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SUMMARY. A semiparametric mixed effects regression model is proposed for the analysis of clustered
or longitudinal data with continuous, ordinal, or binary outcome. The common assumption of Gaussian
random effects is relaxed by using a predictive recursion method (Newton and Zhang, 1999) to provide a
nonparametric smooth density estimate. A new strategy is introduced to accelerate the algorithm. Parameter
estimates are obtained by maximizing the marginal profile likelihood by Powell’s conjugate direction search
method. Monte Carlo results are presented to show that the method can improve the mean squared error
of the fixed effects estimators when the random effects distribution is not Gaussian. The usefulness of
visualizing the random effects density itself is illustrated in the analysis of data from the Wisconsin Sleep

Survey. The proposed estimation procedure is computationally feasible for quite large data sets.

KEY WORDS:
effects; Semiparametric mixed effects model.

1. Introduction

Linear and generalized linear mixed effects models are useful
in the analysis of longitudinal or clustered data. Several es-
timation methods have been developed for such models with
normally distributed random effects (e.g., Laird and Ware,
1982; Breslow and Clayton, 1993; Hedeker and Gibbons,
1994). The normality assumption is mathematically conve-
nient and can be robust for estimating the fixed effects
(Neuhaus and Hauck, 1992). However, estimation efficiency
can be compromised when the random effects distribution
is incorrectly specified. In many situations, it is of inherent
interest to visualize the distribution or its density, e.g., to
ascertain skewness in the outcome profile across individuals.
A semiparametric mixed model utilizing nonparametric esti-
mation of the random effects distribution allows the greatest
flexibility in capturing its potentially important features.
The random effects distribution is referred to as the mix-
ing distribution in the general mixture model. Nonparamet-
ric maximum likelihood estimation (NPMLE) is a traditional
method that provides a discrete estimate of this distribution
(Laird, 1978). With some identifiability assumptions, NPMLE
is consistent (Kiefer and Wolfowitz, 1956). Several algorithms
have been suggested for computing the NPMLE of the mix-
ing distribution, such as those of Dempster, Laird, and Ru-
bin (1977), Lindsay (1983), Follmann and Lambert (1989),
and Lesperance and Kalbfleisch (1992). In practice, the dis-

Generalized linear models; Longitudinal data; Mixture model; Recursion method; Random

crete NPMLE estimate can be difficult to interpret because
the true random effects distribution is likely to be continu-
ous. A smooth nonparametric maximum likelihood estima-
tor (SNPMLE) using mixtures of Gaussians was recently pro-
posed by Magder and Zeger (1996).

Carroll and Hall (1988) have pointed out that the opti-
mal rate of asymptotic convergence for estimating the den-
sity of the mixing distribution is very slow. Acceptable es-
timates of the random effect density function are therefore
obtainable only in large data sets where traditional NPMLE-
related methods are computationally too burdensome to be
widely used. Newton and Zhang (1999) introduce a predic-
tive recursion algorithm (PR) to nonparametrically estimate
a distribution. The PR estimate of a distribution is always
continuous when the starting distribution is similarly chosen.
We apply PR to semiparametric mixed effects regression mod-
els and develop a procedure for simultaneously estimating re-
gression parameters and a random effects density. A Monte
Carlo study is conducted to investigate the performance of
this method. It should be noted that the current implementa-
tion of PR does not give direct estimates of individual random
effects. The proposed approach is feasible for fitting semipara-
metric mixed models with quite large data sets. We illustrate
its practical usefulness by application to data from the Wis-
consin Sleep Survey (Young, Palta, and Dempsey, 1993).
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2. Description of Our Method
2.1 Mized Effects Regression Model for Longitudinal Data

Assume that there are N individuals in the study and that
the 7th individual is measured n; times. Denote the response
for the kth measurement of the sth individual by y;r. Then
the linear mixed effects regression model for the response y;
is given by

def
Yik = 0 + X B+ ek = Uik + €k, (1)

where {a;} are independently and identically distributed
(i.i.d.) random effects with distribution F, x;; is a p X 1
observed covariate vector, and (3 is the vector of regression
coefficients. For future use, we also let x; = [X;1,%;2, - - -, X;5]
be an © X p covariate matrix of fixed effects. The regression
errors ¢;;’s are assumed to be iid. as N(0,02) and also
independent of the random effect «;. Under such a linear
mixed effects model, the conditional likelihood for the ith
individual given «; is
ng
(0 | i, yi) = [[l@ro®) ™% exp(—(yix —uix)* /20%)], (2)
k=1

where 8 = {8,0} and y; = (yi1,¥i2,--,¥i>) -

To model ordinal response data, we use the threshold
concept as described by Hedeker and Gibbons (1994). Assume
that the continuous response y;r in equation (1) is latent
and classified into J categories by the underlying threshold
values 7 = {9 = —00,T1,72,...,Tj—1, TJ = 00}. Then the
conditional probability that y; is in the jth category given
the random effect «; is

P(rj_1 <y <7j | 03,8, 7,0)
= O[(7j — uik)/0] — [(Tj—1 — wir)/0l, (3)

where ®(-) represents the cumulative standard normal
distribution function. As

P(yzk < Tj | aiaﬂv‘rvo—) = (D[(T] - uik)/o-]a

this model is a generalized linear model with probit link for
the observed response dichotomized by each threshold or a
cumulative probit model for the ordinal response (see, e.g.,
McCullagh and Nelder, 1989). All the parameters in model
(3) are not simultaneously identifiable because the origin
and unit of u;; can be chosen arbitrarily with corresponding
adjustment of 71 and o. For convenience, we usually apply the
convention 71 = 0 and ¢ = 1. Then the conditional likelihood
function for the ith individual given «; in this ordinal response
regression model is

(0] ai,yi) H H 75— k) = D(rj1 —uip)] ", (4)
k=1j=1
where 8 = {3, 7} and
P {1 if y;1 € jth category
ikj = .
0 otherwise.

Alternatively, when the logistic distribution is assumed for the
regression error ¢;g, the standard normal distribution function
®(-) in equation (3) can be replaced by the logistic distribu-
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tion function

\I/(Tj —uik) = _Uik)])_

In a parallel way, we then obtain a binary logit model
for observed responses dichotomized at any threshold or a
cumulative logit model for the ordinal responses (McCullagh
and Nelder, 1989).

Some remarks are in order regarding the identifiability of
the mixing, or random effects, distribution. Teicher (1961)
showed that the mixing distribution in a binomial response
model without any covariate x; is not identifiable. Follmann
and Lambert (1989) indicated that the maximum number of
identifiable points of a discrete mixing distribution in a binary
response model is positively related to the number of distinct
x;. In practice, estimating the random effects distribution is
more meaningful when the fixed covariates have many distinct
values.

(1 + exp[—(7;

2.2 Estimating the Distribution of a;’s

In this section, we use the likelihood functions [;(8 | a,y;)
given by equation (2) for the linear mixed effects model (or
equation (4) for the ordinal mixed effects model) to estimate
the density of the random effects «;’s by the PR method
(Newton and Zhang, 1999).

For a given 6, the PR estimate of the density function of the
random effects fg(-) is calculated by the following recursive
equation from ¢ = 1 to N (randomly ordered):

fé @) - Ui(8 | a,y:)

fole) = e )

(1 —w) foy (o) +

The user-supplied weights w; must decrease as i increases (see
Appendix). The final PR step gives fév (), which estimates
the unknown density of the random effects «;. Note that the
second term on the right-hand side of (5) is the Bayesian
posterior density function of the o;’s given the ith observation
with the prior density fé_l(a). The denominator c;(8) is the
normalizing constant of the posterior density. Hence, the PR
algorithm averages the density estimate from the previous
step and the posterior density given the current observation.
Although fév depends on the order by which observations are
processed, this dependence may be weak and often can be
ignored.

As discussed in the Appendix, we allow the weights to be
functions of a parameter p, defined on the interval (0,1], and fit
this parameter by our algorithm. The amount of smoothing of
the posterior is influenced by p. A choice or estimate close to 1
leads to a posterior distribution less influenced by individual
observation vectors and hence closer to the prior. The prior
distribution can be chosen as, e.g., uniform or Gaussian. We
show in our Monte Carlo studies in Section 3.0 that estimation
properties are quite insensitive to this choice. A key feature of
(5) is that an approximation to a Dirichlet process posterior
is produced in O(N) steps (Newton, Quintana, and Zhang,
1998).

Newton and Zhang (1999) prove the consistency of the PR
algorithm under certain conditions for estimating a survival
function under interval censoring. Our Monte Carlo results
(see Section 3.1) support a similar result for mixed effects
models.
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2.3 Estimating 6

The marginal likelihood given the observed data, y;, i =
1,...,N,is

N b
20,7 1yni=1e ) =[] [ 100y s@)da. (@
i=1va

To estimate the parameter vector 8, we can construct the log-
profile likelihood by replacing the true f(«) in (6) with the
PR estimate. Details are given in the Appendix.

2.4 Estimating the Standard Error of Parameter Estimates

The standard way to estimate the asymptotic variance of
maximum likelihood estimators is by the inverse of the
observed information matrix. For parametric models, the
profile likelihood is known to have a biased information
matrix and a biased score test statistic. Some adjustments
can be made to reduce such bias to O(1/N) (McCullagh
and Tibshirani, 1990; Diciccio and Martin, 1996). However,
there are very few theoretical results regarding the profile
likelihood in the semiparametric model. We use the bootstrap
method to estimate the standard error of parameter estimates
(Efron and Tibshirani, 1993). The original data contain N
observations, {(y;,x;), ¢ = 1,..., N}, which are treated as
the population. Then B bootstrap data sets of size N pairs
are randomly sampled with replacement from this population.
The sample standard deviation of the parameter estimates for
the B bootstrap sets estimates the true standard error.
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3. Simulation Studies
3.0 Description of the Simulation Experiment

We conducted a simulation study to compare the parameter
estimates of the semiparametric with those of the Gaussian
mixed model. This simulation experiment is similar to that
in Magder and Zeger (1996), which allowed the sample
size and the mixing distribution to vary. Specifically, data
were simulated in a two-stage process. First, N different
independent scalar random variables, «;, were simulated from
a mixing distribution F as described below. Then the ith
cluster of data was computed as in model (1) with 8 =
(B1,B2) = (2,5) and €; a vector generated by independent
Gaussians with mean 0 and variance 4. The cluster size was
fixed at 4. The terms x; were (4 x 2) matrices with the first
column drawn independently from the standard Gaussian
distribution for each i and the second column set to 0 for
1=1,...,N/2and set to 1 for i = N/2+1,...,N. Thus, £
represents the effect of a within cluster covariate and (5 the
effect of a cluster specific covariate.

The sample size and mixing distribution were varied to
result in six different types of simulated data sets. We
considered small samples consisting of 50 independent clusters
and large samples consisting of 600 independent clusters.
Three different distributions with variance 4 were considered
for the random effect a;: a Gaussian distribution with mean
zero, a skewed exponential distribution with mean 2, and a
discrete distribution with equal point masses placed at —2
and 2. One hundred data sets of each type were simulated.

Table 1
Simulation results

Mixing distribution ~Model =~ Mean(ISE) MSE(31) MSE(32) MSE(%) 5  —log(L)
Small data sets (IN = 50)

Gaussian Gaussian .0354 .0209 .3523 .1986 — 460.06
Semiparal .0513 .0221 4141 .2055 .8266  458.62

Semipara2 .0532 10222 .4346 .2030 7581  458.37

Exponential Gaussian .0825 .0211 4263 2211 — 458.45
Semiparal .0425 .0209 .2407 .2291 7883  452.62

Semipara2 .0434 .0214 .2551 .2349 7427 452.48

Bimodal Gaussian .2360 .0188 .4449 .1525 — 459.79
Semiparal .1200 .0176 1541 .2035 .5380 451.09

Semipara2 1217 .0178 .1568 .2060 5199  451.15

Large data sets (IN = 600)

Gaussian Gaussian .0027 .0023 .0293 .0156 — 5551.8
Semiparal .0050 .0024 .0307 .0160 .8511  5550.2

Semipara2 .0049 .0024 .0312 .0159 .8385 5549.5

Exponential Gaussian .0543 .0019 .0301 .0178 — 5548.0
Semiparal .0072 .0018 .0213 .0191 8145  5476.9

Semipara2 .0071 .0019 .0207 .0191 .8046  5475.9

Bimodal Gaussian .2070 .0017 .0445 .0184 — 5552.7
Semiparal .0478 .0016 .0109 .0216 .5076  5450.5

Semipara2 .0486 .0016 .0110 .0218 .5034  5450.7

Semiparal: with a normal starting distribution in PR.
Semipara2: with a uniform starting distribution in PR.
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Figure 1. Each plot in the first row contains three randomly selected density

estimates (dashed lines) as well as the true density (solid lines) for one type of
mixing distribution. The plots in the second row are the corresponding distribution
functions. The plots in the two bottom rows present the estimated density curves
and CDFs from 100 data sets (N = 600) for each mixing distribution.

These simulated data sets were fit by three approaches: (1)
SAS PROC MIXED (Littell et al., 1996) for the Gaussian
mixed effects model, (2) the semiparametric mixed model us-
ing a Gaussian form (1) for the starting density f°(a) in
PR, and (3) the semiparametric mixed model using a uni-
form starting distribution on the interval (a, b) with a and b
chosen as mean + 3 SD from (1).

3.1 Results for Estimating the Mizing Distribution

To evaluate the quality of the estimates of the mixing
distribution, we computed the integrated squared error (ISE)
between the estimated distribution and the true distribution,
J [F'(a) — F(c)]?da. Table 1 summarizes the results for each
type of data set. The average ISE of the estimated mixing

distributions of the Gaussian mixed model were smaller
than those of the semiparametric mixed model when the
true distribution was Gaussian. For the other two types of
mixing distribution, the semiparametric mixed model gave
much better estimates (smaller ISEs) than did the Gaussian
mixed model. The ISE values from the semiparametric
mixed model were smaller in the large sample cases, lending
support to the conjecture that PR is asymptotically consistent
for estimating the mixing distribution. The semiparametric
estimation procedure performs very similarly with the two
different starting distributions. Figure 1 gives the plots of
the density estimates and the distribution function estimates
(CDF estimates) for the larger sample data sets using the
uniform starting distribution. Both the density estimates and
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the CDF estimates capture the basic features of the true
distribution in each case. The variation of the CDF estimates
tends to be small when the true distribution is continuous.

3.2 Estimates of Fized Effects

The mean squared errors (MSEs) in estimation of 81 (the
time-dependent effect) in Table 1 are very similar in the
Gaussian and semiparametric mixed models. There were
greater differences in the MSEs of (2 (the time-invariant
effect) between the two models. With the discrete bimodal
mixing distribution, the MSEs of estimates of Gy from the
Gaussian mixed model are almost three times those from the
semiparametric mixed model. This is consistent with findings
of Magder and Zeger (1996). Note that the weight parameter
p is smaller on average for the discrete bimodal mixing
distribution case. This is consistent with p playing a role
in adjusting the smoothness of the estimated distribution.
Additional simulation results (not shown here) obtained by
setting p = 1 resulted in larger MSEs. Simulations for ordinal
mixed effects models (also not shown) led to conclusions
similar to those for the mixed effects models with continuous
outcome. The average loglikelihood from the semiparametric
mixed model is always greater than that from the Gaussian
mixed model, which reflects a better fit with the former.

3.3 Other Simulation Results

Magder and Zeger (1996) compared several estimation
methods for the semiparametric mixed model by a Monte
Carlo study with a model similar to that in equation (1).
However, they allowed the cluster size to vary from 1 to 6
and used the skewed mixing distribution [.25-N(u = 14,02 =
10)+.75-x2(4)]4/+/109 instead of the exponential distribution
in Table 1. For each mixing distribution, they simulated 400
data sets with the sample size equal to 180 clusters. We
compared the results of using our algorithm on data sets
simulated as in their study with their results using NPMLE
and SNPMLE. Table 2 indicates that, for all three mixing
distributions, the PR-based estimators are either best or
second best for recovering the regression parameters and the
random effects distribution.

4. Analysis of the Wisconsin Sleep Survey Data

We illustrate the application of the semiparametric ordinal
logistic regression model in the analysis of longitudinal data
from the Wisconsin Sleep Survey (Young et al., 1993).
Questions on the frequency and loudness of snoring were
included as indicators of possible sleep-disordered breathing.
We examined responses to the question, “How often do you
snore according to what others have told you?” with possible
answers: 0 = Never snore, 1 = Only snore once or a few times
ever, 2 = Snore a few nights per month, 3 = Snore at least once
a week, 4 = Snore several (3-5) nights per week, and 5 = Snore
every night or almost every night. This or similar questions
on snoring have been extensively used in sleep research. It is
generally believed by researchers in the field that many people
are not themselves aware of snoring and that relying on the
subject having been told by others that they snore yields a
more accurate assessment. A cohort of 3360 state employees,
originally of age 30-60, responded twice, on average 4 years
apart. The frequency of each response to the question in the
two survey waves is given in the second and third columns
of Table 3. In the first survey, 3096 individuals answered the
question as well as questions pertaining to relevant covariates;
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Table 2
Comparison of methods

Mixing

distribution Method ~ Mean (ISE) MSE (3;) MSE (3,)

Moderate sample size (IN = 180)

Gaussian Gaussian® .0099 .0107 1281
NPMLE? 0776 .0107 .1759
SNPMLE? .0166 .0107 .1421
PR .0157 .0107 .1397
Skewed Gaussian® .0580 .0109 .1356
NPMLE? .0759 .0107 1142
SNPMLE? .0184 .0106 .0988
PR .0195 .0105 .0880
Bimodal Gaussian® 2145 .0083 1211
NPMLE? .0877 .0076 .0439
SNPMLE? .1326 .0079 .0557
PR .0814 .0076 .0505

2 These are from Table 3 of the paper by Magder and Zeger
(1996).

in the second survey, 3034 individuals provided complete
answers. About 30% of respondents went up by at least one
snoring frequency category between surveys, and about 20%
went down by at least one step. The large percentage changing
in both directions points to the possible presence of random
reporting error.

We considered the three covariates found to be the most
predictive of sleep-disordered breathing in previous analyses
(Young et al., 1993): sex (1 = female; 0 = male), age (in
years), and body mass index (BMI, defined as body weight
in kilograms divided by the square of height in meters). We
also included the interaction between sex and age (calculated
by sex*(age — 40)). We fit an ordinal logistic model using
our algorithm with the following results. The estimated
threshold parameters and p (with standard errors) were {72 =
1.700(0.069),73 = 4.224(0.122), 74 = 5.627(0.136),75 =
7.362(0.170), p = 0.759(0.080)}. The estimated regression
coefficients of sex, age, BMI and sex*(age — 40) were,
respectively, —1.636(0.134), 0.100(0.010), 0.264(0.012), and
—0.057(0.013). Thus, snoring level increases with increasing

Table 3
Frequency (%) of individuals at each snoring
level in repeat waves of Wisconsin Sleep Survey

As told by others As told or known by self

Category Survey 1 Survey 2 Survey 1 Survey 2
0 754 (24.4) 613 (20.2) 502 (15.2) 405 (12.3)
1 401 (13.0) 396 (13.1) 735 (22.3) 756 (22.9)
2 717 (23.2) 663 (21.9) 815 (24.7) 754 (22.8)
3 356 (11.5) 368 (12.1) 376 (11.4) 387 (11.7)
4 358 (11.6) 400 (13.2) 360 (10.9) 404 (12.2)
5 510 (16.5) 594 (19.6) 510 (15.5) 594 (18.0)
Total 3096 3034 3298 3300
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Estimates From 100 Bootstrap Data
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Density functions of individual risk scores for snoring for females at age =

40 and BMI = 27. The two top plots are based on report of snoring by others. The plots
in the bottom panels are based on reports by both self and others. Each of the two left
panels gives the density estimate based on the data, and the corresponding right panels
give the density estimates for 100 bootstrap samples.

age (especially in males) and BMI. Overall, males tend to
snore more frequently than females. Based on the ordinal re-
gression model as described in Section 2.1, the risk score of
Ever snoring for the ith individual is «; +x;03. Risk scores for
snoring with other frequencies are obtained by adding the ap-
propriate 7;. As the semiparametric model provides estimates
of 7;, B, and the density of a;, we can obtain the risk score
density at any snoring frequency and fixed covariate values x.
The top left panel in Figure 2 gives the plot of the estimated
risk score density function with sex = female, age = 40 and
BMI = 26.94 (the average BMI values for females with age =
40). We note that this plot displays two peaks. The top right
panel shows the results of 100 bootstrap samples of the data.
Most of these curves display the bimodality obtained from the
original sample, indicating that this feature is unlikely to have
arisen by chance. Further examination indicated that subjects
never being told they snore contributed heavily to the lower
mode of the distribution. This pointed to the possibility that

some subjects who snore might not have been told of this by
others.

A secondary question on the survey inquired, “Aside from
what others have told you, how often, if ever, have you had
the feeling or awareness that you have been snoring?” Re-
sponses to this question were scored in the same categories
as those described previously. As we suspected that individ-
uals are likely to snore with at least the frequency reported
by either themselves or others, we reran the analysis using
the maximum of the two responses. The frequency distribu-
tion of this new outcome variable at the two survey occa-
sions is given in the last two columns of Table 3. The re-
sponse distribution was quite similar to that of the original
variable, with the exception of more responses of Few times
ever as compared to Never snore. Further analysis showed
the shift to be stronger for women. Combining the questions
also eliminated some missing data. Estimated threshold pa-
rameters and p for the new outcome were (with standard er-
rors) {72 = 2.67(0.080), 73 = 4.82(0.112), 74 = 5.99(0.140),
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75 = 7.45(0.172), p = 0.781(0.065)}. The estimated regres-
sion coeflicients of sex, age, BMI, and the interaction of (age
— 40) by sex were, respectively, —1.45(0.132), 0.072(0.0076),
0.20(0.011), and —0.042(0.011). Thus, sex and BMI had some-
what weaker coefficients. With the new outcome variable, we
find that the left peak of the risk score distribution is no longer
present (see the bottom left panel in Figure 2). We conclude
that relying on a report of snoring only by others tends to dif-
ferentially misclassify individuals who snore relatively rarely.

The analysis of the Wisconsin Sleep Survey data demon-
strates the use of the random effects density estimate to iden-
tify misclassification in an ordinal response. Thus, in this ex-
ample, the plot is interpreted as the distribution of the sum of
between-individual variation in risk and individual-averaged
measurement error. In other applications, a similar bimodal-
ity might reflect the omission from the regression model of an
important binary covariate, which creates the appearance of
two risk groups. On the basis of the knowledge of the devel-
opment and risk factors for sleep-disordered breathing, such
an interpretation is not believable here.

5. Discussion

We have proposed a semiparametric mixed effects model for
the analysis of longitudinal continuous or ordinal data. Tra-
ditional nonparametric methods for estimating the random
effects distribution are computationally burdensome. The PR
method is a new alternative for providing a smooth non-
parametric estimate of a distribution. Although the general
asymptotic theory for the PR method is still under develop-
ment, the existing work (Newton and Zhang, 1999) lends sup-
port for expecting the method to have desirable properties.
Our Monte Carlo results provide empirical evidence of consis-
tency for the particular models examined here. As anticipated,
the semiparametric method improves the mean squared error
of the fixed effects estimators in situations with nonnormally
distributed random effects. Our simulation studies indicate
that there is little loss compared to estimators assuming nor-
mality even when the normality assumption is true.

The primary advantage of our method is in being able to
visualize the distribution of the random effects. If the link
function and form of relationship between covariates and out-
come are correct or predefined, the random effects distribu-
tion shows the distribution of risk scores in the population.
This is often of interest from a public health point of view, as
one might want to know whether, even conditioning on the
known covariates, a fraction of the population has very high
risk scores while most cluster at low risk or whether risk scores
tend to be more or less symmetrically distributed across the
population. A bimodal distribution might indicate the pres-
ence of separate, hitherto unknown risk groups. On the other
hand, the distribution can be used as a check of model fit,
as it is akin to the distribution of residuals in ordinary re-
gression analysis. Unusual or unexpected risk score patterns
might point to erroneous functional relationships (which can
then be examined by, e.g., transformation of covariates) or
differential measurement errors in the response (as in our ex-
ample and in Verbeke and Lesaffre, 1996).

We were able to analyze quite large data sets with both or-
dinal and continuous response with reasonable computational
speed. For example, it took only about 30 seconds on a Sun
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Sparc 10 station to run a data set of 180 clusters in the Monte
Carlo study in Section 3.3.

Although computational efficiency of our methods is quite
high for the estimation aspect, the bootstrap evaluation of the
standard errors of coefficients is somewhat time consuming,
especially for ordinal response. It is possible that standard
errors can be approximated by utilizing the information ma-
trix from the partial likelihood. We opted not to pursue this
approach, as it lacks theoretical basis. For practical applica-
tion, we recommend at this point to use methods based on
either GEE (Liang and Zeger, 1986) or normal random ef-
fects for approximate model development. Note that, for the
linear model, marginal GEE-based estimators are consistent
also for regression coefficients based on a mixed effects model
(Zeger, Liang, and Albert, 1988). Candidates for final models
can be checked and fully described in terms of random effects
distribution by the proposed method.

Monte Carlo results indicate that the fit of the PR distri-
bution estimate is better than or comparable to that of some
other NPMLE-related methods, including the SNPMLE of
Madger and Zeger (1996). The latter method was not yet
extended to the case of ordinal outcome. SNPMLE has the
advantage of providing a parameterization of the mixing dis-
tribution, facilitating statistical inference. Our approach has
the potential advantage of greater flexibility in the mixing
distribution, and this might be preferable when graphical as-
sessment of the distribution and of model fit are the primary
concern. We extended PR by estimating a smoothing param-
eter p from the data. Our Monte Carlo results indicate that
this improves the fit for truly discrete or multimodal mixing
distributions. SNPMLE requires prespecification of a smooth-
ing parameter h. Madger and Zeger give an overview of other
related methods that can be used for smooth nonparametric
fitting of mixing distributions, including the work of Laird and
Louis (1989), Stefanski and Carroll (1990), Zhang (1990), and
Davidian and Gallant (1992). A comprehensive comparison of
these methods, some of which apply in situations slightly dif-
ferent from ours, is beyond the scope of this paper.
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RESUME

On propose un modele de régression semi-paramétrique a ef-
fets mixtes pour l'analyse de données longitudinales ou en
cluster, avec une variable d’intérét continue, ordinale, ou bi-
naire. On s’affranchit de 'hypotheése habituelle d’effets aléa-
toires gaussiens en utilisant la méthode de prédiction récursive
partielle (Newton et Zhang, 1996) pour obtenir un estima-
teur de densité non paramétrique lissé. Une nouvelle stratégie
est introduite pour accélérer ’agorithme. Les estimations des
parametres sont obtenues en maximisant la vraisemblance
profilée marginale par la méthode de recherche de la direc-
tion conjuguée due & Powell. Des résultats de Monte Carlo
sont présentés pour montrer que la méthode améliore 1'erreur
quadratique moyenne des estimations des effets fixes, lorsque
la distribution des effets aléatoires n’est pas gaussienne. L uti-
lité de la visualisation de la densité des effets aléatoires est
illustrée par 'analyse des données provenant du Wisconsin
Sleep Survey. La procédure d’estimation proposée est aisément
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mise en ceuvre du point de vue des calculs, pour de larges en-
sembles de données.
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APPENDIX

The sequence of weights w; in (5) should decrease to zero
as the sample size N goes to infinity. Following principles
of Newton and Zhang (1999), the sequence can be chosen
as w; = 1/(i +1)?, for 4 = 1,..., N, where p is a constant
between 0 and 1. The convergence rate of the PR algorithm,
as N — oo depends on the weights w;, as does the amount
of smoothing in finite samples. A choice of p close to 1 gives
less weight to individual observations and thus produces an
estimate closer to the smooth prior. Consequently, the choice
of p influences the estimate of the model parameter € as well
as the estimate of the random effects distribution. However, a
uniformly best choice of the sequence w; does not appear to
exist. To address this problem, we extend the PR algorithm
by incorporating p as a parameter into (5) and choose the
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best p based on the data. Letting 8’ = {8, p}, (5) is modified
as follows:

for (@) - 1:(8 | o yi)
ci(0") ’
(7)

for(@) = (1 —wi(p) for () +wilp)

where w;(p) = and c;(@’) is defined as

- (2+1)"

Cz(9)—/f

The starting density fo' (@) is a prior guess of the true random
effect distribution. In our simulation studies, it was chosen as
a uniform distribution on an interval (a, b), which approxi-
mately supports all the probability mass of the random effects
distribution F or as a Gaussian distribution obtained from the
Gaussian mixed effects model. Reasonable lower and upper
bounds for the interval of integration can be obtained by es-
timating the mean and standard deviation of the distribution
by the Gaussian mixed effects model, e.g., the lower (upper)
bound = mean £ 3 SD. Note that in consideration of the
Gauss-Legendre quadrature integration method (see below),
we confine the support of f to a finite interval. The weight
parameter p is estimated together with the model parameter
6 by maximizing the log-profile marginal likelihood function:

1i(0 | a, yi)da (8)

N b

MO 3 i =1 N) = Y tog [ 1(6] 0y i3 (e)de
=1 a

©)

Although the log-profile likelihood (9) is a continuous function
of @', it involves recursive functions. Thus, it is very difficult
to obtain an explicit form for its derivatives. We use Pow-
ell’s conjugate direction search method (Press et al., 1992),
which requires only evaluations of the log-profile likelihood
itself to maximize this function. In our experience, Powell’s
method usually takes only three or four iterations to converge
adequately in a model with five or six parameters. The log-
profile likelihood of our model is not guaranteed to be convex.
Thus, Powell’s method might obtain only a local maximum.
We used different starting values to examine whether the algo-
rithm converges to the same value, and stability was observed
in the simulations.

In obtaining the PR estimate fé\,] (a) at a given @' in equa-
tion (7), the sequence of normalizing constants c;(8’),i =
1,2,..., N, must be calculated. Gauss—Legendre quadrature
summation is used for the numerical integration in computing
these normalizing constants, i.e.,

(8 /

(0] a,y;)da
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where the a; and v;, for j = 1,2,..., K, are the abscissas and
weights given by Gauss—Legendre quadrature (Press et al,,
1992). In our simulation studies and data analysis, usually 20
abscissas (K = 20) were adequate to get quite an accurate
numerical integration (The accuracy of the numerical inte-
gration can be assessed by checking whether the area under
the final estimated density curve is approximately equal to
1). In fact, Gauss-Legendre quadrature approximation to an
integration is exact if the integrand is a polynomial of order
up to 2K — 1.

Another computational problem in calculating equation
(10) is the evaluation of the recursive function fe/ '(a) when i

Has)ls(8' | a5,y4), (10)

is large. We memorized the last-step density estimate f9' )
at the Gauss-Legendre abscissas a;, for j = 1,...,K. We
used these for the next PR step to calculate the normaliz-
ing constant c;(0') by equation (10) and the density estimate
fgl () at @ = {a1,...,ax} by equation (7). At the end of
PR recursion, the memorized values fé\,’ (a;), 3 =1,...,N,
are sufficient for the numerical integration in the log-profile
likelihood function, i.e.,

M9 |yii=1,...,N)

N b
=3 tos [ 10 2y (e
i=1 e

N K
~ Y logy vili(8 | aj,yi)fe (a5)

i=1 j=1

(11)

After the algorithm converges to 6’ , we run PR once more
to record the normalizing constants ci(é’ ) so that the density
estimate of the random effect distribution can be evaluated
by equation (7).

In this paper, we concentrated on the semiparametric mixed
model with only one random individual effect. The method
can be extended to multiple random effects by replacing «;
in model (1) with z},c;, where a; is a vector of random
effects and z;; is the observed covariate vector at the kth
measurement for the ¢th cluster. For two random effects, the
Gauss—Legendre summation for integration involves a 20 X
20 grid of points during iterations, as compared to only 20
points for one random effect. The resulting decrease in speed
of the algorithm occurs for other methods as well.



