < n — £, we consider its neighborhood
N(z;,y;) with window width k = 2/ + 1 < n, where / is a non-negative integer.

N(.’]Zi,yj) = {($¢+s,yj+t),$,t =4, —4+1,...,0,...,0— l,f}
A least squares plane is fitted in this neighborhood.
g(ey) = B+ B (@ = 2) + B (y = ) (2,9) € Niyyy)-

After some calculations, we have

N 1
ﬁé 4) = ﬁ?«’,.
. 1 ¢
o= %S? S;e(ﬂfz‘+s ~ Ti)Zits,
¢
A(i’j) — _1_._ . —_ . . 22
2 = 3 Z(y]+t Yi)Z gt 2.2)
kS; =,

¢ ¢ ¢
where 2. = 370y Zids g4ty Zids, = Do _p Fiksjtts Lot = s Zits,jtts Sg =
. . ) a(ig) A0
Yem—e(@ivs — )%, 82 =3, __,(yj4+¢ — y;)*. It is not hard to check that A pia)
and Bg” ) are uncorrelated. Furthermore, they have the following property:

Theorem 1. In model (2.1), suppose that f(x,y) has continuous first order partial
derivatives over (0,1) x (0,1} except on the JLCs at which it has the first order right and
left partial derivatives. The window width k satisfies the conditions that lim,,_, ..k = o
and limy,_..ck/n = 0. If there is no jump in N(x;,y;), then

~(4,J n+/loglogk
B = ey + 0 (BEEE) g
and
(1.7 n+/loglogk
6§ ,]) = f;({l;z,y]) + O (—%) , a.s

If (x;,y;) is on a JLC and it is not a singular point, then

B,i’j) = fi(%:,9;) + hii’j)C(i,j) +1Cy(i,7) + O (—n—————”lo‘glo‘gk) , as

k2
and

23,5 Y~ 05) yye .. n+/loglogk
5, ) = fo(Zir05) + h§ J)C(z,j) +7C,(i,j) + O (———&) , a.s

k2

where (Z;,7;) is some point around (x;,vy;) which satisfies (1) it is on the same side
of the JLC as (x;,y;) and (2) the distance between (Z;,§;) and (z;,y;) tends to zero;
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(z,y) [ \
(z,9)
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(a (b)
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(z,v)
(©) (d)

Figure 1. (a) The point (z,y) is a cross point of JLCs; (b) JLC has an acute angle at (z,y); (c) JLC has a
unique tangent line at (x,y); (d) JLC has an obtuse angle at (x,y). The point (z,y) is a singular point in
cases (a) and (b). It is a nonsingular point in cases (c) and (d).

C(i,7),Cy(i,7), and Cy(i, j) are the jump magnitudes of f(x,y) and its first order x and
y partial derivatives; hg” ) and hg” ) are two constants satisfying

\/(hg"”)z + (hgw'>)2 = O(n/k);

1 and 7y, are two constants between —1 and 1.

Proof is given in the Appendix A.

Remark 2. Some quantities used in this article, such as k, B]i’j ),Béi’j ), hgi’j ), and
hgi’j ) depend on n. We did not make this explicit in notation for simplicity. Their meaning
should be clear from contextual introduction. The big “O” notation used in this article,
an = O(b,,), means that there exists some positive integer Ny such that |a,, /b,| < M for
n > Ny and for some constant M > 0.
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Figure 2. At design point (x;,vy;), the jump detection criterion ;5 is defined as the minimum length of the
vectors U;; — Upy and U;; — Upa, where Uy, Upy and Up; are the gradient vectors of the LS planes at (z;, Y5)
and two neighboring design points (xpi,yp1) and (xpy,ypa) which are defined in (2.3)~(2.4).

loglogk \ . .
In Theorem 1, the term O (-n—@:) is due to noise. We could see that the slopes

Bli’j ) and Bé” ) carry both the continuous and the jump information of the JRS. We
try to extract the jump information in the following way for a particular lattice point
(zi,y;). The angle formed by v;; := (Bl(” ), Bzi’j )) and the positive direction of z-
axis is denoted as § € [—m/4,7n/4]. Two neighboring design points (zp;,yp;) and
(zp2,yp2) are determined by the following formulas.

If /4 <6 <3m/4 or 57/4 <0 < Tn/4, then

k
$P1—$i+m, ny~—yj+;
k k
- . ypr=y; — . 2.
TPy =Ti = s YR =Y 2.3)

If -v/4<6<7/4or3n/4 <6< 5m/4, then
k k
Zp1 =Z‘¢+;l-, YypP1 = Yj +;7: -tan @
k
Tpy =Ti— —, Yp2 =Y; — — -tanf. (2.4)
n n

If the two points determined by (2.3)—(2.4) are not exactly the grid points, we just choose
two grid points which are closest to them instead.

Figure 2 gives an intuitive explanation of (2.3)-(2.4). (zp1,yp1) and (zpa,yp2)
have the following properties: (1) they are two design points on the line through (z;, y;)
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and with slope Bzi’j ) / Bl(i’j ); (2) they are closest to (z;,y;) among the points on that
line which neighborhoods have no overlap with N (z;, y;). Notice that 7j; is the gradient
vector of the fitted LS plane. The underlying JRS increases (or decreases) most rapidly
along a nearby direction. If (z;,y;) is on a JLC and it is not a singular point at the same
time, then as a direct conclusion of Theorem 1, the JLC could not be in N(zpy,yp1)
and N(xpy,yp2) when n is large enough. In other words, (zp;, yp1) and (zp2, ypy) are
on two different sides of the JLC. We then define the following jump detection criterion
61'_7'.

6ij = min{||¥;; — Up1||, |73 — Up2ll}, (2.5)
where Up; = (ASPI) Aépl)) and Up; = (Afpz) Aépz)) are gradient vectors of the
fitted LS planes at (zp;,yp1) and (zp2,yps), respectively, and || - || is the Euclidean
norm.

If there is no jump in these three neighborhoods, then i, ¥p1, and ¥p, should be
close to each other. Hence 6;; is small. If (z;,y;) is on a JLC and it is not a singular

point, then by Theorem 1, 6;; ~ \/(hgi’j))z + (hgi’j)yC(i,j) = O(n/k)C(3, ), which
tends to infinity when n increases. Hence, ;; could be used to detect the jumps.

An equivalent and maybe more intuitive explanation of &;; is as follows. Let u;; =
(B8P, B9, —1), gy = (P2, A7, ~1), and e = (B, B, ~1) e the
normal directions of the LS planes at (z;,y;), (xp1,yp1), and (zp2,yp2), respectively.
8;; is the minimum length of vectors i;; — @p; and U;; — Upy. If (xi,y;) is on a JLC,
then 7;; has an abrupt change from both #p, and @p,. Hence, b;; is relatively large.

A large value of é;; indicates a possible jump at (z;,y;). For any constant b > 0,

P((Sij > b) < P (”1713 — 'l‘).Pl” > b)
s A 2 2
= P (-7 (1 -5 > )

Alid) A 2 PP 2 aGid) i
_ E{P«ﬂl DBV (35 - BP0Y > | 30D, B n)}'

s i PPN 2 NP 2
For fixed ﬂl(m) and [32(”), ((ﬁf”) - ,BI(PU> + (BQ(W) - B§P1)> ) /0%, is approxi-
mately x3 distributed under the assumption that there is no jump in
N(mi,y3) | N(zp1,yp).

Here 0%, = var (AI(P 1)) = 7:’—;5 Therefore, a natural threshold value of é;; is

N S R . 75 (26)
- XZ,an k,_‘s:%' =0 k'S_% y .

where x3 , is a1 —an quantile of the x3 distribution and & is a consistent estimator
of o.
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Suppose that (z;,y;) is on a JLC with jump magnitude C(¢, 7). Then the values of
most kernel-type jump detection criteria (e.g., Miiller and Song 1994) are about C'(3, j)
at this point and our criterion is of order O(n/k), which tends to infinity with the sample
size. Hence 0;; is more sensitive to the jumps. This property has two benefits. One is
that 6;; visually reveals the jumps better. The other is that our jump detector is more
robust to the selection of the threshold. The threshold could be chosen a little bit larger
than usual without missing the jumps when the sample size is larger because 0;; is quite
large in this case.

The design points {(z;,y;) : 6;; > b,i,j = 3k+1)/2,....,n— (3k — 1)/2} could
be flagged as jump candidates. But two kinds of deceptive jump candidates may also
be flagged. One kind is those close to the real jumps. If (z;,y;) is flagged, then its
neighboring design points will be flagged with high probability. This kind of deceptive
candidate could make the detected jump boundaries thick. Another kind of deceptive
candidate arises from the randomness of the jump detection criterion. (x;,%;) could
be flagged with probability «,, even if it is not the jump point. This kind of deceptive
candidate is scattered over the whole design space. Therefore we need some modification
procedures (MPs) to delete these two kinds of candidates. Here are two possible strategies.

MP1 (to make the detected jump boundaries thin). For each (3k+1)/2 < j <n—(3k—
1)/2, consider the design points {(z;,y;) : 3k+1)/2 <i<n—(3k—1)/2} on
line y = y;. Among them, the flagged candidates that satisfy —7/4 < 6 < w/4
or 37/4 < 6 < 5m/4 are denoted as {(z;_,y;) : 1 <s < n;}, where 6 is defined
as in (2.3)—(2.4). If there are r; < r; such that the increments of the sequence
i, <lp41 < -+ <ip, are all less than the window width &, but i,, —i,,—1 > k
and i,,41 — i, > k, then we say that {(z;_,y;) : 71 < s < rp} forms a tie and
we select the middle point ((z;,, +;,,)/2,y;) as a new candidate to replace the
tie set. That is, reduce the candidate set to one representative, the middle point,
from each tie set. Along y direction, for each (3k+1)/2<i<n—(3k—1)/2,
consider the design points {(z;,y;): (3k+1)/2 <j <n—(3k—1)/2} on line
z = z;. We do the same modification as that along = direction except that only
those candidates satisfying 7/4 < 6 < 37 /4 or 57/4 < 6 < 7w /4 are considered
this time.

MP2 (to delete scattered candidates). For any candidate (z;, y;), if the number of other
jump candidates in N (z;,y;) is less than (k — 1)/2, then we delete (z;,y;) from
the candidates set.

Remark 3. In MPI, along x direction, the condition —7/4 < 0 < w/4 or 31 /4
< 6 <57 /4 implies that the possible JLC forms an acute angle with the y-axis at the
candidate point. This avoids cancelling the real jump boundaries that are parallel to the
T-axis.

Remark 4. We want to point out that the modification procedures (MP1 and MP2)
are only two possible ones. The detected JLCs may also be fragmentary here or there. (This
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can be seen from the numerical examples in the next section.) Some MPs are necessary
to connect the detected JLCs. For more discussion of the MPs, see Gonzalez and Woods
(1992, chap. 6).

We summarize the jump detection method in the following algorithm.

2.1 THE JumP DETECTION ALGORITHM

1. Atany (2;,y;) with £+1 < 4,5 <n—4, fit a LS plane in N(z;,y;) by formula
(2.2).

2. Use (2.3)<(2.4) to determine two neighboring design points of (z;,y;), (3k +
1)/2<i,j<n-(3k—-1)/2.

. Use formula (2.5) to calculate §;;.

. Use formula (2.6) to determine the threshold value b.

. Flag the design point (z;,y;) as a jump candidate if it satisfies 6;; > b.

. Use modification procedures MP1 and MP2 to determine the final candidates.

AN bW

Remark 5. We use square-shaped neighborhoods of the design points in the method
only for convenience of the expressions and calculations. Other kinds of neighborhoods,
such as ellipses, could also be used.

Remark 6. The LS planes fitted in the jump detection algorithm can be updated
easily from one point to the next because only a few points change. Therefore, the al-
gorithm needs O(Nk) calculations. It will simplify the computer program further if we
notice the symmetric structures between Bfi’j ) and Béi’j ) (see (2.2)).

Theorem 2. Besides the conditions stated in Theorem I, if there are only finite
number of singular points on JLCs and v, in (2.6) is chosen such that (1) lim,_, ooy =
0; (2) limp—,oolog(a,)/ log(log(k)) = —oc; and (3) limy,_.oolog(ay,)/k* = O, then the
detected jumps are a.s. consistent in the Hausdorff distance and the convergence rate is
O(n~tlog(n)).

The proof is based on the following facts. First, from Theorem 1, we know that
the jump information in the jump detection criterion 6;; is of order O(n/k). Second,

the threshold value b in (2.6) is of order O (n\/—log(an) /k2>. (We use the fact
that X%,an = —2log(ay,) here.) Third, the order of the standard deviation of &;; is

0] (n\/log log k/ kz). So the jump information dominates the randomness in the jump
detection criterion as long as k tends to infinity with n. An outline of the proof is: (1) no
jumps can be detected outside the bands centered at the real jump boundaries and with
width v/2k/n when n is large enough; (2) if the design point (z;,y;) is on a JLC and
it is not a singular point, then it will be detected because 6;; = O(n/k) > b with large
enough n. The convergence rate of the detected jumps is O(k/n). If £ = O(log(n)),
then this rate is O(n~!log(n)). The Hausdorff distance between two sets .4 and B is
defined by d(A, B) := max (sup, 4 infyep ||z — y||, sup,cpinfyca |z — y||).
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Figure 3. (a) The jump regression surface used in the example; (b) the jump location curve.
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Figure 4. The gradient vector Uy; of the fitted LS plane at each design point.
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3. NUMERICAL ANALYSIS
3.1 A SiMULATION EXAMPLE

In this section we do some simulations with an artificial example. The regression
function f(x,y) has the expression

flz,y)=—-5—y+3@- 57>+ Iiys _(z— 5245}

There is one JLC y = —(x — .5)% + .5 with constant jump magnitude 1. The regression
function and the JLC are plotted in Figure 3. Ten thousand observations {z;;,%,j =
1,2,...,100} are generated from z;; = f(i/n, j/n) + €;; with n = 100 and iid random
numbers from N (0, .5%).

We then use formulas (2.2)—«2.5) to calculate the jump detection criterion {6;;},
initially with k = 7. The gradient vector ;; of the fitted LS plane at each design point
is shown by Figure 4. {6;;} is plotted in Figure 5(a) (3-D plot) and Figure 5(b) (a
corresponding image plot). In the image plot, the brightness at each point represents the
response value—the darker, the bigger. We use the default legend of the “image ()”
function in S-Plus to generate the image plots used in this section.

Then a threshold is calculated by formula (2.6) with a,, = .001, which is the smallest
number in most x? tables. The flagged jump candidates are plotted in Figure 6(b) by
black points. As we mentioned in Section 2, the detected jump boundary is quite thick
and there are also some scattered candidates. We then use the modification procedure
MP1 and then MP2 to modify the set of candidates. The results are plotted in Figure
6(c) and Figure 6(d). As a comparison, we plot the real JLC in Figure 6(a). We notice
that there are some breaks here or there in the detected jump boundary in Figure 6(d).
The detected boundary is not thin enough at some places. These imply that there is some
room for our MPs to be improved, as we mentioned in Remark 4.
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Figure 5. (a) The jump detection criterion {6;;} in 3-D plot; (b) the corresponding image plot of (a). The
darker the color in the image, the bigger the criterion value.
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The experiment is then repeated 1,000 times. The number of times of each design
point to be in the final candidates set is plotted in Figure 7. We can see that the results
are quite impressive.

Theoretically, we can use the Hausdorff distance to measure the performance of
our algorithm. In reality, this distance could be very hard to compute. In the following,
we use the average orthogonal distance of the points in the final set of candidates to
the real JLCs as a performance measurement. This measurement is averaged again for
1,000 replications. The results for several n, k, and o values are presented in Figure 8.
From the plots, we can see that the averaged performance measurement (APM) decreases
when n increases for each o? value. This may reflect the consistency of the algorithm.
For fixed o2 value, the best k (k with smallest APM) does not appear to change much
with n. That verifies the conclusion in Theorem 2 that k£ should be quite stable when n
increases, to achieve the biggest accuracy of the detected jumps. The best k increases
with o2 value. That implies that for noisier data more observations are needed in each
window to reduce the randomness in the jump detection criterion. We also notice that
APM is much smaller for smaller 0% value. This is intuitively reasonable.
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Figure 6. (a) The real jump location curve; (b) detected jump candidates from criterion (2.5), which are denoted
by black points; (c) the modified jump candidates from those in (b) by the modification procedure MP1; (d) the
modified jump candidates from those in (c) by the modification procedure MP2. :
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Figure 7. The number of times each design point is detected in 1,000 replications.

3.2 CompraRISON WITH Two EDGE DETECTORS

In this part, we compare our method with two derivative-based edge detectors: Sobel
(Rosenfeld and Kak 1982, sec. 10.2) and Laplacian of Gaussian (LoG) (Marr and Hildreth
1980). The Sobel method is based on two Sobel masks, shown in Figure 9. For a given
design point (z;,y;), we use its 3 x 3 neighborhood. Then the convolution of the first
mask with the observations in the neighborhood is used to estimate the partial derivative
of the intensity function with respect to y. This estimate could be denoted as fy” ),

Similarly, the second mask is used to get the estimate of the partial derivative with
respect to z which is denoted as £’ Then

1/2
S = [(ﬁﬁ"j’)z + (fé“”ﬂ
is used as an edge detection criterion with big values indicating possible edges.

LoG method is based on the Laplacian of a 2-D Gaussian function of the form
2 2
h(z,y) = exp(—EH), which has the following form.

2 _ g2 2
V2h = * -
Fen(-5).

where 72 = 22 4+ y? and o2 is the variance parameter. Edge detection is accomplished by
locating the zero-crossing positions of the convolution of V2A and the image function.
In applications, V2h could be simplified by using the mask shown in Figure 10.

Figure 11(a) shows a synthesized gray scale image. It has 512 x 512 pixels with a
gray scale resolution of 8 bits per pixel (the range of gray levels is from 0 to 255). Pixels
on rows 1-86 have a gray level value of 155. The gray levels on rows 87-172 are 165.
From row 173 to row 212, the gray levels linearly decrease, which could be described
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by the formula 255 — (7 — 172) % 6, where ¢ is the row number. From row 213 to row
512, there are two portions. The left portion consists of 8 sections where the gray levels
in each section are identical. The gray levels of adjacent sections alternate between 155
and 165. In the right portion, white noise from uniform distribution U (—10, 10) is added
to each pixel. Before adding the noise, gray levels are 100 on rows 213-312; 75 on rows
313412, and 100 again on rows 413-512.

Figure 11(b) shows the result of Sobel detector. In the top part of the image, it misses
the edge between rows 86—87 and falsely detects the region between rows 173-212. In
that region, gray levels have a quite steep linear trend. But no edges exist. Because
the Sobel detector does not exclude the linear trend of the underlying intensity function
from edge detection, it cannot overcome this false-edge detection and detect the true
edge between rows 86-87 at the same time. In the left portion of the bottom half of
the image, there are two diagonal edge lines, one vertical edge line and one horizontal
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Figure 8. Averaged performance measurements (APMs) from 1,000 replications with several n, k, and o?

values. (a) o2 = 25; (b) 0% = .5; (c) 6% = .75; (d) 2 = 1.0.
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Figure 9.  Sobel masks.

edge line, all of which have the same intensity step magnitudes. As we can see from the
plot, however, the Sobel detector could detect two diagonal edge lines but it misses the
other two edge lines. The reason behind this is that Sobel operator only considers two
orthogonal directions (z and y directions) in edge detection. Consequently, the values of
edge detection criterion depend on the directions of the edge lines. The Sobel operator
detects the true edge lines in the noisy portion (i.e., right lower portion) of the image,
but also several noisy edge pixels as well.

Figure 11(c) shows the edges detected by LoG. The LoG operator suffers some of
the same drawbacks as the Sobel operator. Note that although the false-edge detection
problem in the region between rows 173-212 has been somewhat alleviated, the true
edge between rows 86-87 has been missed. The LoG operator misses most of the edge
boundaries in the noisy portion of the image although it suppresses the noisy edge pixels
as well. It also does not detect all the eight edge lines in the left lower portion of the
image.

The result of our method is shown in Figure 11(d). To make the methods comparable,
we use the same window size as Sobel and LoG. We see that the false-edge detection,
because of the linear trend, and the missing-edge, because of the different directions of
the edge lines, have been greatly improved since we eliminate the effect of the continuous
variation of the intensity function on edge detection and we construct our edge detection
criterion in the approximated gradient direction. The results around the intersections of
several edge lines are not quite satisfactory. These intersections correspond to the singular
points of the JLCs.

o | -1 |o
14 |
o | -1 |o0

Figure 10. Mask for LoG method.
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(c) (d)

Figure 11. (a) The original image; (b) detected edge image by Sobel; (c) detected edge image by Laplacian of
Gaussian; (d) detected edge image by the procedure suggested in this article.

4. SOME CONCLUDING REMARKS

We have presented a jump boundary detection algorithm with local LS plane fitting
that is intuitively appealing and simple to use. It can handle relatively large data sets.
Simulations show that it works well in practice.

We leave some parameters, such as the window width used in the algorithm, to
be adjustable to the users. Much future research is needed to provide some guidelines
on the selection of these parameters. The window sizes used in this article are fixed
throughout. In some applications, windows with variable or adaptable sizes may be more
appropriate. In some planar regions of the regression surface, we could use large-size
windows, whereas in highly textured regions the window sizes could be small. As we
mentioned, the modification procedures presented in the article are only two of the
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possible ones. More careful modification procedures are needed to make the detected
jump candidates match the real jump boundaries better. Another very important issue is
the relationship between jump location detection and jump surface fitting. If we put more
structure on the jump locations, then fitting the jump surfaces would be easier. But some
real applications are also excluded. It may be important to work out some methods to fit
the jump surfaces under mild conditions on the jump locations.

We discussed jumps in the regression functions in this article. In some situations
jumps in derivatives are also interesting. (The so-called “roof-edges” in image processing
correspond to the jumps in the first order derivatives of the regression functions.) We
think that the coefficients of the fitted local polynomials of order k + 1 contain useful
information about the jumps in the kth derivatives of the underlying regression functions.
This kind of relationship needs to be investigated further. Generalization from 2-D to
general d-dimensional cases seems to be straightforward theoretically. But it may not be
easy to make the algorithm applicable in high-dimensional cases. How to apply some
dimension-reduction techniques to the jump regression models is another future research
topic.

A. APPENDIX
A.1 Proor OF THEOREM 1

If there is no jump in N(z;,y;), then from (2.2),

¢
N 1
ﬂ]( J) — k_S% Z (.’L‘H,s - xi)zi+s,.
s=—f
1 & :
T ks? Z (Tigs — T4) Z [f(@its: Yjae) + €ivs,jae)- A1)
T s=—p t=—¢

According to Lai, Robbins, and Wei (1979), if lim,_, o, ¥ = oo, then

¢ ¢
Z.s:—l th_z S€i+s,j+t

Vk*loglog k*

= 0(1), as.

Hence

4

¢
k_é'z Z (@its — @) Z €its,j+

T s=—¢ t=—4

L £
= kLS% Z % Z €its,j+t

s=—f t=—{

2 l
= L /Floglog i Lozt Ltz Citott
nkS2 v k*loglog k*

o (7% v/loglog k) , as. (A2)
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By Taylor’s expansion,
F@ivs Yjre) = F(@iyy) + fo(@i +0(@irs — 20), 95 + 01Ut — ¥5)) @igs — 1)
+fy (@i +0(@irs — 20),y5 + Uit — ¥;)) Wite — ¥5),

where 0 < 7 < 1 is a constant which depends on (s, y;+¢). So when lim,_,o k/n =
0,

£
k52 Z Tivs = 2i) O (@it Yjse)

T os=—¢ t=~—/¢

¢
= fo(i, y5) + % > fa@i 4 n@ivs — )05 + 040 — ¥7)) — fel@in )]
t=—t

£
k52 Z Tits — Ti) Z (fy (@i + n(@ivs — ), 5 + 0(Yjre — ¥5))
T s=~t t=—£

~Fy (@i, yi)) (Y4t — Y5)
= fa(@i,y;) +o(1). (A3)

In the second equation of (A.3), we used the facts that

o<n<1 z<t<e |fz(@i + 0(Tivs = 23), 95 + 1(yj4e — y5)) — fal@i, y;)| = o(1),

and

- é<t<£|f (@i +n(@ivs — i), Y5 + 1Y+t — ¥5)) = F (i, 95)] = o(1).

Combining (A.1)-(A.3), we have

B = Fi(wi,u)) + O (15 /loglogk) , as

Similarly,

Béw) fo(@iy;) + O ( \/loglogk) ,

Now, if (z;,y;) is on a JLC and it is not a singular point, and N(z;,y;) is divided
into two parts I; and I, by this JLC (without loss of generality, let us assume that there
is a positive jump from ) to I, at (x;,7;)), then from (A.1)~(A.2)

Al(i,j) _ 52 Z Tiye — Zf(xz+s,y]+t)+0( \/]oglogk) as.

T s=—¢ t=—¢

= 52 Z Tits = Ti) Z F*@irs yire) + RO, 5)

s=—4 t=—¢

+71Ce (3, 7) +O( \/loglogk)
= fi(@.8) + bV O, §) + MCaliyg) + O (k Vloglogk)
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where (Z;,7;) is some design point around (x;,y;) which satisfies the conditions stated
in the theorem,

F(@its Yjrt) if (Tiys,Yj+t) € L
[ (Tigss Yjre) = & [(Tis, Yjte)
=C(1,5) = (@igs — 2:)Cx(4,5) if (Tits,Yjtt) € I,

iy 1
A = s Yo (@i — ),

T (igs Yi4t)ED
and
1
2
"= m Z (Tigs — 45)"
T (Tits Yj+t)EDR

Clearly, ~; is a constant between 0 and 1. To make C,(%, j) positive, we let 7, take its
value between -1 and 1.
Similarly,

(3,5 - o~ ij .. .. n
B = f1(Z,55) + WP C (i, ) + 10y (6, §) + O (ﬁvlog log k) , as.
with
1
W= Y W)
kS;
(Ti4s,Yj+e)EDL
and
1 2
2= Z (Yj+t — y3)"
kS?
(Tits,Yj+t)ED

Next, we notice that condition 2 in the definition of a singular point guarantees
the existence of the left and the right derivatives of the JLC at (z;, y;). To make this
more precise, let us suppose that a JLC has a parametric form (z(t),y(t)),t € [T, T2).
Then it has right and left derivatives at ty € (17, T3), if limg—¢y+o 2(2), limg—¢—o 2(2),
limy ¢+ y(t), and lim;_¢,—o y(¢) all exist. Based on this fact, we will prove that

\/ (h?v”)2 + (hg"’ﬁ)z = O(n/k) (A.4)

by considering the following two cases.

A2 Casel

The left and right tangent half lines of the JLC at (z;,y;) are both under the line
y = y; in N(z;,y;) (see Fig. A.1). In this case, by condition 2 of the definition of a
singular point we can find two orthogonal lines crossing each other at (z;,y;) and two
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Figure A.1-A.2.  Two cases that (x;,vy;) is on a JLC and it is not a singular point.

vertical quadrants formed by them belong to different parts I; and I,. For convenience,
let us assume that the lower quadrant Q) belongs to I,. Clearly, when n is large enough
(the difference between the tangent half lines and the real JLC could be neglected in the
small neighborhood),

g 1
D] > ) > Wire—y))l

Y ($i+s,yj+t)€Q

> kSzz Z Yite = Y5)l
Y s=0t=—¢
= O(n/k). (A.5)
On the other hand,
L0
max {7} ISP} <20 1 30 3 (e -
Y s=0t=—¢

Hence (A.4) is true.

A3 Case 2

The left and right tangent half lines of the JLC at (z;, y;) are in two vertical quadrants
in N(z;,y;) (see Fig. A.2). Without loss of generality, we assume that one is in the upper-
right quadrant and the other is in the lower-left quadrant. The former forms a region J;
with line y = y; and the latter forms a region J, with line z = z;. If

Z Y+t — Y5l > Z (Yi+t — Ysls
(Zits,Yj+t)€S2 (Tits Yj+t)ETL
then (A.5) and consequently (A.4) is true. If

Yo -yl < S e — vl

(Tits,Yj+t)ET (Tits Yj+t)EN
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then by the facts that

Yoo lywmmul< Y -

(Tits,Yj+t)ETy (Tigs,Yj+t)EJN
and
E Y+t — y] > E [Tiqs — i),
(Zits Yj+t)€ER (Tits,Yj+t)ED
we have

4 0
1
R > g 3 Y (@i = )

T s=0t=—"¢

= O(n/k).

Hence (A.4) is also true.
By the geometric symmetry, the other cases can be discussed in the same way. We
finish the proof.
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