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A Local Polynomial Jump-Detection Algorithm in
Nonparametric Regression
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We suggest a one-dimensional jump-detection algorithm based on local polynomial fitting for
jumps in regression functions (zero-order jumps) or jumps in derivatives (first-order or higher-
order jumps). If jumps exist in the mth-order derivative of the underlying regression function, then
an (m+ 1)-order polynomial is fitted in a neighborhood of each design point. We then characterize
the jump information in the coefficients of the highest-order terms of the fitted polynomials and
suggest an algorithm for jump detection. This method is introduced briefly for the general setup
and then presented in detail for zero-order and first-order jumps. Several simulation examples are
discussed. We apply this method to the Bombay (India) sea-level pressure data.

KEY WORDS: Edge detection; Image processing; Jump-detection algorithm; Least squares line;
Modification procedure; Nonparametric jump regression model; Threshold value.

1. INTRODUCTION

Stock-market prices often jump up or down under the
influence of some important random events. Physiologi-
cal responses to stimuli can likewise jump after physical
or chemical shocks. Regression functions with jumps may
be more appropriate than continuous regression models for
such data. The one-dimensional (1-D) nonparametric jump
regression model (NJRM) with jumps in the mth derivative
can be expressed as

lfi:f(ti)+5ia i=1,2,...,n, (11)
and
p
@) = g(t) + Y dills, 5000 (1), (1.2)
1=1

with design points 0 < t; < ¢t < -+ < ¢, < 1 and
iid errors {¢;} having mean 0 and unknown variance o2.
The mth-order derivative f(™)(t) of the regression function
f(t) consists of a continuous part g(¢) and p jumps at po-
sitions {s;,7 =1,2,...,p} with magnitudes {d; — d;_1,i =
1,2,...,p}. For convenience, let dy = 0 and sp.; = 1.
Zero-order jumps (m = 0) in the regression function it-
self correspond to the step edge in image processing. First-
order jumps (m = 1) may exist in the first derivative of
f(t), related to the roof edge in image processing. For
m > 1, the jumps in (1.2) are called higher-order. The ob-
jective of this article is to develop an algorithm to detect the
jumps of 1-D NJRM (1.1)«(1.2) from the noisy observations
{YVi,i=1,2,...,n}.

Example 1.1: Bombay Sea-Level Pressure Data. Figure
1 shows sea-level pressure data that were provided by Dr.
Wilbur Spangler at the National Center for Atmospheric
Research, Boulder, Colorado. The small dots represent the
December sea-level pressures during 1921-1992 in Bom-
bay, India. Shea, Worley, Stern, and Hoar (1994) pointed
out that “a discontinuity is clearly evident around 1960. . ..
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Some procedure should be used to adjust for the continu-
ity” (p. 14). By using the procedure introduced in this arti-
cle, a jump is detected. The fitted model with this detected
jump accommodated is shown in the plot as a solid curve.
For comparison, we plot the fitted model with the usual
kernel-smoothing method as a dotted curve. More explana-
tion about this example is given in Section 4.3.

McDonald and Owen (1986) proposed an algorithm based
on three smoothed estimates of the regression function, cor-
responding to the observations on the right, left, and both
sides of a point in question, respectively. They then con-
structed a “split linear smoother” as a weighted average
of these three estimates, with weights determined by the
goodness-of-fit values of the estimates. If there is a jump
near the given point, then only some of these three esti-
mates are likely to provide good fits, accommodating the
discontinuities of the regression functions. Hall and Titter-
ington (1992) suggested an alternative method by establish-
ing some relations among three local linear smoothers and
using them to detect the jumps. This latter method is easier
to implement.

Related research on this topic includes the kernel-type
methods for jump detection of Miiller (1992), Qiu (1991,
1994), Qiu, Asano, and Li (1991), Wu and Chu (1993),
Yin (1988), and others. These methods were based on
the difference between two one-sided kernel smoothers.
Wahba (1986), Shiau (1987), and several others regarded the
NJRM’s as partial linear regression models and fitted them
with partial splines. More recently, Eubank and Speckman
(1994) and Speckman (1993) treated the NJRM (1.1)—(1.2)
as a semiparametric regression model and proposed esti-
mates of the jump locations and magnitudes. Loader (1996)
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Figure 1. The December Sea-level Pressures During 1921-1992
in Bombay, India. The solid curves represent the fit from our jump-
preserving algorithm. The dotted curve is the usual kernel-smoothing
fit without considering the jump structure.

suggested a jump detector based on local polynomial kernel
estimators.

In this article, we suggest an alternative method. At
a given design point ¢;, we consider its neighborhood
N(t;) = {ti—la Cig1—lseeeybiyeny tic1gd, tH—l} with width
k =20+ 1 < n, an odd positive integer, for [ + 1 < 1 <
n — [. We then fit a local polynomial function of order
(m + 1) by the least squares (LS) method in that neigh-
borhood, which can be expressed as

YO@) =55+ 30+ B gt

teN(t),i=1l+1,...,n—1. (1.3)
Intuitively, if f(™)(t) is smooth at t;, then Bﬁfl)ﬂ is close
to f(m+1(¢,;) for large enough n. If f(™)(t) has a jump at
t;, however, {$7,,}"=],, has an abrupt change at 4!, ,.
Hence, these coefficients carry information about both the
continuous and the jump components of f(™)(t) [given
in (1.2)].

A jump-detection criterion can be formed that excludes
the information about the continuous part but preserves the
jump information. An important requirement of such an al-
gorithm is that it be easy to implement. From the preceding
brief description, this algorithm is based on estimated LS
coefficients that are available from common statistical soft-
ware. Its computational complexity is O(n). Another fea-
ture of this method is that it does not require the number of
jumps to be known beforehand, as do most other existing
methods. Jumps are automatically accommodated with our
jump-preserving curve-fitting procedure.

We should point out that in our algorithm the window
width & must be specified. How should one choose a proper
window width in practice? This is a common problem in lo-
cal smoothing methods. In some applications, a visual intu-
itive method has been used to adjust the window width.
Hastie and Tibshirani (1987) suggested using 10%-50%
observations for each running-lines smoother in their lo-
cal scoring algorithm. Stone (1977) suggested the cross-
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validation method to choose the window width. For more
discussions on the selection of the window width, please
refer to Hardle (1991, chap. 6).

In most applications, we are interested in checking for
jumps in the regression function itself or in its first-order
derivative. Hence, in the following sections, we concentrate
on these two special cases. In Section 2, a jump-detection
criterion for the case of m = 0 is derived, with a corre-
sponding algorithm. Jump detection in slope is discussed
in Section 3. In Section 4, some simulation results are pre-
sented. We return to the Bombay (India) sea-level pressure
data in Section 4.3. Our method is compared with some
kernel-type methods in Section 5. We conclude the article
with some remarks in Section 6. Some supporting materials
are given in the Appendix.

We should point out that the 2-D version of the current
problem (namely, jump detection in surfaces) is closely re-
lated to edge detection in image processing. We refer in-
terested readers to Besag, Green, Higdon, and Mengerson
(1995), Gonzalez and Woods (1992), Qiu and Bhandarkar
(1996), and Qiu and Yandell (1997) and the references cited
there.

2. JUMP DETECTION IN THE
REGRESSION FUNCTIONS

In this section we discuss the jump detection in the re-
gression function itself. This corresponds to m = 0 in
Model (1.1)—(1.2). For simplicity of presentation, we as-
sume that the design points are equally spaced over [0, 1].
Most of the derivation of the jump-detection criterion pre-
sented here is intuitive, although mathematically rigorous
arguments can be constructed. Based on the derived crite-
rion, we suggest a jump-detection algorithm.

As described in Section 1, we fit an LS line, Y (t) =
A + 8%t € N(t;), in a neighborhood N(t;) at each
design point t;, for [ +1 < i < n — [. Throughout this
article we make the following assumption (AS1) on the
NJRM of Equations (1.1)—(1.2).

AS1. Only one jump is possible in any neighborhood
N(t;). If t; is a jump point, then no other jumps exist in
N(ti—k) UN(t;) UN(tisx).

Remark 2.1. ASI1 implies that jump locations are not
very close to each other. Alternatively, there are enough
data (n large, k/n small) to distinguish nearby jumps. This
assumption seems to be reasonable in many applications.

In Appendix A we present a theorem (Theorem A.1) that
gives some properties of Bii). By that theorem, Bf) ~
By (t;) = g'(t;) when there is no jump in N(t;), and
B~ Bi(t;) = g, (ti) + hi(r)Co — v(r)Cy if a jump
exists in IV (t;) and the jump location is at ¢;_;,,,0 < r < 2,
where “~” means that noise in the data and a high-order
term are ignored, Cy and C; are the jump magnitudes
of f(t) and its first-order derivative at the jump location,
7v(r) is a positive function taking values between 0 and 1,
hi(r) := [6nr/k(k+1)](1—r/(k—1))Co, and g} (t:) = ¢'(t.)
if r #£1.

Remark 2.2. Some quantities, including k, BAY), and
hi(r), depend on n. We did not make this explicit in no-
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tations for simplicity. Their meaning should be clear from
the context.
Example 2.1. Let f(t) = 5t> 4 I 5 4(t). Consider a sam-

ple of size 100 and let k be 7. Then A" ~ By (t;) = 10t; +
I{ar<t,<.533[6(.53 —1;)/(.07) - (.08)](1 - (.53 —t;)/.06),4 <
i <97. {B1(t;),4 < i <97} is shown in Figure 2(a).

From Figure 2(a) and Theorem A.1 in Appendix A, we
can see that {B{l)} carries useful information about the
jumps. This information is mainly in the “jump factor”
hi(r)Cy of Bi(t;). hi(r) has a maximum value at r = [
of 1.5n(k — 1)/k(k + 1) = O(n/k), which tends to infin-
ity with increasing n. If we have prior information about
the bound of the “continuous factor” ¢’(¢;) (when ¢; is not
a jump point), then those points could be flagged as jump
points if their LS slopes are bigger than the prior bound.
A prior bound may not be available in many applications,
however. Our strategy to overcome this difficulty is to find
an operator that simultaneously removes the continuous fac-
tor from B (¢;) and preserves the jump factor. Notice that
the continuous factors ¢’(¢;) and g'(t;) are close to each
other when ¢; and ¢; are close. Therefore, a difference-type
operator can remove the continuous factor. When ¢, and t;
are far enough apart so that only one of B (t;) and B (t;)
can have a jump factor, the difference between B (t;) and
Bi (t;) preserves the jump factor. Many difference-type op-
erators could be used. In this article, we suggest using the
following:

300 _ gl

1 1

if 8 — 300 < |61 — BUY)
B — gy

if [0 — A0 > 189 - 50D @)

20

15

10

0.256 050 0.75 1.00

(a) position t

143

for Kk < i < n—k+ 1. That is, we use the difference of
smaller magnitude. By the preceding intuitive explanations,
we can see that

(0

if there is no jump in N (¢;)
hQ(T’)Co

if there is a jump at ¢;_;,

| with0 <7 <k—1,

A(lz) ~ Jl(ti) =

(2.2)

where hy(r) is the one of hy(r) —hy(r—1) and hy(r) — hy(r
+ [) with smaller magnitude and h;(j) = 0 when j < 0 or
j>k-1

ha(r) has the same maximum value as hi(r). In the case
of Example (2.1), {J/1(t;),7 < i < 94} is shown in Figure
2(b). From (2.2) and Figure 2(b), we can see that {A{"}
does retain the jump information and filter the continuous
factors at the same time. Hence, it could be used as our
jump-detection criterion.

Remark 2.3. A possible alternative operator to (2.1) is
as follows. For k <i <n — k + 1, define

188 — B (B — By

D Al At
A0+ 1Y - BV - BY)
x = - v - - ;
187 = BI04+ 130 - 5
where A" is a weighted average of A" — 5" and

3% — 3%*D From Theorem A.1 and Figure 2(a), we can
see that A'") is small when there is no jump in N(¢;). When
there is a jump at ¢;, AW ~ h1(1)Co, where Cj is the jump
magnitude.

Remark 2.4. The difference operator in (2.1) also nar-
rows the regions that contain jump information. A jump

0.50

0.75

0.25

(b) position t

Figure 2. Iff(t) = 5t% + Ir.5.4(t), n = 100, k = 7, Then 3!/ ~ By(t;). {B1(1;)} consists of both the continuous and the jump factors. It is shown
in plot (a) by the “diamond” points. After using the difference operator defined in (2.1), {J1(t;)} consists mainly of the jump factor. It is shown in

plot (b).
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affects ﬂiz) if ¢; is within 2k of that jump point, but it
only affects Ag’) when ¢; is less than k units away. We also
pay a price for this increased specificity, however, because
the variance of AY) is usually bigger than the variance of
BY) . Although the variances of both statistics converge to 0
for increasing neighborhood size, this would be important
in finite-sample cases. In applications, we suggest plotting
both {3} and {A{"}. In many cases the plot of {3!"}
could be very helpful in demonstrating the jumps. This can
be seen in the real data example (Sec. 4.3) and in the sim-
ulation examples (Secs. 4.1 and 4.2) as well.

Large values of lAg’)l indicate possible jumps near ;.
If there is no jump in N(t;), then A" — 3" s app-
roximately normally distributed with mean O because it
is a linear combination of the observations. From (2.1),
P(IAY] > uy) < P(IBY = 3879 > uy,) for any ug; > 0.
Therefore, consider the threshold value uy; = Z,, 50,
with ¢ = SD of B — gU=Y. Clearly, ¢ is inde-
pendent of ;. After some calculations, we have o( =
(n/k)\/6(5k — 3)/(k% — 1)o. Therefore, a natural choice of
the threshold value is

. n [6(bk—3
U = 57,y 2y SRS

KV R @3

where & is a consistent estimate of o.

The design points {t;; : IAY")I >u,j =1,2,...,n1}
can be flagged as candidate jump positions. If ¢;; is flagged,
then its neighboring design points will be flagged with high
probability. Therefore it is useful to eliminate some of the
candidates in {t;,,j = 1,2,...,n,}. We do this by the fol-
lowing modification procedure that was first suggested by
Qiu (1994).

Modification Procedure.  For a set of candidates
{ti;,j = 1,2,...,ny}, if there are indices r; < r, such
that the increments of the sequence i,, < <y
are all less than the window width k£ but i, — Iy —1
> k and ir,41 —ir, > k, then we say that {t;,,j =

o .

<t

(@] .

o

(@] u

N

" /

0.0 025 050 075 1.00
(a)
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ri, 71+ 1,...,m2} is a tie setin {t;,,j = 1,2,... ,n1}. Se-
lect the middle point (t;, +t;,,)/2 for each tie as a jump-
position candidate, replacing the tie set in the candidate set
{ti;» 7 =1,2,...,n1}. That is, reduce the candidate set to
one representative, the middle point, from each tie set. Af-
ter the preceding modification procedure, the present candi-
dates include two types of points, those that do not belong
to any tie and the middle points of all of the ties.

The jump-detection method is summarized in the follow-
ing algorithm.

The Zero-Order Jump-Detection Algorithm

1. For any ¢;,l1+1 <i<n -1, fit an LS line in N(¢;).

2. Use Formula (2.1) to calculate A(I’),k <i<n-
k+1.

3. Use Formula (2.3) to calculate the threshold value u;.

4. Flag the design points {t;;,j = 1,2,...,n;}, where
ti, satisfies |A§“)| >up for j=1,2,...,n;.

5. Use the modification procedure to determine the fi-
nal candidates set {b;,i = 1,2,...,q;}. Then conclude that
jumps exist at by < by < -+ < by,.

Remark 2.5. The LS lines fitted in Step 1 of the preced-
ing algorithm can be updated easily from one design point
to the next one because only two points change. Thus, the
whole algorithm requires O(n) calculations. This remark is
also true in the general setup.

Remark 2.6. Our jump-detection algorithm can also be
implemented using the centered model

YO@) = 557+ 80— t5) + -+ B (¢ — )+,

te N(ti),i=l+1,...,n—l.
In many situations, it is more convenient to use this form.

Theorem 2.1. Besides the conditions stated in Theo-
rem A.l in Appendix A, if the confidence level «,, in
(2.3) satisfies the conditions that (a) lim,_, .o, = 0, (b)

imp, 00 Za, /2/V1oglogk = oo, and (¢) limy, 00 Z,,, 2/ Vk

8 - g

w4

L=
N

0 -

(] -

u") -
4

00 025 050 075 1.00

(b)

.Figure 3.‘ IFF(t) = 512 + Ir5,1(t), n = 100, k Is Chosen to Be 11, Then fB;’) ~ Ba(t;). {Bz(t;)} is shown in (a) by the “diamond” points. After
using the difference operator, which is similar to that in (2.1 )-(2.2), we get {Jz(1;)}, which is shown in (b).
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0.0 0.25 0.75

Figure 4. Hall and Titterington Function f (solid lines) and Observa-
tions (+).

= 0, then (1) lim,_,.q; = p, a.s. and (2) lim,,_,ob; = s,
as., ¢ = 1,2,...,p. The rate of these convergences is
o(n~'log(n)). (Proof is given in Appendix B.)

After we detect the possible jump locations b; < by <
-++ < bg,, the regression function f(t) could be fitted sep-
arately in intervals {(b;_1,b;),7 = 1,2,...,q1 + 1}, where
bp =0and by, +1=1.

To fit f(t) in each interval (b;_1,b;), we can use ei-
ther a global smoothing method [e.g., the smoothing spline
method (Wahba 1991)] or a local smoothing method [e.g.,
the kernel-smoothing method (Hardle 1991); the local poly-
nomial kernel method (Wand and Jones 1995)]. By using
the kernel-smoothing method, “boundary kernels” are nec-
essary in the border regions of the intervals (e.g., see Stone

1977). When t € (b;—1,b;), f(t) can be defined as follows:

_ Z?:l Kni(tj - t)yj

= 50

(2.4)

10 20

-10 O

-30

(a)

Figure 5. (a) Slope Estimates {[32“ }; (b) Jump Information Terms {A(f} }.

corresponding to Zan /o = 3.5.
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with Kpi(z) = K(x/hn)l{t4ze®,_,.b:)}> Where K(z) is a
kernel function with K (z) = 0 when z ¢ [—1,1] and h,, is
a parameter related to the window size k by h, = k/2n.

3. JUMP DETECTION IN DERIVATIVES
A method for detecting jumps in derivatives can be de-
veloped in an analogous manner. We consider only jump
detection in the first-order derivative for convenience. As
described in Section 1, we fit the following quadratic func-
tions by the LS method for jump detection:

PO < 40+ 80+ 02,
tGN(ti),i=l+1,...,n—l.

Theorem A.2 in Appendix A gives some properties of
ﬁzi). It says that, under some regularity conditions, Bg’) ~
Bs(t;) := ¢'(t;) when there is no jump in N(t;), where g(t)
is the continuous part of f’(t). When there is a jump in
N(t;) and the jump location is at t;_;,,0 < r < 2[, then
B3 ~ By(t:) := g/, (t:) + ha(r)Ci — 7(r)Cy, where Cy and
C, are jump magnitudes of f’(¢) and its first-order deriva-
tive y(r) is a positive function taking values in [0, 1],

r(k—1-r)k[(k-1)(k—2) = 3r(k—1—71)]

ha(r) = 12(kss — s3)n3 ’

where s, = 375 (t;
if r# 1.

Example 3.1. Let f'(t) = 5t*+ 1 51)(t). Consider a sam-
ple of size 100 and let k¥ be 11. Then Béi) ~ By(t;) =
10t; + I{~45§tiﬁ~55}h3(100('55 - ti)), 6<:< 95{Bg(tl)} is
shown in Figure 3(a).

We construct {Aéi)} from {B:Ei)} similar to (2.1)—(2.2) in
Section 2, and we have {J(¢;)}, which is shown in Figure
3(b) in the case of Example 3.1. The threshold value for

—t:)P,p = 2,4, and ¢/, (t;) = g¢'(t:)

o
eV}

10

3,

VA P\l PV

A >
A AT/ 0% o )

Q

-10

.....................................................

Y AN

0.25 0.50

(b)

The dotted lines in plot (b) indicate (+) or (—) threshold value u,
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5 The jump-detection algorithm in Section 2 can be used
here with {A{"} and uj substituting for {A{"} and u;.

150

4. NUMERICAL EXAMPLES

4.1 Jumps in Mean Response
We conducted some simulations using the example from
Hall and Titterington (1992), the data from which is shown
in Figure 4. Five hundred and twelve observations {Y;} are
obtained from f(t;) + &; for equally spaced t; = i/512,
with errors from N(0, 02) and o = .25. The regression func-
tion is f(t) =3 — 4t when 0 <t < .25, f(t) = 2 — 4t when
25 <t < .5, f(t) = =1+ 4t when 5 < t < .75, and
f(t) = 4 — 4t when .75 < t < 1. f(¢) has three jumps,
0.0 0.25 0‘59 0.75 1.00 at .25,.5 and .75, and corresponding jump magnitudes of
Figure 6. Fi f Detected l,(/)caﬂo: tions by the Zero-Ord ~11.and ~1, respectively.

. n. -Order : : :
Jump.Detocton Algorithm With n = 512 and k = 31 for 1,000 Replica. ¢ S the zero-order jump-detection algorithm to de-
tions. tect the jumps, initially with k& = 31. {Bl')} is shown in

(i)y o - () Figure 5(a). According to the discussions in Section 2,
{A2"} is derived in a similar way to that for {A,"}, as 3 ~ By (t;), including a continuous factor and a jump fac-

Vk2sq — (k +1)s2 3.1) tor. The jump factor has its effect only in the neighborhoods

ksg — 52 of the jump locations. The continuous factor is negative in

frequency
100
1

U =624, /2

1000 - 1000 A
o 750 A » 750
Q Q
E E
5 500 - S 500 -
3 3
S E
3 =]
< 250 - S 250 A
0 A 0
0 10 20 30 40 50 0 20 40 60 80
k k
(a) (b)
1000 P 1000 - —-———
1 [I
! !
[
w 750 - | w 7504 |
Q ! Q !
E I £ i
- I -
o 5004 /) 5 500 1
@ @
o A a
[ 1 £
2 [ = !
250 A [ = 250 - H
oY 4
[ \
0 A D‘—h- 0 l“‘g- —_——
0 50 100 150 0 50 100 150 200 250 300
k k
() (d)
Figure 7. Distributions of the Number of Jumps Detected by the Zero-Order Jump-Detection Algorithm in 1,000 Replications for Several n and
k. (a)n = 256; (b) n = 512; (c) n = 1,024; (d) n = 2,048: —, jumps detected = 1; ----, jumps detected = 2; ———, jumps detected = 3; — —,

Jjumps detected = 4.

TECHNOMETRICS, MAY 1998, VOL. 40, NO. 2



A LOCAL POLYNOMIAL JUMP-DETECTION ALGORITHM

o | +
o +
* ]
w
o
>
2 4
o |
o
L
? T T T T T
0.0 025 0.50 0.75 1.00
t
Figure 8. Hall and Titterington Function f (solid lines) and Observa-

tions (+).

intervals 0 < ¢t < .25,.25 < ¢t < .5, and .75 < t < 1 and
positive in the interval .5 < t < .75. All of these features
are evident from Figure 5(a). We then use operator (2.1) to
remove the continuous factors from {BY)}. The remaining
jump factors {Ag’)} are shown in Figure 5(b). From this
graph, we can see that {Ag’)} is approximately 0 when ¢;
is not in the neighborhoods of the jumps. This shows that
the continuous factor is mostly removed. As we noticed in
Remark 2.4, {A"} seems noisier than {3\"}. Figure 5(a)
reveals the jumps very well in this case because the con-
tinuous factor does not contaminate much of the jump in-
formation. From the graphs we can approximate the jump
positions and estimate the jump magnitudes from the rela-
tionship M ~ hy((k —1)/2)Co = [1.5n(k — 1) /k(k +1)]Cy,
where M is the maximum/minimum value of {Agz)} in the
neighborhood of each of the detected jump positions and
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Cy is the corresponding jump magnitude. For example, in
Figure 5(b), we can see that there is a jump near .75 and
that M is about —23. Thus, the jump magnitude Cj is about
Co ~ [15n(k — 1)/k(k+1)]7'M ~ —.99.

As we noted in Section 2, if the noise is not taken into
account, {A(f)} has a peak with value [1.5n(k — 1)/k(k +
1)]Cy at a jump point with jump magnitude Cy. Comparing
with the threshold value in (2.3), this jump could be detected
if the jump magnitude satisfies

624, /2(6(k + 1)(5k — 3))1/2
1.5(k — 1)3/2

Co > (41)

Although n is not explicitly in (4.1), it is actually hidden
in k because the preceding arguments are true only in the
case that k/n is small and n is large. Equation (4.1) tells
us that (a) if o is bigger (the data are noisier), then only
jumps with larger jump magnitudes could be detected; (b)
if the confidence level is set higher (o, is small and Z,,,, /5 is
large), then the algorithm is more conservative (jumps with
small jump magnitudes would probably be missed); (c) if &
is larger (n is also larger), the algorithm could detect jumps
with smaller magnitudes or could detect the same jumps
with higher confidence level. This last point also implies
that, to detect the same jump, the confidence level could be
set higher when the sample size is larger.

In our simulation based on this example, we use n = 512
and k = 31. The peak value of {A{"} is about 23.2258. The
variance of {Ag’)} is less than 4.0245 [cf. the derivation
of (2.3)]. We choose Z,, /> = 3.5 in the threshold, which
corresponds to «;,, = .0004. By (2.3), the threshold value is
14.08, which is smaller than the peak value by more than 2
times the variance of {A{"}. By (4.1), the algorithm could
detect jumps with minimum jump magnitude of about .6. If
k = 49, which is an optimal choice as discussed later, then
this minimum magnitude could be decreased to about .47.

10

20 -10

-30

(b)

Figure 9. (a) {35’} and (b) {A4} of the First-Order Jump-Detection Algorithm. The dotted line in plot (b) indicates () threshold value up

corresponding to Z,, .2 = 3.5.
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One thousand independent trials were performed. Three
jumps were detected in 963 of these trials, two jumps were
detected in 29, and one jump was detected once. The de-
tected jump locations are shown in Figure 6.

The choice of k = 31 is somewhat arbitrary. We inves-
tigated this with simulations for several n and k. The re-
sults, summarized in Figure 7, show that, if k is chosen very
small, some jumps are frequently missed because the noise
of AY) swamps the jump information. If k is very large,
the wide window width contaminates the jump informa-
tion with effects of the continuous factors. The correspond-
ing results are not impressive either. We have calculated
ratios of the “best” window widths (the smallest window
widths that give the best results) to the sample sizes to be
35/256 > 49/512 > 79/1,024 > 145/2,048. This suggests
that the ratio of the window size to the sample size should
be decreasing as n increases.

4.2 Jump Detection in Slope
Some simulation results of jump detection in the first-
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order derivative are now presented. We also use the example
of Hall and Titterington (1992), which is shown in Figure
8. Five hundred and twelve observations {Y;} are obtained
from f(t;) + ¢; for equally spaced ¢t; = /512, with iid
errors from N(0, 0%) and o = .25. f(t) = 3t when0 <t < .5
and f(t) = 3 — 3t when .5 < ¢t < 1. Thus, F has one first-
order jump at ¢t = .5.

When k = 121,{32(,“} and {Agi) } are shown in Figure
9, (a) and (b), respectively. We performed our simulations
with a variety of k£ and n. In each case, 1,000 replications
were used. Part of the results are presented in Figure 10.

Comparing Figure 7 with Figure 10, we find that the
window width k should be chosen larger for slope-change
detection. The ratios of the “best” window widths to the
sample sizes here are 107/256 > 185/512 > 285/1,024 >
469/2,048, also decreasing as n increases. From Figure 10,
it seems that k should be chosen as large as possible, but
the boundary problem is more serious with larger k. Thus,
there is a trade-off on this issue. We plot the detected jump
locations in 1,000 replications with k = 181 and n = 512 in
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Figure 10. Distributions of the Number of Jumps Detected by the First-Order Jump-Detection Algorithm in 1,000 Replications for Several k and

n.(a)n = 256;(b)n = 512; (c) n = 1,024; (d) n = 2,048: —, jJumps detected = 1; ----, jumps detected = 2; ———, jumps detected = 3; — —,

jumps detected = 4.
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Figure 11. Frequency of Detected Jump Locations by the First-Order
Jump-Detection Algorithm With n = 512 and k = 181 for 1,000 Repli-
cations

Figure 11. Comparing this graph with Figure 6, we can see
that it is more difficult to detect jumps in derivatives than
in the regression function itself.

4.3 The Sea-level Pressure Data Revisited

In Figure 1, we use k£ = 15 in both methods, suggested
by the decreasing ratios of the “best” window widths to the
sample sizes, as we found in Figure 7. With this window
size, values of the jump-detection criterion are shown in
Figure 12(b). A fitted polynomial regression function of or-
der 4 has S.D. 6 = .977, leading to a jump threshold value
u; = 16.8 for significance level .01. From the results, only
|A§4O)| = | — 18.077| (which corresponds to year 1960) ex-
ceeds u;. Hence, a jump appears to exist at year 1960 with
significance level .01. The slope estimates { Bf’)} are shown

& 1
;8- & A
& -

1920 1940 1960

YEAR
(@)

1980
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in Figure 12(a). This plot reveals the jump around year 1960
very clearly.

5. COMPARISON WITH THE
KERNEL-TYPE METHODS
5.1 Some Background

Here we briefly introduce some kernel-type methods and
compare their strengths and limitations relative to those of
our algorithm. These considerations are important for prac-
titioners when choosing an appropriate method for a spe-
cific application.

The methods suggested by Miiller (1992) and Qiu, Asano,
and Li (1991) were developed under the assumption that
there is only one jump point. Let

J(t) = ma(t) — mha(t) (5.1)

and
|J(8)] = max |J(t)],

0<t<1

where 4 (t) and hy(t) are two kernel estimators of the
regression function f(¢) defined by a bandwidth A and
two kernel functions K;(z) and K, (z) satisfying K;(z) =
Ks(—z). Then § and |J(§)| are defined as the estimators of
the jump position and the corresponding jump magnitude,
respectively. Qiu (1994) generalized these methods to the
case with an unknown number of jumps but required that
the jump magnitudes have a known lower bound.

Wu and Chu (1993) proposed a method to detect jumps
when the number of jumps is unknown. Their proposal con-
sisted of several steps. First, a series of hypothesis tests is
performed for Hy : p = j versus H, : p > j until an accep-
tance is encountered where j > 0 and p is the true number
of jump points. Then p maximizers {3; };’:1 of J(t) are de-
fined as the jump position estimators. Finally, they used a
rescaled S(3;) to estimate the jump magnitude d; — d;_,
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Figure 12. (a) Slope Estimates { [3(,[)} of the Bombay (India) Sea-Level Pressure Data; (b) Values of the Jump-Detection Criterion. The dotted
lines in plot (b) indicate (+) or (-) threshold value u; corresponding to an — .01.
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for j =1,2,...,p, where

(5.2)

where m3(t) and 7h4(t) are two new kernel estimators of
f(t) defined by a bandwidth g and kernel functions K3(x)
and Ky(z).

A main limitation of the jump-detection criteria (5.1) and
(5.2) is that they do not take into account the derivatives in
detecting jumps in the regression function. Suppose that
f(t) is steep but continuous around some point ¢*. Then
both S(¢*) and J(¢*) could be large because of large deriva-
tive values. In other words, (5.1) and (5.2) do not exclude the
continuous information from the jump information, which
has been considered in our criterion A'” (Sec. 2). Miiller
(1992) used high-order kernels to detect jumps in deriva-
tives. Our algorithm simply fits local polynomials with co-
efficients directly related to the derivatives of the regression
function.
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5.2 An Example

A main purpose of this example is to show how the slope
affects the performance of jump detection in the method of
Wu and Chu (1993) and the method described here.

Consider the regression function f(t) = c(.5 —t) + I 5 3
(t) having a single jump at ¢t = .5 and slope ¢ at continuous
points. We choose n = 512 and o = .25 as in Section 4. The
regression function with ¢ = 4 is displayed in Figure 13(a)
along with its noisy version. We then apply the LS method
and the method of Wu and Chu (1993) to detect the jump.
Parameters in the LS procedure are chosen to be the same
as those in Section 4. We use the same kernel functions as
those reported in their simulation examples. The bandwidth
h is chosen .06 (=~ 31/512), which is compatible with the
window size used in the LS procedure. The bandwidth g is
chosen 2h, which was suggested by Wu and Chu (1993).

We let the value of ¢ vary among 3.0, 3.2, 3.4, 3.6, 3.8, and
4.0. For each ¢ value, the simulation is repeated 1,000 times.
In each simulation, estimators of the number of jumps (the
true value is 1) by both methods are recorded. The Wu and
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Figurg 13. (a) Regression Function and its Noisy Version; (b) Numbers. of Correct Estimations (N) of the Number of Jumps out of 1,000
Replications When the Slope ¢ of the Regression Function Changes From 3.0 to 4.0, (—, Wu and Chu method; ----, LS method); (c) {S(t;)} of
the Wu and Chu Procedure; (d) {A(,’) } of the LS Procedure. The dotted line in plot (c) indicates S(t;) = 0. The dotted line in plot (d) denotes the

threshold value of the LS procedure.
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Chu procedure gives a correct result if it rejects Hy for
Hy : p = 0 versus Hy, : p > 0 and accepts H, for Hy :
p =1 versus H, : p > 1 at the same time. We then count
the number of correct estimations from 1,000 replications
for each method. The results are presented in Figure 13(b).
It can be seen that the performance of the Wu and Chu
procedure is worse when ¢ becomes larger [f(t) is steeper
at continuous points]. The performance of our procedure,
however, is quite stable. We plot S(¢;) with ¢ = 4 in Figure
13(c). It can be seen that S(¢;) are relatively large at the
continuous points because of large derivative values of f(t).
As a comparison, Agl) [in plot (d)] values are approximately
0 at the continuous points and have large values around the
true jump point.

6. CONCLUDING REMARKS

We have presented a jump-detection algorithm with local
polynomial fitting that is intuitively appealing and simple to
use. Limited simulations show that it has potential to work
well in practice.

Possible future research includes (a) determination of the
value of m, which is not considered in this article but may
be important in applications; (b) selection of the window
width k£ when the sample size is fixed, both from theoretical
analysis and from simulation study; and (c) generalization
of this method to multivariate cases, especially the jump
surface case, which is directly related to many application
areas such as image processing.
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APPENDIX A: PROPERTIES OF THE ESTIMATED
LS COEFFICIENTS

The following two theorems give some properties of the
estimated LS coefficients used in Sections 2 and 3. Their
proofs were given by Qiu (1996).

Theorem A.1. For Model (1.1)~(1.2), suppose that m =
0,9(t), the continuous part of f(¢), has continuous first-
order derivative over (0, 1) except on the jump points at
which it has the first-order right and left derivatives. Let the
window width £ satisfy the conditions that lim,,_, ..k = oo
and lim,_,..k/n = 0. Then A}’) in Model (1.3) has the
following properties. If there is no jump in N(t;), then

n+/loglog k) A

Bli) — g/(ti) + 0 < k3/2

If there is a jump in N(¢;) and the jump location is at
tici4r, 0 <7 < 20, then

39 = gy (t) + ha(r)Co — A(r)C)
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where Cy and C are the jump magnitudes of f(t) and its
first-order derivative at the jump location, v(r) is a pos-
itive function taking values between 0 and 1, hi(r) :=
[6nr/k(k + D](1 — (r/k = 1))Co, and g/ (t:) = ¢'(t:) if
r £

Remark A.1. The term O(n+/Toglogk/k*/?) in Theorem
A1 is due to noise in the model.

Theorem A.2. For Model (1.1)—(1.2), suppose that m = 1
and g(¢), the continuous part of f’(¢), has continuous first-
order derivative over (0, 1) except on the jump points at
which it has the first-order right and left derivatives. The
window width k satisfies the conditions that lim,,_, .k = oo
and lim,_,.k/n = 0. Then 3{” in Model (1.3) has the
following properties. If there is no jump in N(¢;), then

n?y/log logk> as

30 = ¢ (t:) + O ( =

If there is a jump in N(¢;) and the jump location is at
tici+r,0 < r < 2[, then

n vV log l()g k

where C; and Cs are the jump magnitudes of f'(t) and

its first-order derivative, v(r) is a positive function taking

values in [0, 1],
r(k=1—7r)k[(k-1)(k—2)—3r(k—1—71)]

h =
3(r) 12(ksy — s3)n3 '

SP = Z;-’:_lz—l(t] - ti)p’p = 2a41 gg—(tl) = g/(tl) lf r # l'

APPENDIX B: PROOF OF THEOREM 2.1

For design point t; € (0,1), if |t; — s;] > (k + 1)/2n for
any j =1,2,...,p, then by Theorem A.1,

AV =0 (n__ﬂoglogk) , as.,

o (B.1)

where {s;,j = 1,2,...,p} are the true jump positions as
we defined in (1.2). On the other hand, if ¢; is a jump point,
then

@ —o("
AY ~ hy(Cy = 0 ( k)  as. (B.2)
By (2.3), the threshold value is
. n [6(5k — 3)
wo= e\ Tt
nZan/g
_ o( Lo ) (B.3)

Combining (B.1)~(B.3) and by the conditions stated in the
theorem, the flagged design points {ti;,7 = 1,2,...,n1}
before the modification procedure satisfy

p
{ti, g =12,...,m} c | N(sy).
=1

(B.4)
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where N(s;) is the neighborhood of s; as we defined in
Section 1.

After we use the modification procedure to delete some
deceptive jump candidate points, we know that in each
neighborhood N(s;) there is one and only one point of
the final jump candidate set {b;,j = 1,2,...,q;}. Hence,
lim, ,0q1 = p, as., and |b; — s;| = o(k/n), as. If we
choose k = logn, then the conclusion of the theorem is
obtained.

[Received December 1994. Revised September 1997.]

REFERENCES

Besag, J., Green, P, Higdon, D., and Mengersen, K. (1995), “Bayesian
Computation and Stochastic Systems” (with discussion), Statistical Sci-
ence, 10, 3-66.

Eubank, R. L., and Speckman, P. L. (1994), “Nonparametric Estimation
of Functions With Jump Discontinuities,” in Change-Point Problems
(IMS Lecture Notes, vol. 23), eds. E. Carlstein, H. G. Miiller, and D.
Siegmund, Hayward, CA: IMS, pp. 130-144.

Gonzalez, R. C., and Woods, R. E. (1992), Digital Image Processing, Read-
ing, MA: Addison-Wesley.

Hall, P, and Titterington, M. (1992), “Edge-Preserving and Peak-
Preserving Smoothing,” Technometrics, 34, 429-440.

Hardle, W. (1991), Smoothing Techniques: With Implementation in S, New
York: Springer-Verlag.

Hastie, T., and Tibshirani, R. (1987), “Generalized Additive Models: Some
Applications,” Journal of the American Statistical Association, 82, 371
386.

Loader, C. R. (1996), “Change Point Estimation Using Nonparametric Re-
gression,” The Annals of Statistics, 24, 1667-1678.

McDonald, J. A., and Owen, A. B. (1986), “Smoothing With Split Linear
Fits,” Technometrics, 28, 195-208.

Miiller, H. G. (1992), “Change-points in Nonparametric Regression Anal-
ysis,” The Annals of Statistics, 20, 737-761.

TECHNOMETRICS, MAY 1998, VOL. 40, NO. 2

PEIHUA QIU AND BRIAN YANDELL

Qiu, P. (1991), “Estimation of a Kind of Jump Regression Functions,”
Systems Science and Mathematical Sciences, 4, 1-13.

(1994), “Estimation of the Number of Jumps of the Jump Regres-

sion Functions,” Communications in Statistics—Theory and Methods,

23, 2141-2155.

(1996), “Nonparametric Estimation of Discontinuous Regression
Functions,” unpublished Ph.D. thesis, University of Wisconsin-Madison,
Dept. of Statistics.

Qiu, P, Asano, C,, and Li, X. (1991), “Estimation of Jump Regression
Functions,” Bulletin of Informatics and Cybernetics, 24, 197-212.

Qiu, P, and Bhandarkar, S. M. (1996), “An Edge Detection Technique Us-
ing Local Smoothing and Statistical Hypothesis Testing,” Pattern Recog-
nition Letters, 17, 849-872.

Qiu, P, and Yandell, B. (1997), “Jump Detection in Regression Surfaces,”
Journal of Computational and Graphical Statistics, 6, 332-354.

Shea, D. J., Worley, S. J., Stern, 1. R., and Hoar, T. J. (1994), “An In-
troduction to Atmospheric and Oceanographic Data,” Technical Note
NCAR/TN-404+IA, Climate and Global Dynamics Division, National
Center For Atmospheric Research, Boulder, Colorado.

Shiau, J. H. (1987), “A Note on MSE Coverage Intervals in a Partial Spline
Model,” Communications in Statistics—Theory and Methods, 16, 1851-
1866.

Speckman, P. L. (1993), “Detection of Change-points in Nonparametric
Regression,” unpublished manuscript, University of Missouri, Dept. of
Statistics.

Stone, C. J. (1977), “Consistent Nonparametric Regression,” The Annals
of Statistics, 5, 595-620.

Wahba, G. (1986), “Partial Spline Modelling of the Tropopause and Other
Discontinuities,” in Function Estimate, Contemporary Mathematics 59,
ed. J. S. Marron, Providence, RI: AMS, pp. 125-135.

(1991), Spline Models for Observational Data, Philadelphia: STAM.

Wand, M. P, and Jones, M. C. (1995), Kernel Smoothing, London: Chap-
man & Hall.

Wu, J. S., and Chu, C. K. (1993), “Kernel Type Estimators of Jump Points
and Values of a Regression Function,” The Annals of Statistics, 21, 1545—
1566.

Yin, Y. Q. (1988), “Detecting of the Number, Locations and Magnitudes of
Jumps,” Communications in Statistics—Stochastic Models, 4, 445-455.




