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Abstract

The Strauss disc process can potentialy model many applications
in biological systems, physics, environmental science and other fields.
We perform a simulation study to compare methods of estimating the
interaction parameter of the density of this process. We considered
minimum-contrast, pseudo-likelihood and Takacs-Fiksel estimators and
for this case a pseudo-likelihood estimator presented better performance
compared to the others.

Keywords : Strauss disc process, Metropolis-Hasting algorithm, pseudo-
likelihood, minimum-contrast, Takacs-Fiksel.

1 Introduction

Many of the applied problems that are related to spatial statistics fit
inside a special class of point processes, the pairwise interaction point
processes. This particular case of Gibbs point process is widely used in
applications not just because they efficiently model many patterns that
appear in physics, mechanics, environmental sciences and other fields
(e.g. Percus, 1964; Penttinen et al., 1992), but also because they have
few parameters to be estimated.

There is a considerable literature related to the inference on pairwise
interaction point processes in general. Various methods were proposed
that apply to more general Gibbs point processes. Maximum likelihood
for spatial point processes was studied by Ogata and Tanemura (1981),
and later extended to marked point processes (Ogata and Tanemura,

! Address for correspondence : Elaine Borghi, Universidade Estadual de Campinas,
Faculdade de Engenharia Agricola, Cidade Universitaria Zeferino Vaz, Cx.Postal 6011,
Campinas SP CEP:13026-430, Brazil

e-mail : elaine@agr.unicamp.br



1985). Fiksel (1984) generalized the idea earlier introduced by Takacs
and proposed the Takacs-Fiksel method of estimating parametrized pair
potentials of gibssian point processs. The pseudo-likelihood method was
considered by Jensen and Mgller (1991) for general Markov spatial point
processes. Later, Goulard et al. (1996) investigated this method for
marked Gibbs point processes using a pseudo-likelihood approach, and
worked on cases like the bivariate Gibbs point process and the Strauss
disc process. The pseudo-likelihood method is a particular case of the
Takacs-Fiksel method for suitable test functions. Some non-parametric
estimation methods were proposed in the past few years but we will not
cover them in the present paper.

One approach that we consider is a very simple and well known
method, the method of minimum-contrast. Although there are many
functions that can be used for this method, here we consider the reduced
second moment measure K-function. This method appears frequently in
the literature, especially for goodness-of-fit tests or exploratory analysis
(Stoyan and Stoyan, 1994; Stoyan et al., 1987; Cressie, 1991).

Although the literature is broad in this subject, studies of properties
of different estimators were not throughout investigated for the marked
case, especially in terms of comparison of performance. Diggle et
al.  (1994) investigates three methods of estimation for pairwise
interaction point processes, maximum likelihood, pseudo-likelihood and
Takacs-Fiksel, presenting a comparative simulation study. In the same
direction, we perform a simulation study for comparison of estimation
methods for the particular case of the Strauss disc process in this paper.
Properties and the behavior of each of the estimators for the interaction
parameter are investigated.

2 The Strauss disc process

Random disc processes (Baddeley and Mgller, 1989) are special cases
of the germ-grain model (Stoyan et al., 1987) which can be used to
describe a pattern of randomly distributed discs (or spheres in higher
dimensional case), where discs may overlap.

Consider a marked point process ¥ = {[z;,r;|} with finite number
of points on a bounded space S and marks on A C [0,00), where
the density is the Radon-Nikodym derivative with respect to the
distribution of a homogeneous Poisson process (which, with no loss
of generality, can be taken to have unit rate). Let z = (z1,...,%,),



r = (r1,...,7n), and consider [z;,r;] to be a disc with radius r; centered
at z;. A Strauss disc process has density

f(z.7) = 2™y (1), (1)

where [ is a parameter related to the intensity of the point process,
is the interaction parameter, n is the number of points in ¥ and s(z, r)
is the number of pairs of points x; and z; that are closer than r; 4 r;
apart in W.

3 Simulation of the Strauss disc
process

Statistical inference for spatial point processes can be very complicate,
which explains why Markov chain Monte Carlo methods are being used
extensively in this field. Some of these methods of simulating a Markov
chain are conditional on the number of points n, what makes them
simple in terms of computational aspects (Ripley, 1979b). Methods
that are unconditional on the number of points seem to be more
complicate but the choice must be made depending on the goal of
the study. For the present research, we have to generate Strauss disc
processes and conditioning on the number of points could interfere in
an undesirable way on the final distribution of the process, based on
the theory involved. For these reasons, we decided on an approach that
is unconditional on the number of points.

3.1 A Metropolis-Hastings algorithm

Geyer and Moller (1994) suggested a simulation procedure for the
unconditional case using a Metropolis-Hastings algorithm (Hastings,
1970). This algorithm is simpler than the spatial birth-and-death
technique and can be used for Markov chain Monte Carlo methods.
We now give a brief review of it.

For an usual finite point process defined on a bounded Borel set S C
R equipped with the Borel o-field and Lebesgue measure v restricted to
S, suppose the point process has density = on (€2, F) which is absolutely
continuous with respect to 7, the density of the usual homogeneous
Poisson process with intensity 1 restricted to S. The function f = dn/dt
is the density of the point process with respect to the Poisson process.



Informally, Q = ;2 ; Qn, where Qn:{ {z1, 2} C S} is the set of
all point configurations of n (not necessarily distinct) points included
in S. Geyer and Mgller (1994) proposed for this Metropolis-Hastings
algorithm the transition kernel to be a mixture of two transition kernels
Qo, controlling displacements, and )1, controlling deletion and addition
of points,

Qp(F | z) = (1-p) Qo(F [2)+pQ(F |2), 0<p<T,

for any F' € F. This transition kernel satisfies the condition for the
Markov chain to be time reversible, given that @)y and (), satisfy the
same condition.

Qo(. | x) is concentrated on H, = Q, N H with H = {z € Q, |
f(xz) > 0} and Qq(. | =) is constructed so that it is concentrated on
H, 1UH,UH, (or HyU H; if n = 0). In this way, with probability
q(x), we generate a new point ¢ from some density b(z, &) with respect
to v(df), and with probability 1 — g(x) we either delete a random point
n € x which is selected with some probability d(z,n), or if n = 0 we do
nothing.

According to the authors, the time reversibility holds if, denoting
the acceptance probability by Aq, and

q(zuUé) <1, d(z,£) >0, q(z) >0, b(x,£) >0 whenever zU¢ € H,

A1(5cch§)—{ Omin{lal/r(f’?af)} if ruéeH,

otherwise,
and
) min{l,r(z,&)} if zU&€ H,
Ar(zUg | z) = { 0 otherwise,
where

flaUg) 1-q(zU¢) d(z,¢)
f(z) q(z)  b(z,¢)

Geyer and Mgller considered one of the simplest situations for some
cases of point processes like the Strauss process, when

r(z,&) = if tU¢ e H.

1 1
b(-,-) = and d(z,-) =

1
i) =3 V(S) nt 1

if ©eqQ,.

In our case, for the Strauss disc process, we have to consider the
mark distribution p; (for the radii), which we will consider here as the
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“primary” mark distribution (as in Stoyan and Stoyan (1994), Section
16.3). So we have the probability of birth of a disc given by

o = m(§)
and U
PAS Y s(€)
@) By u(€),

where s(¢) is the number of discs in the process that overlap with a disc
centered at £ and 8 and -y are the parameters of the Strauss disc process
(as in Equation 1). Note that, for the density of the points, the mark
distribution p may be different from p;, but we do not have control
over . Therefore, we initially consider them to be equal, so that the
mark distributions cancel. Later we examine how robust this is through
simulations. A relation between p and pq is given by a mean-relation
with respect to the Palm distribution (Stoyan and Stoyan, 1994).

Using similar notation introduced in Section 2, we denote Qn:{
{z1,---,z,} C S’} and An:{ {ri,---,m} C [0,00)"‘}.

The algorithm is constructed such that, given that the current state
of the Markov chain is ¥ = {(z1,71),-- -, (zn,7n)}, we generate the next

proposal ¥’ as follows.
If n = 0 then the proposal is either

(a) remain in the point configuration, or

(b) become a single disc with uniformly distributed center in S and
randomly chosen radius from ;.

and if n > 1 then the proposal is either obtained by

(c) replacing a randomly picked disc in ¥ by a disc with uniformly
distributed center in S and randomly chosen radius from gy, or

(d) deleting a randomly picked disc in ¥, or

(e) adding a new disc with uniformly distributed center in S and
randomly chosen radius from p; to W.

Here (a) and (b) occur with probabilities 1 — p/2 and p/2,
respectively, while (c), (d),(e) have probabilities 1 — p, p/2, p/2,
respectively. Note that 0 < p < 1 and is related to the optimization



of the simulation process. Then in any of the cases, the proposal ¥’ is
accepted with probability

AW | W) = min (1 () oy
’ m!

),if\If’EmeAm.

This is called a basic step of the chain. Geyer and Mgller (1994)
investigated this algorithm for the Strauss point process (unmarked),
among others. They reported that in this case p = 1 (discarding
replacements) is optimal. Also, according to the authors, the Markov
chain appears to reach equilibrium, starting from the empty state, in
fewer than 2,500 basic steps, although they consider a “burn-in” period
of 40,000 basic steps to be safe. They considered a 200 basic step spacing
between samples.

3.2 Study of the simulation of Strauss disc
processes

There are some aspects of this simulation method that have not been
investigated as far as we know for the specific case of a Strauss disc
process. It would be worth exploring the properties of the simulation
method in order to get some feeling about the behavior of, for example,
the intensity of the processes generated or the mark distribution, as we
vary the interaction parameter . Because we are going to focus on
the effect of v over the number of points of the generated Strauss disc
process, we fix § = 50. In some of our preliminary investigations, we
noticed that, if 5 is too big with the mean radii we are considering,
the final mark distributions of the generated patterns are skewed with
respect to the ”primary” distribution.

On the other hand, if 3 is too small and we have a too sparse pattern,
it is hard to detect any effect of changes in the parameter .

Although we know that choosing the an optimal “burn-in” period
and spacing between the samples is very useful and important, we are
also aware of the time that it would take for us to investigate those.
As an attempt, we used the information given by Geyer and Mgller
(1994) in the Strauss point process case and do some diagnostic using
simple Time Series techniques. In some of the problems we investigated,
40,000 basic steps became too expensive in terms of computational time,
so we decreased the “burn in” period to 20,000, and we always used
p = 1. Choosing the number of basic steps betwen samples equal to 200,
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Figure 1: Percentage of rejection versus «y for the simulated patterns

we found that the autocorrelation function gives us a weak correlation
(between -0.2 and 0.2 for most of the cases, just getting close to its
maximum absolute value, 0.4, when «y gets closer to 1).

The estimate of the probability of rejection is shown in Figure 1.
The behavior seems no to be different for the considered distributions.
The percentage of rejection decreases as -y increases and it is overall
higher for bigger mean radius.

The random number generator used was from Press et al. (1994),
the subroutine RAN2. In order to reduce the boundary effects in our
simulation studies, we simulated the point patterns in a bigger window
(square (—0.5,1.5) x (—=0.5,1.5)), although our region of interest was
always considered to be the unit square in R?.

Figure 2 shows some examples of Strauss disc patterns generated
using this algorithm for different - values.

In order to look at the behavior of the intensity of the patterns
from the simulations, we have in Figure 3 box-plots for 100 patterns
for v varying from zero, non-intersecting disc process, to one, when we
have a Boolean model (homogenous Poisson process with independent
disc radii). We considered the case where the radii have I'(r/12,12)
“primary” distribution for mean radius r equal to 0.04 and 0.06. We
can see that, as r increases, the slope of the curve increases, which
means we have a bigger change in the number of points with respect to
change in the parameter v when r is bigger. We have some indication
that the intensity of the Strauss disc processes does not have a linear
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Figure 2: Examples of Strauss disc patterns for a I'(0.005,12) mark
distribution (mean radius r equal to 0.06) on an unit square (d = 0.06,5 = 50).

form with respect to v, but we did not investigate further about this
issue.

As we initiate the process of generating marks from the “primary”
mark distribution pq, we expect that the final distribution of the marks
i in the pattern is going to be skewed with respect to 1, for small
values of . As showed in Figure 1, big radii are going to be more likely
to be rejected than small radii. As we approach the Boolean model this
does not happen.

Figures 4 and 5 show the Monte Carlo empirical mark distribution
for a sample of 50 Strauss disc patterns and the theoretical “primary”
mark distribution for different values of v and r, for § = 50 for uniform
and gamma mark distributions, respectively. We notice that the mark
distribution gets more skewed when <y is equal to zero or as r increases.
For the uniform “primary” distribution this effect is even bigger, given
the shape of the distribution. For the gamma distribution this effect
becomes smaller. This problem of getting a final mark distribution pu
too far from the “primary” mark distribution py may affect some of our
simulation studies when we have to guess the mark distribution.

Overall, this method of simulation seems to work well for Strauss
disc processes if we are careful not to get too close to the extreme cases.
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Figure 3: Box-plot of the number of points in 100 simulated patterns across ~y
with radii distribution I'(r/12,12) and 8 = 50.

4 Estimation of v

The Strauss disc process depends basically on parameters ([, which
is related to the intensity of the process, v, the so-called interaction
parameter, and a distribution of the marks (radii) . We concentrated
our effort on the estimation of v, fixing 8 and p. We considered known
methods including minimum-contrast, Takacs-Fiksel and pseudo-
likelihood for estimating y. We describe each method and present
respective simulation study results.

For all the simulations performed in this chapter we used the
Metropolis-Hastings algorithm described in Section 3.1. We fixed the
parameter 3 to be equal to 50 and considered as mark distributions
either uniform in [2r/3,4r/3], uniform in [r/2,3r/2], or gamma
I'[r/12,12], with r in {0.04,0.06}. Sample sizes of patterns were always
50 for estimation purposes. For comparison of the estimators we used
the mean square error, given by (¥ — 7)?/49 and the mean bias.

4.1

This method is being widely used, especially in goodness-of-fit tests
for point field models. Suppose we have access to some characterizing
function Uy from the point pattern depending on the parameter 9 from
the model considered. One example of how this method can be applied

Minimum-contrast method
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Figure 4: Empirical mark density function (dashed line) for a sample of
50 Strauss disc patterns with “primary” mark distribution Uniform|r/2,3r/2]
(solid line being the theoretical density).

consists in finding 9 that minimizes a Von-Mises-type statistic

J10G) = Vo)1 £(5) s,

where f(s) is a suitable weight function (Stephens, 1986).

Although this is a very simple method in principle, computing work
can be intensive if we cannot calculate Uy analytically. We focused on
the Strauss disc model and considered Uy to be the K-function that
depends on the interaction parameter «, which is our primary interest.
We fixed f(s) = 1. Thus we have that our minimum-contrast estimator
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Figure 5: Empirical mark density function (dashed line) for a sample of 50
Strauss disc patterns with “primary”mark distribution I'(r/12,12) (solid line
being the theoretical density).

of v is given by v which minimizes the integral

[ ) - K601 as,

for some appropriate tg.

Other functions can be used instead of the K-function, such as
the L-function, the pair correlation function or the nearest-neighbour
distance distribution function (Stoyan et al, 1987). We considered
the K-function for purposes of comparison among methods and used
estimator proposed by Ripley (1979a) for estimating this function.

As we do not have an explicit analytical form for the K-function
for Strauss disc processes, we approached this problem by simulating
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100 patterns and calculating the MCMC average of the estimated K-
function.

Figures 6 and 7 show, respectively, the mean square error and the
mean bias of 50 estimates of y for all considered methods, for different
mark distributions. In Figure 6 we noticed that, for the minumum-
contrast estimator, the mean square error is slightly smaller overall for
the mean radius » = 0.06. In Figure 7, we see that the mean bias is
significantly higher in absolute value at extreme values of  for the same
estimator, what makes this method not attractive for these particular
cases of Strauss disc processes.

4.2 Pseudo-likelihood method

Goulard et al. (1996) gave a general definition and derived the pseudo-
likelihood function for marked Gibbs point processes. They developed
formulae for two particular cases, the bivariate Gibbs point processes
and the Strauss disc processes. Further, they applied the maximum
pseudo-likelihood for one data set for each of the cases. For the bivariate
Gibbs point process, they presented simulation results. We present here
their formulae for Strauss disc processes and describe an algorithm for
the pseudo-likelihood estimator.

We are going to use the same notation as in Section 2, but definitions
here require a reparametrization, in order to better understand the basis
for the methodology. Consider a marked point process ¥ = {([z;, 7]},
with finite number of points on a bounded space 2 and marks on A C
[0,00) with density function p. Let z = (z1,...,z,), 7 = (1, ...,7,) and
consider [z;,r;] to be a disc with radius r; centered at z;. A general
pairwise interaction process has density

frpla,r) =z " [T ol 2 — 2 |l risrji), (2)

1<j

where ¢ : Q@ x Q@ x A x A — [0, 00).
With appropriate reparametrization, we can write 2 in the form

foa(m,r) = 2z exp{—na =Y _ ol i —z;j ||, 7i,m5;0)}, (3)
i<j

with § = —logy and a = —log 3, where p : O X Q@ X A X A — (—oc, 00)
is called the mark pair potential function, and a : Q@ — (—oc,00)
is the mark chemical activity function. The function ¢ characterizes
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interactions between marked points and a describes the ability of the
system to receive a point.

Goulard et al.  (1996) considered the mark chemical activity
to depend on the marks instead of being a constant, as a way of
dealing with the problem that we do not have access to the “primary”
distribution function of the marks (the mark distribution if we had no
interaction). They defined the pseudo-likelihood (PL) function of first
order by

logPL(l)(u,H;\I/) = — Z E,o(xi i, U — 0[x;,1i])
[zi,ri]e®

//PTp BEyp(& e, ¥)) pldre) dE, (4)

with

Eyo(zi,ri, W) = alrav) + Y @i, y;,7i,75:0); (5)
lyj.rilew

being the local energy at [z;, r;] with respect to ¥, «( - ;v) and ¢( - ;0),

the parametric models for the chemical activity and pair potential,

respectively, and 6 and v = {vq, -, 14}, with k£ being the number of

subsets constituting the partition of A (see below), are the parameters
to be estimated.

The Strauss disc process has pair potential function given by
(| zi —zj ||, risr30) = 0-1(|| 2 — 25 |[< i +75), 6>0. (6)

Goulard et al. (1996) fixed the mark space to be A = [Dy, D], where D
is the minimum and D the maximum of the disc radii from the observed
values, and considered the chemical activity as a step function, i.e. for
the partition Dy < -+ < D; 1 < D;<--- < Dp=Dof A a(r;;v) =y
on (D; 1, D;]. Thus the pseudo-likelihood function (4) takes the form

logPL(v,0; V) =

Z Z v 1 (D;- 1,D1 )

[x,r;]€W =1

0 Y Y tlm-al<nen) ()

[i,r;]€W [x,1;]€EW if]

_ o 1
D — D0|//Do Xp( = v (Dlﬂ,Dz}(Tﬁ)

1

0 Y (& |\§r5+7~j)) dre de.

[zjrjlev
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Thus the pseudo-likelihood estimators for the parameters are given by
the values of vy, ---, v and 0 that maximize (7).

We describe now the algorithm that was used to calculate the
estimator of the parameter of interest 6. Let’s take

S re)= > 1[&—mz5I<re+1y),

[zjr;]lew

ss= > X illwm-zl<n+r)

[@i,mi] €W [x),r;]€W, 54

and
'f'l = Z 1(Dl,1,D1)(Ti)'
[zi,ril€eW
Then
OlogPL(v,0; 1)) b, e / / . 0S(E.1¢)
' =7 4+ = 18 dre dE, (8
81/1 |D*DU‘ D;_q ¢ 5 ( )

dlog PL(v, 0; 1)

9 = 0 we have that
2]

and setting

e Y rl

‘D — D0| fA f3171 6—93(5,7"6) d’f’g dé—

(9)
On the other hand, if we take the derivative of the pseudo-likelihood

with respect to 6 and substitute (9), we get

OlogPL(v,0;1)
06

=SS+ Z rt T (0 (10)

with
NS e 05T (¢ re) dre de

A
l( ) fA f[[))llil e—HS(S,Tg) d’)"g df

The pseudo-likelihood estimator of € is the solution of the equation
OlogPL(v,0:4) _ 0

In terms of computing the estimator, we need an algorithm to find
the value of J;(f). An interpretation of .J;(f) can be made as follows:
Note that the function S(§,7¢) of the process evaluates the number of

discs in the process that overlap a disc centered at £ with radius r¢.
Thus S(&,-) is a counting process and each r¢ can be considered as

14



the “time” for the i-th interaction in a particular process observed in
a window. Therefore we can let r¢ vary over the range of integration
and sum up the areas of the rectangles formed by the step functions
depending on S(§,7¢) to calculate the inner integrals in J;(f). We can
approximate the outer integrals with respect to ¢ by selecting random
points in the window of interest and averaging over the inner integral
using Monte Carlo.

In the simulation, we had a sample of 50 Strauss disc processes,
for which we calculate the pseudo-likelihood estimators. We considered
a grid of 500 points in the window that is the unit square in R2 to
approximate the integrals.

Figures 6 and 7 show that this estimator has a stable performance
for the cases we considered. We see that the estimator improves its
performance slightly when the mean radius is bigger, which it is to be
expected. In Figure 7 we see that a bias is introduced for the smaller
mean radii for big values of 7, most probably because these cases get
very close to the Boolean pattern. But overall we can say this method
has nice properties.

4.3 Takacs-Fiksel method

Using the same reparametrization used in the last section, we say
that the distribution of a homogeneous and isotropic marked Gibbs
field satisfies some continuity properties and the following mean-value
relation :

A [ Eop(T(W,1) M(dr) = (11)

/E T(V,r) exp {a(r) — Z o(|| i ||, 74,7 9)} M (dr),

[zi,ri]€Y

where M is the distribution function of the marks, M; is the “primary”
distribution funtion, and Ey, is the Palm mean-value operator (gives
means under the condition that there is a point with the mark r at 0)
(Stoyan and Stoyan, 1994).

Equation 11 is a generalization of the mean-value relation for
unmarked Gibbs point processes. The idea of the Takacs-Fiksel method
is to choose a series of test functions T, (¥,r), v = 1,---,V, where V
is at least equal to the dimension of («,6), compute estimates Ly (v, 6)
and R,(a,0) of the left and right sides of (11) for each T, (¥,r), and
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estimate (o, ) to minimize the sum of squares

14

S(0,0) = 3 {Eu(e60) — Ru(,0)} (12)

v=1

Since Takacs (1983) proposed this estimation method, various test
functions T, have been considered, especially for the unmarked case.
According to Stoyan and Stoyan (1994), experience shows that with
point processes that present regularity (or inhibitory processes),

T,(V) = N(t,) = number of points z; in ¥ with || z; [|[<,

is preferable. The advantage of using this test function is that we get
A2 K (t,) on the left side of (11). For the case of marked point processes,
of course we would be using a marginal test function, since it does not
depend on the marks explicitly. But we should consider the fact that the
K-function indirectly depends on the marks, since the distance between
points depends on the marks. Besides, the right side takes into account
the “primary” mark distribution. If we knew M; or could estimate it
efficiently, maybe we would be able to compensate for the estimation of
0.

In the previous section, we considered the pseudo-likelihood
estimators for («, ). If we consider a little different characterization
of the mean-value relation given by

./nm Y h(wi,ri, U ([, i) P(dy) =

[2i,m3

lew
'/A /Q '/QxA h(zi,ri, ¥) exp(—E(x;, ri,¢)) P(di) dx; M (dr;),

where ¥ — §([z;,7;]) can be interpreted as the point process without
the point z;, then the pseudo-likelihood estimators could be considered

as a particular case of the Takacs-Fiksel estimators. The test
functions in that case are hy(z;,7;, V) = W and ho(z;, 7, V) =

890(:327 TjsTiyTy; 0)

I , with functions o and ¢ as in (5). Based on this
fact, Goulard et al. (1996) expressed their concern with respect to the
advantage the pseudo-likelihood estimator considered by them would
have over other Takacs-Fiksel estimators.

In order to make a comparison with the pseudo-likelihood method
and the minimum-contrast based on the K-function presented in the
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first section, we considered the Takacs-Fiksel estimator based on the
K-function, that is, considering the test functions of the kind N (¢,).
The left side of (11) is defined by the K-function with which we can
use Ripley’s estimator (Ripley, 1979a). The right hand side can be
estimated by

Bo(e8) = —— S5 Nj(t)expd —a— 3 ol 2 —y; | riow)

Ty T :
vt =1 7=1 [.’I?Z',Ti}E\I/

where the y; form a lattice of n, points in W, u; form a sample of n,,
marks from the distribution chosen to estimate M;, and N,(t,) denotes
the number of events [z;,r;] with || z; — y; |< 7 + ;.

To implement (12), we used a regularly spaced grid of n, = 81
fixed points in the unit square, V = 5 and ¢, = 0.05v. We chose
these values trying to get a reasonable but not too expensive estimator,
computationally speaking. Of course the accuracy of the estimation can
always be improved.

We considered for the estimation the same cases we considered in
the pseudo-likelihood estimation in terms of mean radius, distributions
of the marks and . As the distribution from which we sample the
uy’s (weight distribution), we considered the uniform distribution (as in
the pseudo-likelihood method) and the distribution we used to generate
samples of the Strauss disc processes (u1).

Figure 6 shows the mean square error. There is little difference
between the two weight distributions results (curves TFM and TFU)
when we have a gamma distribution as “primary” distribution. This
means that the estimator is not sensitive to the choice of weight
distribution for the cases we considered. Figure 7 shows that a
consistent bias is present, although small. The bias is slightly bigger for
the smaller mean radius in this case too.

4.4 Comparison of methods

As far as the cases we considered here, the pseudo-likelihood estimator
proposed by Goulard et al. (1996) presented the best performance in
terms of estimation of the parameter . For comparison purposes we

have that the standard deviation for the mean square error (M SE) can

be approximated by MSE %, with k& being the degrees of freedom

(sample size minus one) and we can also calculate the standard deviation
of the mean bias for the sample. We found that the standard deviation
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for the mean square error is approximately 0.038 for the Takacs-Fiksel
methods and maximum pseudo-likelihood method and 0.054 for the
minimum-contrast methods. The standard deviation for the mean bias
is approximately 0.004 for the Takacs-Fiksel methods and maximum
pseudo-likelihood method and 0.005 for the minimum-contrast methods.

The minimum-contrast estimator presents a significant bias,
compared to the others (Figure 7). Further, the mean square errors are
higher than for the other two methods, especially for strong interactions
(Figure 6). But an improvement of performance with respect to both
bias and mean square error can be seen as we increase the radius mean.
If we look at both Figures 6 and 7, we see that the curves approach the
ones for the pseudo-likelihood estimator.

The Takacs-Fiksel estimators based on the K-function present closer
results to the pseudo-likelihood than to the minimum-contrast method
in terms of mean square error (Figure 6), but there is the problem of
bias appearing for all considered cases (Figure 7). The choice of the
weight distribution seemed not to matter when the radii distribution
was gamma. We can notice almost no difference between the curves
TFM and TFU in both Figure 6 and Figure 7. Most probably what
happens with respect to the bias is that although we introduced in the
equation some correction for the marks on the right side of the mean-
value relation equation, we are losing some information related to the
intensity of the marks. This is taken care of in the pseudo-likelihood
estimation when they consider the chemical activity as nonconstant.

Thus, although Goulard et al. (1996) implied that the choice of
the weight distribution may influence the pseudo-likelihood estimation
performance, which means that the estimator can still be improved,
the best results were found using the uniform distribution as weight
over the cases and methods of estimation we considered. In this case,
the mean bias is consistently around zero and smaller than any other
methods, considering their standard deviation (Figure 7) and the mean
square errors are smaller than for the minimum-contrast (Figure 6).
However, it would merit further investigations in terms of other weight
distributions.

An important feature of this study is that we may be able to get
nice comparison tests of Strauss disc patterns based on this pseudo-
likelihood estimator for the interaction parameter.
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5 Conclusions

We focused our studies on the interaction parameter of the Strauss disc
process 7, which in general is of the greatest interest in applications. A
question that arises naturally is how we could estimate this parameter
in the case of Strauss disc processes. The issue was considered in
earlier work by Goulard et al. (1996) using the pseudo-likelihood
method, but studies about properties has not been reported. We
compared three methods, pseudo-likelihood, minimum-contrast based
on the K-function and the Takacs-Fiksel method also based on the K-
function through MCMC simulation. The pseudo-likelihood estimator
was considering the uniform distribution as the weight distribution,
while for the Tacaks-Fiksel we considered both uniform and gamma
distribution. Our simulation study indicated that the pseudo-likelihood
estimator for the interaction parameter has the best performance,
compared to the minimum-contrast and the Takacs-Fiksel method.
The pseudo-likelihood estimator was shown to be robust in terms of
varying mark distribution shape and size of the discs (mean radius).
Further investigations should be done for the pseudo-likelihood method
using weight distributions other than the uniform. New methods like
maximum likelihood and even nonparametric methods could be also
investigated.

Another issue that was not covered here which deserves some
investigation is about the intensity of the processes, which depends
on the interaction parameter, distribution of the marks, and on the
intensity S of the process when y=1. This is related to the chemical
activity, and which was considered by Goulard et al. (1996) as a
corrector factor for the estimation, most probably the reason for the
estimator to present better properties than the others.
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Figure 6: Mean square error versus 7 for Strauss disc patterns with mean
radius equal to r, for estimates of ~, obtained using the methods minimum-
contrast (MC) for the K-function, pseudo-likelihood (PL), Takacs-Fiksel using
the mark distribution as weight (TFM) and the uniform distribution (TFU).
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Figure 7: Mean bias versus 7 for Strauss disc patterns with mean radius
equal to 7, for estimates of v, obtained using the methods minimum-contrast
(MC) for the K-function, pseudo-likelihood (PL), Takacs-Fiksel using the
mark distribution as weight (TFM) and the uniform distribution (TFU).
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