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h 30, 2000)AN APPROXIMATION OF THE K-FUNCTIONFOR STRAUSS DISC PROCESSESELAINE BORGHI,� Universidade Estadual de CampinasBRIAN S. YANDELL,�� University of Wis
onsinAbstra
tWe extended some results of Isham (1984) that worked on an approximation fortheK-fun
tion for multitype point pro
esses, based on the assumptions that edgee�e
ts are negligible and intera
tion parameter is fairly weak, for the Strauss dis
pro
ess. A simulation study showed that the approximation for the unmarkedpairwise-intera
tion-type point pro
esses seems reasonable, but does not workwell for Strauss dis
 pro
ess. Moreover, this study led us to question the use ofthe K-fun
tion di�eren
es as a basis for 
omparison of Strauss dis
 type patterns.Keywords: Redu
ed se
ond moment measure; pairwise-intera
tion-type point pro-
ess; marked point pro
essAMS 1991 Subje
t Classi�
ation: Primary 62M30Se
ondary 60K401. Introdu
tionSpatial statisti
s methodology has been largely explored and used in re
ognitionof spatial patterns 
hara
terizing a spe
i�
 region. Many of the appli
ations are inforestry and e
ology but more re
ently other �elds also started exploring spatialstatisti
s te
hniques. Pairwise intera
tion point pro
esses are frequently used tomodel and explain 
ertain me
hanisms involved in some pra
ti
al problems. Theyare a spe
ial 
ase of Gibbs point pro
esses where the intera
tion fun
tion dependsonly on the distan
e between two points (Diggle et al. 1983, Cressie 1991, Ripley� Postal address: Postal address : Fa
uldade de Engenharia Agr�i
ola, Universidade Estadual deCampinas, Campinas, SP 13083-970 Brazil.�� Postal address: Postal address : Department of Statisti
s, University of Wis
onsin, Madison,WI 53706-1685 USA. 1



2 Elaine Borghi and Brian S. Yandell1988, Stoyan et al. 1987).Various statisti
s have been 
reated based on measures on neighborhoods, forexample, the nearest neighbor distan
e. Authors like Ripley (1988), Stoyan et al.(1987), Upton and Fingleton (1985), Diggle et al. (1983) and Cressie (1991) des
ribesome of these summary statisti
s and their properties for the 
ase of a 
ompletelyspatially random point pro
ess (CSR). Some of these summaries are one-dimensionaland hen
e lead to a 
onsiderable loss of information. On the other hand, thereare summary fun
tions that give a pi
ture about the departure from the CSR inthe presen
e of inhibition or 
lustered patterns in a �eld. Two examples of su
hfun
tions are K-fun
tion or redu
ed se
ond moment measure and nearest-neighbordistan
e distribution fun
tion.For marked point pro
esses, there is some work also done in terms of summaries forgoodness-of-�t or exploratory analysis, like the K-fun
tion version for marked pointpro
esses based on some mark 
orrelation measure (Stoyan 1984). Pentinnen et al.(1992) used this fun
tion to des
ribe spatial dependen
e of stem diameters, and 
rownlengths in a mixed bir
h-pine forest area. Goulard et al. (1996) present a generalde�nition and derivation of the pseudo-likelihood fun
tion for marked Gibbs pointpro
esses. They derived the maximum pseudo-likelihood inferen
e for two parti
ular
ases, bivariate Gibbs point pro
ess and Strauss dis
 pro
ess. They presented asimulation study for the bivariate Gibbs point pro
ess, and applied the method to aforestry example (same used in Penttinen et al. (1992)) of the Strauss dis
 pattern.The Strauss dis
 pro
ess is a spe
ial 
ase of marked pairwise intera
tion pointpro
esses (Badelley and M�ller 1989, Geyer and M�ller 1994, Goulard et al. 1996).However, little is known about properties of summaries with respe
t to this pro
ess,in parti
ular about the redu
ed se
ond moment measure. Any progress towards thismatter would be of great help for infering and 
hara
terizing spatial patterns.Isham (1984) derived approximations for some of the properties of a Strauss-typepoint pro
ess with two types of points and indi
ated how to generalize for N typesof points, on the assumption that intera
tions between the points are fairly weakand that the boundary e�e
ts are negligible. In parti
ular, expansions are obtainedfor the redu
ed se
ond moment measure. In the present paper, approximations are
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tion for Strauss Dis
 Pro
esses 3derived for the K-fun
tion of a Strauss dis
 pro
ess on the same assumptions andusing the same method of approximation as in Isham (1984).1.1. Preliminaries in spatial point pro
essesIn this se
tion we present a brief review of the theory involved in spatial pointpro
esses. We go through some de�nitions based on some referen
e books su
h asRipley (1988), Diggle (1983) and Cressie (1991).In the following, let X be the Borel �-algebra of the sample spa
e X � <d for d � 2and let � be the Lebesgue measure on X . Re
all that a measure � is lo
ally �nite if�(B) < 1 for all bounded sets B 2 X . A 
ounting measure  (B) is the number ofevents in B, that is, the number of subsets of X .Let (
;A;P) be a probability spa
e and let C be a 
olle
tion of lo
ally �nite
ounting measures on X � <d. On C de�ne N , the smallest �-algebra generatedby sets of the form f 2 C :  (B) = ng, for all B 2 X and all n 2 f0; 1; 2; :::g.Then a spatial point pro
ess 	 on X is a measurable mapping of (
;A) into (C;N ).This random 
ounting measure  on X is analogous to a random variable on <, andprobabilities are 
omputed fromP (	 2 Y ) = P (w : 	(w) 2 Y ); Y 2 N :A spatial point pro
ess de�ned over (
;A; P ) indu
es a probability measure�	(Y ) � P (	 2 Y ) on (C;N ); for all Y 2 N :A spatial point pattern  is a realization of a spatial point pro
ess 	.For a point pro
ess 	 and Borel set B, the number of points 	(B) in B is a randomvariable with �rst moment measure�	(B) � E(	(B)) = ZC  (B) �	(d );a measure on (X;X ). The intensity of a point pro
ess is de�ned by�(s) � lim�(ds)!0 �	(ds)�(ds) ;



4 Elaine Borghi and Brian S. Yandellprovided the limit exists. Also, we 
an de�ne the se
ond moment measure by�(2)	 (B1 �B2) � E(	(B1)	(B2)) = ZC  (B1) (B2) �	(d );a measure on (X2;X (2)), with X (2) being the smallest �-algebra formed by theprodu
t sets B1 �B2 and B1; B2 2 X . Then the se
ond-order intensity is de�ned by�2(s; u) � lim�(ds)! 0�(du)! 0 �(2)	 (ds� du)�(ds) �(du) ;provided the limit exists.1.2. The K-fun
tionThe redu
ed se
ond moment measure, or K-fun
tion, is de�ned asK(t) = 1�E0� number of extra events withindistan
e t of an arbitrary event 1A ; t � 0;(1)where � is the intensity of the point pro
ess. Under the assumption of CSR in<2 , K(t) = �t2, while under regularity K(t) tends to be less than �t2 and under
lustering K(t) tends to be greater than �t2. This paper 
on
erns pro
esses that aremore regular than CSR.The relation between the K-fun
tion and the se
ond-order intensity is given by�K(t) = d�d=2���1 + d2� Z t0 ud�1 �2(u) du; t � 0;(2)where d is the dimension of the 
onsidered spa
e and �2 is the se
ond-order intensityof the point pro
ess de�ned.Let (x1; :::; xn) denote the n � n(A) lo
ations of all events in a bounded 
onvexstudy region A. Ripley (1979) uses an edge-
orre
ted estimator for K(t), de�ningK̂(t) = 1n�̂ nXi=1 nXj=1 I(k xi � xj k� t)� k(xi; xj);(3)with 1=k(x; y) being the proportion of the 
ir
umferen
e of the 
ir
le 
entered at xpassing through y whi
h is within A. For all the estimators involving �̂ we 
an use
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 Pro
esses 5�̂ = njAj . A

ording to Ripley (1981), the use of �̂ seems not to upset the unbiasednessof the estimator too mu
h. Ripley (1979) also suggests that for some t0 small enough,the bias in K̂(t) is negligible for t � t0.1.3. Strauss dis
 pro
essesRandom dis
 pro
esses (Baddeley and M�ller 1989) are spe
ial 
ases of the germ-grain model (Stoyan et al. 1987) whi
h 
an be used to des
ribe a pattern of randomlydistributed dis
s (or spheres in higher dimensions), where dis
s (spheres) may overlap.Consider a marked point pro
ess 	m = f[xi; ri℄g with a �nite number of points on abounded spa
e 
 and marks on � � [0;1), where the density is the Radon-Nikodymderivative with respe
t to the distribution of a homogeneous Poisson pro
ess (whi
h,with no loss of generality, 
an be taken to have unit rate). Let x = (x1; :::; xn),r = (r1; :::; rn), and 
onsider [xi; ri℄ to be a dis
 with radius ri 
entered at xi. Ageneral pairwise intera
tion pro
ess has densityf(x; r) = z�nYi<j �(k xi � xj k; ri; rj);where � : [0;1)3 ! [0;1).Our parti
ular interest 
on
erns the Strauss-like intera
tion fun
tion given by�(u; ri; rj) = 8<: 
 if u < ri + rj1 else;for 0 � 
 � 1. This pro
ess is 
alled a Strauss dis
 pro
ess and its density be
omesf(x; r) = z�n(x; r)
s(x; r);(4)where � is a parameter related to the intensity of the point pro
ess, 
 is the intera
tionparameter, n(x; r) is the number of points in 	m ands(x; r) = nXi; j = 1i < j �(k xi � xj k; ri; rj);is the number of pairs of points xi and xj that are 
loser than ri + rj apart in 	m,with �(u; ri; rj) being equal to 1, if u � ri + rj , or 0 otherwise.



6 Elaine Borghi and Brian S. Yandell2. Approximation of the K-fun
tionApproximations are derived for the K-fun
tion of a Strauss dis
 pro
ess, on theassumption that the intera
tion between points is fairly weak. That is, we 
onsiderthe position of the 
enters of the dis
s as distributed 
lose to the Poisson pro
ess, andthat the boundary e�e
ts are negligible.2.1. Isham's results for multitype point pro
essesIsham (1984) developed approximations for some of the properties of a Strauss-typespatial point pro
ess with two types of points (easily extended to N types of points,or a multitype pro
ess), on the assumption that the intera
tions between the pointsare fairly weak and that boundary e�e
ts are negligible. The last assumption willbe true when the 
onsidered region is large enough and the dis
s are far away fromthe boundaries. Consider a marked point pro
ess f[xi; ri℄g. We say ri = Æm, withÆm > 0, if point xi is of type m, m = 1; � � � ; N , and denote Æml = Æm + Æl. Thedensity fun
tion of the Strauss-multitype pro
ess is given byf(x; r) = z NYm=1�nm(x;r)m Y1�m�l�N 
sml(x;r)ml ;(5)where nm(x; r) is the number of points of type m with PNm=1 nm(x; r) = n, andsml(x; r) is the number of pairs of points of types m and l that are 
loser than Æml.Here z; �1; :::; �N , are positive 
onstants. The author wrotesml(x; r) = nm(x;r)Xi=1 nl(x;r)Xj=1 �(N)(k xmi � xlj k; Æml);with xmi being the ith point of type m and �(N)(u; Æml) equal to 1, if u � Æml or 0,otherwise.For the existen
e of the pro
ess it is ne
essary that the joint densities of the pointsspe
i�ed by (5) 
an be appropriately normalized up to a 
onstant z. This impliesthat within ea
h type the intera
tions are inhibitory, that is, 0 � 
mm � 1. Betweentypes some attra
tion may be possible but usually only to a limited extent. Based
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tion for Strauss Dis
 Pro
esses 7on the assumptions stated previously, Isham 
onsiders 
mm = 1 � gm � and
ml = 1+ dml �, for m; l = 1; � � � ; N; m 6= l, for some small � > 0, where gm � 0and dml are arbitrary subje
t to the existen
e of the pro
ess.The type m intensity is then approximated to �rst order by�m = �m f1� � (gm �m � Æ2mm �Xl6=m dml �l � Æ2ml) +O(�2)gand the joint intensity of a type m point at � and a type l point at � is approximatedby �ml(�; �) = �m�l f1 + � dml �(N)(�; �; Æml) +O(�2)g:The joint intensities �ml 
an be integrated to determine se
ond-order propertiesof the multitype point pro
ess. In parti
ular, the redu
ed se
ond moment measure,following (1) and (2), is de�ned for t � 0 byKml(t) = 1�E0� number of type l points within adistan
e t of a given type m point 1A(6) = Z t0 2�s �ml(s)�m�l dswhere �ml(�; �) = �ml(k � � � k). A �rst order approximation isKml(t) � 8<: 
ml � t2 if t � Æml� t2 � (1� 
ml) � Æ2ml if t � Æml:(7)Using 
luster expansion (Croxton 1974), Isham gives results for more general Markovpro
esses and a se
ond order approximation for the two-type point pro
esses andshows how to extend to N -type point pro
esses. The author writes the se
ond orderapproximation for the K-fun
tion in the formKml(t) � 8>>>>>><>>>>>>: (1 + �dml) � t2��2 dml (gm�m + gl�l) 2 � Jml(t) +O(�3); t � Æml� t2 + � dml � Æ2ml��2 dml (gm�m + gl�l) 2 � Jml(t) +O(�3); t � Æml(8)



8 Elaine Borghi and Brian S. Yandellwhere Jml(s) = R s0 s Aml(s) ds; with Aml(k � � � k) = Aml(�; �) being the areaof the region in the plane whose points are neighbors of both a type m point in �and a type l point in �. That is, Aml(s) is the area of interse
tion of two dis
s
entered s units apart, both with radius Æml. Isham is aware that a form of se
ondorder approximation for Kmm(t) 
an be written down easily but, more generally, forKml(t) the problem be
omes too 
omplex, sin
e it involves integrating Aml.2.2. An approximation for a Strauss dis
 pro
ess with 
ontinuous markdistributionUsing the same method des
ribed in the previous se
tion, we develop here anextension for the Strauss dis
 pro
ess with density (4) to be presented in this se
tion.Consider � = � � �, where � is Lebesgue measure, yielding the unmarked Poissonpro
ess of unit intensity, and � 
orresponding to the distribution of the marks. Denoteby R, R1 and R2 random variables with distribution �. Following Isham (1984),assume that the edge e�e
ts are negligible. ThusZ(
��)2 �(k x1 � x2 k; r1; r2) �(d[x1; r1℄) �(d[x2; r2℄) =�j
jE���(R1 +R2)2(9)and 
 = 1� g�; g > 0; for � > 0 small.For a �xed number of points n, the density in (4) 
an be written asf(x; r) = z�nYi<jf1� g � �(k xi � xj k; ri; rj)gwhi
h 
an be approximated byf(x; r) = z�nf1�Xi<j g � �(k xi � xj k; ri; rj) +O(�2)g:(10)Let �2 = E���(R1 + R2)2 and �(d[x; r℄) = �(d[x1; r1℄) � � � �(d[xn; rn℄). A �rst order
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tion for Strauss Dis
 Pro
esses 9approximation for the 
onstant of proportionality is given byz�1 = 1Xn=0 1n! Z(
��)n f(x; r) �(d[x; r℄)(9) (10)= 1Xn=0 1n! �n j
jn � g � 1Xn=0 1n! �n n(n� 1)2 j
jn�1 � �2 +O(�2)= ej
j� �1� g � � �2 j
j2 �2 +O(�2)� :(11)The intensity of a point on � with mark r� is given by�(�; r�) = 1Xn=0 1n! Z(
��)n f(x [ �; r [ r�)�(d[x; r℄)(10)= � z 1Xn=0 �nn! Z(
��)n8<:1� g �Xi<j �(k xi � xj k; ri; rj)�g � nXi=1 �(k � � xi k; r�; ri) +O(�2)) �(d[x; r℄)(9)= � z ej
j�f 1� g � � �2 j
j2 �2 � g � � � E�(r� +R)2 +O(�2)g= �f z ej
j�[ 1� g � � �2 j
j2 �2℄ [ 1� g � � � E�(r� +R)2℄+O(�2)g(11)= �f 1� g � � � E�(r� +R)2 +O(�2)g :The un
onditional intensity is then approximated by � � �f1 � g � � � �2g: Usingthe same arguments, we �nd an approximation for the joint intensity, whi
h is givenby �(�; �) = 1Xn=0 1n! Z(
��)n f(x [ � [ �; r [ r� [ r�)�(d[x; r℄)= �2 z ej
j�f 1� g � � �2 j
j2 �2 � 2 g � � � �2� g � E���(�(k � � � k; R1; R2)) +O(�2)g= �2 zf ej
j�[1� g � � �2 j
j2 �2℄[1� g � � � �2℄2[1� g � E���(�(k � � � k; R1; R2))℄+O(�2)g� �2f 1� g � E���(�(k � � � k; R1; R2))g :



10 Elaine Borghi and Brian S. YandellThrough these approximations we 
an a

ess the se
ond-order propertyK(t) � Z t0 2�u �1� g� Z�2 �(u; r�; r�) �(r�)�(r�) dr�dr�� du= �t2 � g�2� Z�2 �(r�)�(r�)�I [t � r� + r�℄ Z t0 u du+ I [t � r� + r� ℄ Z r�+r�0 u du� dr�dr�= �t2 � (1� 
)�f t2P (R1 +R2 � t)+E��� �(R1 +R2)2jR1 +R2 � t�g :In this way we have an extension to what Isham developed for a dis
rete set of types.Noti
e that we have an approximation for the K-fun
tion whi
h depends on thedistribution of the sum of pairs of radii. In the multitype 
ase, we 
an have a set ofN(N + 1)=2 K-fun
tions to estimate.A se
ond order approximation for the K-fun
tion in this 
ase is rather 
omplex,but we 
an use the de�nition of the K-fun
tion (7) and apply the form obtained byIsham for the multitype point pro
esses (8). In this 
ase, �xing the number of pointsn, we have that 
ml = 
 and �m = � for m; l = 1; � � � ; N with N � n. ThenKml(t) � 
 � t2 + 4 � (1� 
)2 � Jml(t) + (1� 
) � (t2 � Æml2) I(t � Æml)with I(�) being the indi
ator fun
tion. The average redu
ed se
ond moment measureis �K(t) = E�( NXl=1 �l Kml(t))� 
 � t2 NXl=1 �l + 4 � (1� 
)2 � NXl=1 �l E� [J(t; R1; Æll)℄+ (1� 
) � NXl=1 �l E� �(t2 � (R1 + Æll)2) I(t � R1 + Æll)� :An extension to Isham's se
ond order approximation results is given byK(t) � 
 � t2 + 4 � (1� 
)2 � E��� [J(t; R1; R2)℄+(1� 
)� �t2P (R1 +R2 � t)�E��� �(R1 +R2)2 j R1 +R2 � t�	 :
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tion for Strauss Dis
 Pro
esses 11We tried to study this se
ond order approximation, 
al
ulatingE��� [J(t; R1; R2)℄ numeri
ally, whi
h would be in the form of a triple integral.The results (not shown) did not en
ourage us to 
ontinue further. The fa
t thatthis approximation in
ludes a term that is proportional to (1 � 
)2 � makes theapproximation even worse for values of 
 that are not extremely 
lose to 1 when � isreasonably big.
3. Simulation study for Strauss dis
 pro
ess
In order to 
he
k the e�e
tiveness of the �rst order approximation for the K-fun
tion given in the previous se
tion, we 
ondu
ted a simulation study. Using theMetropolis-Hastings algorithm un
onditional on the number of points (Geyer andM�ller 1994), we simulated 100 Strauss dis
 pro
esses subsampled from a Markov
hain to 
reate 95% 
on�den
e MCMC envelopes for ea
h 
ase 
onsidered. Aftersome evaluation using time series plots, we 
onsidered a burn-in period of 20,000 basi
steps, sin
e equilibrium is rea
hed within �rst 5,000 basi
 steps, depending on theparameter 
 and radii used. Although we did not investigate about the optimum spa
eamong samples, we allowed 200 steps between samples, in order to get a fairly weak
orrelation among samples and, perhaps a more important feature, whi
h is havinga long enough 
hain for a not so high 
omputational 
ost. Also, we have 
onsideredjust the possibility of adding or removing a marked point, following suggestions givenby the authors with respe
t to the simulation of Strauss pro
esses (parameter p intheir algorithm equal to 1). For this study, we 
onsidered the 
ases where the radiiare 
onstant, or have uniform distribution, or have gamma distribution. We set upthe radii distributions keeping the mean r the same in all 
ases and 
onsidered twolevels of varian
e for the uniform 
ase, for ea
h set of parameters � and 
. Hereand everywhere in this resear
h we always used Ripley's estimator for the K-fun
tiongiven by (3).



12 Elaine Borghi and Brian S. Yandell3.1. Constant radiiFor dis
s with 
onstant radii r, the model be
omes simply the Strauss point pro
esswith hard-
ore distan
e equal to 2r. Figure 1 shows 95% envelopes and mean forthe estimated K-fun
tion 
al
ulated from an MCMC sample of size 100 and theapproximation given by (7) with Æml = 2r and 
ml = 
 for small values of 
 anddi�erent values of r, the radius.
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Figure 1. Monte Carlo 95% envelopes for the K-fun
tion with mean (solid line) and �rstorder approximation (dashed line) for 
onstant radii (� equal to 50).We 
an see that the approximation gets 
loser to the MCMC mean when we in
rease
. On the other hand, when we 
ompare MCMC means of the K-fun
tion amongdi�erent sets of parameters, we noti
e a de
rease in sensitivity of this fun
tion as 
gets away from zero, for the same value of r. That is, the di�eren
e between 
 = 0
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tion for Strauss Dis
 Pro
esses 13and 
 = 0:2 seems bigger than di�eren
e between 
 = 0:2 and 
 = 0:4. Earlierstudies a
tually showed that this di�eren
e be
omes negligible when we approa
h thehomogeneous Poisson pro
ess. Note also that the sensitivity is larger for larger meanradius.Results show that this approximation is reasonable even for values of 
 
lose tozero for Strauss point pro
esses, whi
h indi
ates it 
ould be used for estimation of 
or for testing patterns against CSR.3.2. Radii with Uniform distribution - U [a; b℄The K-fun
tion approximation for Uniform[a; b℄ distributed radii is given by
K(t) �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�t2; t � 2a;�t2 � (1� 
)��t2�1� (t� 2a)22(b� a)2�+ 3t4 � 8at3 + 16a46(t� 2a)2 � ; 2a < t � a+ b;�t2 � (1� 
)��t2� (2b� t)22(b� a)2�+ 16a4 � 2(a+ b)4 + 8bt3 � 3t46f2(b� a)2 � (2b� t)2g � ; a+ b < t � 2b;�t2 � (1� 
)� n7a2 + 7b2 + 10ab6 o ; t > 2b:In order to study the behavior of the approximation in this 
ase, we 
onsidereddistributions with two di�erent varian
es. Be
ause of the fa
t that the out
omedistribution from simulations in this 
ase are skewed with respe
t to the \primary"distribution, we investigated how mu
h this fa
t would a�e
t the approximation. We
al
ulated the approximation from the empiri
al mark distribution of the generatedpatterns and we obtained very similar results.Figure 2 shows when the radii are distributed as uniform in the range (2r=3; 4r=3),with varian
e equal to r2=27, while in Figure 3, the radii are uniformly distributedon (r=2; 3r=2), with varian
e equal to r2=12. In both 
ases the approximation getsaway from the MCMC mean as we approa
h 
 to zero (hard 
ore) and also when wein
rease the radii mean r.At t = 2a, the K-fun
tion is not 
ontinuous, and the jump at that point is of size
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Figure 2. Monte Carlo 95% envelopes for the K-fun
tion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as Uniform[2r/3,4r/3℄and � equal to 50.
4�a2(1 � 
) and so be
omes negligible as either a approa
hes zero or 
 approa
hesone. Another fa
t we 
an observe is that the sensitivity of the K-fun
tion in dete
ting
hanges in parameters of the Strauss dis
 pro
ess be
omes weaker than when we have
onstant radii. As we depart a little from the hard 
ore pro
ess, the K-fun
tion seemsto de
rease in sensitivity, giving us an indi
ation that this 
hara
teristi
 itself maynot be a good summary in this 
ase of Strauss dis
 pro
ess with 
ontinuous radii.
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Figure 3. Monte Carlo 95% envelops for the K-fun
tion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as Uniform[r/2,3r/2℄and � equal to 50.3.3. Radii with gamma distribution - �(b; 
)We 
onsider here the 
ase when 
 is an integer (Erlang distribution) and the densityfor the radii is given byfR(u) = u
�1 exp(�u=b)�(
) b
 ; u > 0; b; 
 > 0; 
 integer:Let's denote the 
umulative distribution fun
tion of a gamma distributed randomvariable R by �(u; b; 
) = P (�(b; 
) � u). Then we have that the approximation forthe K-fun
tion is given byK(t) � �t2 � (1� 
)��t2 (1� �(t; b; 2
)) + b2 2 
(2
+ 1)�(t; b; 2
+ 2)�(t; b; 2
) � :Figure 4 shows the approximation for the gamma distributed radii. The approxima-
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Figure 4. Monte Carlo 95% envelopes for the K-fun
tion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as �(r=12; 12) and �equal to 50.tion is not good for values 
lose to zero and, for mean radii 0.04, it starts getting
loser to the MCMC estimate of the K-fun
tion. We 
an 
ompare Figures 3 and 4,
onsidering two distributions with the same mean and varian
e but di�erent shapes.There is no evident di�eren
e between the MCMC means and envelopes of the K-fun
tion for the two radii distributions, indi
ating that the K-fun
tion itself mightnot be sensitive to 
hange in shapes of the radii distribution.4. Analysis and 
on
lusionsThe �rst order approximation for theK-fun
tion by this method (
luster expansion)is not eÆ
ient, sin
e for values 
lose to zero (where the assumptions on whi
h the
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tion for Strauss Dis
 Pro
esses 17method is based fail) there is a substantial departure from the estimated K-fun
tion.While for the 
ase of 
onstant radii (Strauss pro
esses) this departure is almostnegligible, for the 
ase of Strauss dis
 pro
esses it be
omes bigger as 
 approa
hes tozero.When we analyze the MCMC means of the K-fun
tions, we see that this fun
tionis not sensitive to 
 for the same radii distribution. Most probably this is be
ausethe 
ontinuous distribution of the marks makes the K-fun
tion smoother when weallow any level of overlapping of the dis
s, espe
ially if the range of the dis
 radii
overs values 
lose to zero. Therefore this leds us to question the use of K-fun
tiondi�eren
es as a basis for 
omparison of Strauss dis
 type patterns.� 25 100r 0.04 0.06 0.02 0.030.0 0.170 0.222 0.034 0.0450.1 0.158 0.222 0.045 0.0420.2 0.192 0.186 0.041 0.0400.3 0.153 0.222 0.038 0.0450.4 0.177 0.189 0.041 0.039
 0.5 0.128 0.159 0.035 0.0390.6 0.148 0.136 0.033 0.0350.7 0.144 0.140 0.038 0.0280.8 0.138 0.161 0.029 0.0370.9 0.127 0.148 0.034 0.0391.0 0.141 0.145 0.028 0.043Table 1. Maximum range in the 95% Monte Carlo envelopes for 100 Strauss dis
patterns with radii distributed �(r=12; 12).We did a small simulation study using the Strauss dis
 pro
ess with radii gammadistributed to study the behavior of Ripley's K-fun
tion estimator for Strauss dis
pro
esses with respe
t to the �-dependent 
ount of the point pro
ess, mean radius rand parameter of intera
tion 
. This estimator is suppose to be unbiased for values



18 Elaine Borghi and Brian S. Yandellof t less than or equal to an appropriate t0, here 0.25 (used by Ripley (1979) for 25point patterns). Table 1 shows results for the maximum range of the 95% 
on�den
einterval in MCMC simulations of 100 Strauss dis
 patterns. The variability of theestimator of the K-fun
tion seems to de
rease 
onsiderably when we enlarge theamount of information, if we 
ompare patterns with � = 25 and mean radius r to theones with � = 100 and r=2 with the same parameter of intera
tion 
. On the otherhand, when we have � = 25, as we in
rease r or de
rease 
 (leading to a de
rease inthe number of points in the pattern), the variability of the estimator in
reases. Thesefa
ts may indi
ate that this estimator for the K-fun
tion improves as we enlargeeither the density of points, or size of the studied region in this 
ase of Strauss dis
pro
esses. But, of 
ourse, a more rigorous study is needed to show 
onsisten
y of theestimator.The �rst order approximations extended for the Strauss dis
 pro
ess, as presentedin this 
hapter, seem to work better for values of 
 not 
lose to zero, and withpossible better behavior as the mean radius de
reases. On the other hand, eviden
esuggests that the K-fun
tion be
omes smoother and 
loser to the K-fun
tion of thehomogeneous Poisson pro
ess as we in
rease the varian
e of the radii for 
 not toofar from zero. This fa
t is dis
ouraging in terms of using this approximation for
omparison purposes. Referen
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