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Methods for Estimating the Intera
tion Parameter ofStrauss Dis
 Pro
essesElaine Borghi 1Universidade Estadual de CampinasBrian S. YandellUniversity of Wis
onsinAbstra
tThe Strauss dis
 pro
ess 
an potentialy model many appli
ationsin biologi
al systems, physi
s, environmental s
ien
e and other �elds.We perform a simulation study to 
ompare methods of estimating theintera
tion parameter of the density of this pro
ess. We 
onsideredminimum-
ontrast, pseudo-likelihood and Taka
s-Fiksel estimators andfor this 
ase a pseudo-likelihood estimator presented better performan
e
ompared to the others.Keywords : Strauss dis
 pro
ess, Metropolis-Hasting algorithm, pseudo-likelihood, minimum-
ontrast, Taka
s-Fiksel.1 Introdu
tionMany of the applied problems that are related to spatial statisti
s �tinside a spe
ial 
lass of point pro
esses, the pairwise intera
tion pointpro
esses. This parti
ular 
ase of Gibbs point pro
ess is widely used inappli
ations not just be
ause they eÆ
iently model many patterns thatappear in physi
s, me
hani
s, environmental s
ien
es and other �elds(e.g. Per
us, 1964; Penttinen et al., 1992), but also be
ause they havefew parameters to be estimated.There is a 
onsiderable literature related to the inferen
e on pairwiseintera
tion point pro
esses in general. Various methods were proposedthat apply to more general Gibbs point pro
esses. Maximum likelihoodfor spatial point pro
esses was studied by Ogata and Tanemura (1981),and later extended to marked point pro
esses (Ogata and Tanemura,1Address for 
orresponden
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1985). Fiksel (1984) generalized the idea earlier introdu
ed by Taka
sand proposed the Taka
s-Fiksel method of estimating parametrized pairpotentials of gibssian point pro
esss. The pseudo-likelihoodmethod was
onsidered by Jensen and M�ller (1991) for general Markov spatial pointpro
esses. Later, Goulard et al. (1996) investigated this method formarked Gibbs point pro
esses using a pseudo-likelihood approa
h, andworked on 
ases like the bivariate Gibbs point pro
ess and the Straussdis
 pro
ess. The pseudo-likelihood method is a parti
ular 
ase of theTaka
s-Fiksel method for suitable test fun
tions. Some non-parametri
estimation methods were proposed in the past few years but we will not
over them in the present paper.One approa
h that we 
onsider is a very simple and well knownmethod, the method of minimum-
ontrast. Although there are manyfun
tions that 
an be used for this method, here we 
onsider the redu
edse
ond moment measureK-fun
tion. This method appears frequently inthe literature, espe
ially for goodness-of-�t tests or exploratory analysis(Stoyan and Stoyan, 1994; Stoyan et al., 1987; Cressie, 1991).Although the literature is broad in this subje
t, studies of propertiesof di�erent estimators were not throughout investigated for the marked
ase, espe
ially in terms of 
omparison of performan
e. Diggle etal. (1994) investigates three methods of estimation for pairwiseintera
tion point pro
esses, maximum likelihood, pseudo-likelihood andTaka
s-Fiksel, presenting a 
omparative simulation study. In the samedire
tion, we perform a simulation study for 
omparison of estimationmethods for the parti
ular 
ase of the Strauss dis
 pro
ess in this paper.Properties and the behavior of ea
h of the estimators for the intera
tionparameter are investigated.2 The Strauss dis
 pro
essRandom dis
 pro
esses (Baddeley and M�ller, 1989) are spe
ial 
asesof the germ-grain model (Stoyan et al., 1987) whi
h 
an be used todes
ribe a pattern of randomly distributed dis
s (or spheres in higherdimensional 
ase), where dis
s may overlap.Consider a marked point pro
ess 	 = f[xi; ri℄g with �nite numberof points on a bounded spa
e S and marks on � � [0;1), wherethe density is the Radon-Nikodym derivative with respe
t to thedistribution of a homogeneous Poisson pro
ess (whi
h, with no lossof generality, 
an be taken to have unit rate). Let x = (x1; :::; xn),2



r = (r1; :::; rn), and 
onsider [xi; ri℄ to be a dis
 with radius ri 
enteredat xi. A Strauss dis
 pro
ess has densityf(x; r) = z�n
s(x; r); (1)where � is a parameter related to the intensity of the point pro
ess, 
is the intera
tion parameter, n is the number of points in 	 and s(x; r)is the number of pairs of points xi and xj that are 
loser than ri + rjapart in 	.3 Simulation of the Strauss dis
pro
essStatisti
al inferen
e for spatial point pro
esses 
an be very 
ompli
ate,whi
h explains why Markov 
hain Monte Carlo methods are being usedextensively in this �eld. Some of these methods of simulating a Markov
hain are 
onditional on the number of points n, what makes themsimple in terms of 
omputational aspe
ts (Ripley, 1979b). Methodsthat are un
onditional on the number of points seem to be more
ompli
ate but the 
hoi
e must be made depending on the goal ofthe study. For the present resear
h, we have to generate Strauss dis
pro
esses and 
onditioning on the number of points 
ould interfere inan undesirable way on the �nal distribution of the pro
ess, based onthe theory involved. For these reasons, we de
ided on an approa
h thatis un
onditional on the number of points.3.1 A Metropolis-Hastings algorithmGeyer and M�ller (1994) suggested a simulation pro
edure for theun
onditional 
ase using a Metropolis-Hastings algorithm (Hastings,1970). This algorithm is simpler than the spatial birth-and-deathte
hnique and 
an be used for Markov 
hain Monte Carlo methods.We now give a brief review of it.For an usual �nite point pro
ess de�ned on a bounded Borel set S �<d equipped with the Borel �-�eld and Lebesgue measure � restri
ted toS, suppose the point pro
ess has density � on (
;F) whi
h is absolutely
ontinuous with respe
t to � , the density of the usual homogeneousPoisson pro
ess with intensity 1 restri
ted to S. The fun
tion f = d�=d�is the density of the point pro
ess with respe
t to the Poisson pro
ess.3



Informally, 
 = S1n=0
n, where 
n=f fx1; � � � ; xng � Sg is the set ofall point 
on�gurations of n (not ne
essarily distin
t) points in
ludedin S. Geyer and M�ller (1994) proposed for this Metropolis-Hastingsalgorithm the transition kernel to be a mixture of two transition kernelsQ0, 
ontrolling displa
ements, and Q1, 
ontrolling deletion and additionof points,Qp(F j x) = (1� p) Q0(F j x) + p Q1(F j x); 0 � p � 1;for any F 2 F . This transition kernel satis�es the 
ondition for theMarkov 
hain to be time reversible, given that Q0 and Q1 satisfy thesame 
ondition.Q0(: j x) is 
on
entrated on Hn = 
n \ H with H = fx 2 
n jf(x) > 0g and Q1(: j x) is 
onstru
ted so that it is 
on
entrated onHn�1 [Hn [Hn+1 (or H0 [H1 if n = 0). In this way, with probabilityq(x), we generate a new point � from some density b(x; �) with respe
tto �(d�), and with probability 1� q(x) we either delete a random point� 2 x whi
h is sele
ted with some probability d(x; �), or if n = 0 we donothing.A

ording to the authors, the time reversibility holds if, denotingthe a

eptan
e probability by A1, andq(x[ �) < 1; d(x; �) > 0; q(x) > 0; b(x; �) > 0 whenever x[ � 2 H;A1(x j x [ �) = ( minf1; 1=r(x; �)g if x [ � 2 H;0 otherwise;and A1(x [ � j x) = ( minf1; r(x; �)g if x [ � 2 H;0 otherwise;where r(x; �) = f(x [ �)f(x) 1� q(x [ �)q(x) d(x; �)b(x; �) if x [ � 2 H:Geyer and M�ller 
onsidered one of the simplest situations for some
ases of point pro
esses like the Strauss pro
ess, whenq(�) � 12 ; b(�; �) � 1�(S) and d(x; �) � 1n+ 1 if x 2 
n:In our 
ase, for the Strauss dis
 pro
ess, we have to 
onsider themark distribution �1 (for the radii), whi
h we will 
onsider here as the4



\primary" mark distribution (as in Stoyan and Stoyan (1994), Se
tion16.3). So we have the probability of birth of a dis
 given byb(�; �) � �1(�)�(S) ;and f(x [ �)f(x) = � 
s(�) �(�);where s(�) is the number of dis
s in the pro
ess that overlap with a dis

entered at � and � and 
 are the parameters of the Strauss dis
 pro
ess(as in Equation 1). Note that, for the density of the points, the markdistribution � may be di�erent from �1, but we do not have 
ontrolover �. Therefore, we initially 
onsider them to be equal, so that themark distributions 
an
el. Later we examine how robust this is throughsimulations. A relation between � and �1 is given by a mean-relationwith respe
t to the Palm distribution (Stoyan and Stoyan, 1994).Using similar notation introdu
ed in Se
tion 2, we denote 
n=ffx1; � � � ; xng � Sg and �n=f fr1; � � � ; rng � [0;1)ng.The algorithm is 
onstru
ted su
h that, given that the 
urrent stateof the Markov 
hain is 	 = f(x1; r1); � � � ; (xn; rn)g, we generate the nextproposal 	0 as follows.If n = 0 then the proposal is either(a) remain in the point 
on�guration, or(b) be
ome a single dis
 with uniformly distributed 
enter in S andrandomly 
hosen radius from �1.and if n � 1 then the proposal is either obtained by(
) repla
ing a randomly pi
ked dis
 in 	 by a dis
 with uniformlydistributed 
enter in S and randomly 
hosen radius from �1, or(d) deleting a randomly pi
ked dis
 in 	, or(e) adding a new dis
 with uniformly distributed 
enter in S andrandomly 
hosen radius from �1 to 	.Here (a) and (b) o

ur with probabilities 1 � p=2 and p=2,respe
tively, while (
), (d),(e) have probabilities 1 � p, p=2, p=2,respe
tively. Note that 0 � p � 1 and is related to the optimization5



of the simulation pro
ess. Then in any of the 
ases, the proposal 	0 isa

epted with probabilityA(	0 j 	) = min 1; f�(S) � 
s(�)gm�n n!m! ! ; if 	0 2 
m ��m:This is 
alled a basi
 step of the 
hain. Geyer and M�ller (1994)investigated this algorithm for the Strauss point pro
ess (unmarked),among others. They reported that in this 
ase p = 1 (dis
ardingrepla
ements) is optimal. Also, a

ording to the authors, the Markov
hain appears to rea
h equilibrium, starting from the empty state, infewer than 2,500 basi
 steps, although they 
onsider a \burn-in" periodof 40,000 basi
 steps to be safe. They 
onsidered a 200 basi
 step spa
ingbetween samples.3.2 Study of the simulation of Strauss dis
pro
essesThere are some aspe
ts of this simulation method that have not beeninvestigated as far as we know for the spe
i�
 
ase of a Strauss dis
pro
ess. It would be worth exploring the properties of the simulationmethod in order to get some feeling about the behavior of, for example,the intensity of the pro
esses generated or the mark distribution, as wevary the intera
tion parameter 
. Be
ause we are going to fo
us onthe e�e
t of 
 over the number of points of the generated Strauss dis
pro
ess, we �x � = 50. In some of our preliminary investigations, wenoti
ed that, if � is too big with the mean radii we are 
onsidering,the �nal mark distributions of the generated patterns are skewed withrespe
t to the "primary" distribution.On the other hand, if � is too small and we have a too sparse pattern,it is hard to dete
t any e�e
t of 
hanges in the parameter 
.Although we know that 
hoosing the an optimal \burn-in" periodand spa
ing between the samples is very useful and important, we arealso aware of the time that it would take for us to investigate those.As an attempt, we used the information given by Geyer and M�ller(1994) in the Strauss point pro
ess 
ase and do some diagnosti
 usingsimple Time Series te
hniques. In some of the problems we investigated,40,000 basi
 steps be
ame too expensive in terms of 
omputational time,so we de
reased the \burn in" period to 20,000, and we always usedp = 1. Choosing the number of basi
 steps betwen samples equal to 200,6
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Figure 1: Per
entage of reje
tion versus 
 for the simulated patternswe found that the auto
orrelation fun
tion gives us a weak 
orrelation(between -0.2 and 0.2 for most of the 
ases, just getting 
lose to itsmaximum absolute value, 0.4, when 
 gets 
loser to 1).The estimate of the probability of reje
tion is shown in Figure 1.The behavior seems no to be di�erent for the 
onsidered distributions.The per
entage of reje
tion de
reases as 
 in
reases and it is overallhigher for bigger mean radius.The random number generator used was from Press et al. (1994),the subroutine RAN2. In order to redu
e the boundary e�e
ts in oursimulation studies, we simulated the point patterns in a bigger window(square (�0:5; 1:5) � (�0:5; 1:5)), although our region of interest wasalways 
onsidered to be the unit square in <2.Figure 2 shows some examples of Strauss dis
 patterns generatedusing this algorithm for di�erent 
 values.In order to look at the behavior of the intensity of the patternsfrom the simulations, we have in Figure 3 box-plots for 100 patternsfor 
 varying from zero, non-interse
ting dis
 pro
ess, to one, when wehave a Boolean model (homogenous Poisson pro
ess with independentdis
 radii). We 
onsidered the 
ase where the radii have �(r=12; 12)\primary" distribution for mean radius r equal to 0.04 and 0.06. We
an see that, as r in
reases, the slope of the 
urve in
reases, whi
hmeans we have a bigger 
hange in the number of points with respe
t to
hange in the parameter 
 when r is bigger. We have some indi
ationthat the intensity of the Strauss dis
 pro
esses does not have a linear7
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Figure 2: Examples of Strauss dis
 patterns for a �(0:005; 12) markdistribution (mean radius r equal to 0.06) on an unit square (d = 0:06,� = 50).form with respe
t to 
, but we did not investigate further about thisissue.As we initiate the pro
ess of generating marks from the \primary"mark distribution �1, we expe
t that the �nal distribution of the marks� in the pattern is going to be skewed with respe
t to �1, for smallvalues of 
. As showed in Figure 1, big radii are going to be more likelyto be reje
ted than small radii. As we approa
h the Boolean model thisdoes not happen.Figures 4 and 5 show the Monte Carlo empiri
al mark distributionfor a sample of 50 Strauss dis
 patterns and the theoreti
al \primary"mark distribution for di�erent values of 
 and r, for � = 50 for uniformand gamma mark distributions, respe
tively. We noti
e that the markdistribution gets more skewed when 
 is equal to zero or as r in
reases.For the uniform \primary" distribution this e�e
t is even bigger, giventhe shape of the distribution. For the gamma distribution this e�e
tbe
omes smaller. This problem of getting a �nal mark distribution �too far from the \primary" mark distribution �1 may a�e
t some of oursimulation studies when we have to guess the mark distribution.Overall, this method of simulation seems to work well for Straussdis
 pro
esses if we are 
areful not to get too 
lose to the extreme 
ases.
8
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ross 
with radii distribution �(r=12; 12) and � = 50.4 Estimation of 
The Strauss dis
 pro
ess depends basi
ally on parameters �, whi
his related to the intensity of the pro
ess, 
, the so-
alled intera
tionparameter, and a distribution of the marks (radii) �. We 
on
entratedour e�ort on the estimation of 
, �xing � and �. We 
onsidered knownmethods in
luding minimum-
ontrast, Taka
s-Fiksel and pseudo-likelihood for estimating 
. We des
ribe ea
h method and presentrespe
tive simulation study results.For all the simulations performed in this 
hapter we used theMetropolis-Hastings algorithm des
ribed in Se
tion 3.1. We �xed theparameter � to be equal to 50 and 
onsidered as mark distributionseither uniform in [2r=3; 4r=3℄, uniform in [r=2; 3r=2℄, or gamma�[r=12; 12℄, with r in f0:04; 0:06g. Sample sizes of patterns were always50 for estimation purposes. For 
omparison of the estimators we usedthe mean square error, given by P(
̂ � 
)2=49 and the mean bias.4.1 Minimum-
ontrast methodThis method is being widely used, espe
ially in goodness-of-�t testsfor point �eld models. Suppose we have a

ess to some 
hara
terizingfun
tion U# from the point pattern depending on the parameter # fromthe model 
onsidered. One example of how this method 
an be applied9
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Figure 4: Empiri
al mark density fun
tion (dashed line) for a sample of50 Strauss dis
 patterns with \primary" mark distribution Uniform[r/2,3r/2℄(solid line being the theoreti
al density).
onsists in �nding # that minimizes a Von-Mises-type statisti
Z [Û(s)� U#(s)℄2 f(s) ds;where f(s) is a suitable weight fun
tion (Stephens, 1986).Although this is a very simple method in prin
iple, 
omputing work
an be intensive if we 
annot 
al
ulate U# analyti
ally. We fo
used onthe Strauss dis
 model and 
onsidered U# to be the K-fun
tion thatdepends on the intera
tion parameter 
, whi
h is our primary interest.We �xed f(s) = 1. Thus we have that our minimum-
ontrast estimator10
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Figure 5: Empiri
al mark density fun
tion (dashed line) for a sample of 50Strauss dis
 patterns with \primary"mark distribution �(r/12,12) (solid linebeing the theoreti
al density).of 
 is given by 
 whi
h minimizes the integralZ t00 [K̂(s)�K
(s)℄2 ds;for some appropriate t0.Other fun
tions 
an be used instead of the K-fun
tion, su
h asthe L-fun
tion, the pair 
orrelation fun
tion or the nearest-neighbourdistan
e distribution fun
tion (Stoyan et al, 1987). We 
onsideredthe K-fun
tion for purposes of 
omparison among methods and usedestimator proposed by Ripley (1979a) for estimating this fun
tion.As we do not have an expli
it analyti
al form for the K-fun
tionfor Strauss dis
 pro
esses, we approa
hed this problem by simulating11



100 patterns and 
al
ulating the MCMC average of the estimated K-fun
tion.Figures 6 and 7 show, respe
tively, the mean square error and themean bias of 50 estimates of 
 for all 
onsidered methods, for di�erentmark distributions. In Figure 6 we noti
ed that, for the minumum-
ontrast estimator, the mean square error is slightly smaller overall forthe mean radius r = 0:06. In Figure 7, we see that the mean bias issigni�
antly higher in absolute value at extreme values of 
 for the sameestimator, what makes this method not attra
tive for these parti
ular
ases of Strauss dis
 pro
esses.4.2 Pseudo-likelihood methodGoulard et al. (1996) gave a general de�nition and derived the pseudo-likelihood fun
tion for marked Gibbs point pro
esses. They developedformulae for two parti
ular 
ases, the bivariate Gibbs point pro
essesand the Strauss dis
 pro
esses. Further, they applied the maximumpseudo-likelihood for one data set for ea
h of the 
ases. For the bivariateGibbs point pro
ess, they presented simulation results. We present heretheir formulae for Strauss dis
 pro
esses and des
ribe an algorithm forthe pseudo-likelihood estimator.We are going to use the same notation as in Se
tion 2, but de�nitionshere require a reparametrization, in order to better understand the basisfor the methodology. Consider a marked point pro
ess 	 = f([xi; ri℄g,with �nite number of points on a bounded spa
e 
 and marks on � �[0;1) with density fun
tion �. Let x = (x1; :::; xn), r = (r1; :::; rn) and
onsider [xi; ri℄ to be a dis
 with radius ri 
entered at xi. A generalpairwise intera
tion pro
ess has densityf
;�(x; r) = z �nYi<j �(k xi � xj k; ri; rj ; 
); (2)where � : 
� 
����! [0;1).With appropriate reparametrization, we 
an write 2 in the formf�;�(x; r) = z expf�n��Xi<j '(k xi � xj k; ri; rj ; �)g; (3)with � = � log 
 and � = � log �, where ' : 
�
����! (�1;1)is 
alled the mark pair potential fun
tion, and � : 
 ! (�1;1)is the mark 
hemi
al a
tivity fun
tion. The fun
tion ' 
hara
terizes12



intera
tions between marked points and � des
ribes the ability of thesystem to re
eive a point.Goulard et al. (1996) 
onsidered the mark 
hemi
al a
tivityto depend on the marks instead of being a 
onstant, as a way ofdealing with the problem that we do not have a

ess to the \primary"distribution fun
tion of the marks (the mark distribution if we had nointera
tion). They de�ned the pseudo-likelihood (PL) fun
tion of �rstorder bylogPL(1)(�; �; 	) = � X[xi;ri℄2	E�;�(xi; ri;	� Æ[xi; ri℄)� Z
 Z� exp (�E�;�(�; r� ;	)) �(dr�) d�; (4)with E�;�(xi; ri;	)) = �(ri; �) + X[yj ;rj ℄2	'(xi; yj ; ri; rj ; �); (5)being the lo
al energy at [xi; ri℄ with respe
t to 	, �( � ; �) and '( � ; �),the parametri
 models for the 
hemi
al a
tivity and pair potential,respe
tively, and � and � = f�1; � � � ; �kg, with k being the number ofsubsets 
onstituting the partition of � (see below), are the parametersto be estimated.The Strauss dis
 pro
ess has pair potential fun
tion given by'(k xi � xj k; ri; rj ; �) = � � 1(k xi � xj k� ri + rj); � > 0: (6)Goulard et al. (1996) �xed the mark spa
e to be � = [D0;D℄, where D0is the minimum and D the maximum of the dis
 radii from the observedvalues, and 
onsidered the 
hemi
al a
tivity as a step fun
tion, i.e. forthe partition D0 < � � � < Dl�1 < Dl < � � � < Dk = D of �, �(ri; �) = �lon (Dl�1;Dl℄. Thus the pseudo-likelihood fun
tion (4) takes the formlogPL(�; �; 	) =� X[xi;ri℄2	 kXl=1 �l 1(Dl�1;Dl℄(ri)� � X[xi;ri℄2	 X[xj ;rj ℄2	;i 6=j 1(k xi � xj k� ri + rj) (7)� 1jD �D0j Z
 Z DD0 exp � kXl=1 �l 1(Dl�1;Dl℄(r�)� � � X[xj ;rj ℄2	1(k � � xj k� r� + rj)1A dr� d�:13



Thus the pseudo-likelihood estimators for the parameters are given bythe values of �1; � � � ; �k and � that maximize (7).We des
ribe now the algorithm that was used to 
al
ulate theestimator of the parameter of interest �. Let's takeS(�; r�) = X[xj ;rj ℄2	1(k � � xj k� r� + rj);SS = X[xi;ri℄2	 X[xj ;rj ℄2	;j 6=i1(k xi � xj k� ri + rj)and rl = X[xi;ri℄2	1(Dl�1;Dl)(ri):Then�logPL(�; �; )��l = �rl + e��ljD �D0j Z� Z DlDl�1 e��S(�; r�) dr� d�; (8)and setting � logPL(�; �; )��l = 0 we have thate��̂ljD �D0j = rlR� RDlDl�1 e��S(�; r�) dr� d� : (9)On the other hand, if we take the derivative of the pseudo-likelihoodwith respe
t to � and substitute (9), we get�logPL(�; �; )�� = �SS + kXl=1 rl Jl(�); (10)with Jl(�) = R� RDlDl�1 e��S(�; r�)S(�; r�) dr� d�R� RDlDl�1 e��S(�; r�) dr� d� :The pseudo-likelihood estimator of � is the solution of the equation�logPL(�; �; )�� = 0.In terms of 
omputing the estimator, we need an algorithm to �ndthe value of Jl(�). An interpretation of Jl(�) 
an be made as follows:Note that the fun
tion S(�; r�) of the pro
ess evaluates the number ofdis
s in the pro
ess that overlap a dis
 
entered at � with radius r�.Thus S(�; �) is a 
ounting pro
ess and ea
h r� 
an be 
onsidered as14



the \time" for the i-th intera
tion in a parti
ular pro
ess observed ina window. Therefore we 
an let r� vary over the range of integrationand sum up the areas of the re
tangles formed by the step fun
tionsdepending on S(�; r�) to 
al
ulate the inner integrals in Jl(�). We 
anapproximate the outer integrals with respe
t to � by sele
ting randompoints in the window of interest and averaging over the inner integralusing Monte Carlo.In the simulation, we had a sample of 50 Strauss dis
 pro
esses,for whi
h we 
al
ulate the pseudo-likelihood estimators. We 
onsidereda grid of 500 points in the window that is the unit square in <2 toapproximate the integrals.Figures 6 and 7 show that this estimator has a stable performan
efor the 
ases we 
onsidered. We see that the estimator improves itsperforman
e slightly when the mean radius is bigger, whi
h it is to beexpe
ted. In Figure 7 we see that a bias is introdu
ed for the smallermean radii for big values of 
, most probably be
ause these 
ases getvery 
lose to the Boolean pattern. But overall we 
an say this methodhas ni
e properties.4.3 Taka
s-Fiksel methodUsing the same reparametrization used in the last se
tion, we saythat the distribution of a homogeneous and isotropi
 marked Gibbs�eld satis�es some 
ontinuity properties and the following mean-valuerelation :� Z E0;r(T (	; r))M(dr) = (11)Z E8<:T (	; r) exp24��(r)� X[xi;ri℄2 '(k xi k; ri; r; �)359=; M1(dr);whereM is the distribution fun
tion of the marks, M1 is the \primary"distribution funtion, and E0;r is the Palm mean-value operator (givesmeans under the 
ondition that there is a point with the mark r at 0)(Stoyan and Stoyan, 1994).Equation 11 is a generalization of the mean-value relation forunmarked Gibbs point pro
esses. The idea of the Taka
s-Fiksel methodis to 
hoose a series of test fun
tions Tv(	; r); v = 1; � � � ; V , where Vis at least equal to the dimension of (�; �), 
ompute estimates L̂v(�; �)and R̂v(�; �) of the left and right sides of (11) for ea
h Tv(	; r), and15



estimate (�; �) to minimize the sum of squaresS(�; �) = VXv=1nL̂v(�; �)� R̂v(�; �)o2 : (12)Sin
e Taka
s (1983) proposed this estimation method, various testfun
tions Tv have been 
onsidered, espe
ially for the unmarked 
ase.A

ording to Stoyan and Stoyan (1994), experien
e shows that withpoint pro
esses that present regularity (or inhibitory pro
esses),Tv(	) = N(tv) = number of points xi in 	 with k xi k� tvis preferable. The advantage of using this test fun
tion is that we get�2K(tv) on the left side of (11). For the 
ase of marked point pro
esses,of 
ourse we would be using a marginal test fun
tion, sin
e it does notdepend on the marks expli
itly. But we should 
onsider the fa
t that theK-fun
tion indire
tly depends on the marks, sin
e the distan
e betweenpoints depends on the marks. Besides, the right side takes into a

ountthe \primary" mark distribution. If we knew M1 or 
ould estimate iteÆ
iently, maybe we would be able to 
ompensate for the estimation of�. In the previous se
tion, we 
onsidered the pseudo-likelihoodestimators for (�; �). If we 
onsider a little di�erent 
hara
terizationof the mean-value relation given byZ
�� X[xi;ri℄2	h(xi; ri;	� Æ([xi; ri℄)) P (d ) =Z� Z
 Z
�� h(xi; ri;	) exp(�E(xi; ri;  )) P (d ) dxiM(dri);where 	 � Æ([xi; ri℄) 
an be interpreted as the point pro
ess withoutthe point xi, then the pseudo-likelihood estimators 
ould be 
onsideredas a parti
ular 
ase of the Taka
s-Fiksel estimators. The testfun
tions in that 
ase are h1(xi; ri;	) = ��(r; �)�� and h2(xi; ri;	) =�'(xi; xj ; ri; rj ; �)�� , with fun
tions � and ' as in (5). Based on thisfa
t, Goulard et al. (1996) expressed their 
on
ern with respe
t to theadvantage the pseudo-likelihood estimator 
onsidered by them wouldhave over other Taka
s-Fiksel estimators.In order to make a 
omparison with the pseudo-likelihood methodand the minimum-
ontrast based on the K-fun
tion presented in the16



�rst se
tion, we 
onsidered the Taka
s-Fiksel estimator based on theK-fun
tion, that is, 
onsidering the test fun
tions of the kind N(tv).The left side of (11) is de�ned by the K-fun
tion with whi
h we 
anuse Ripley's estimator (Ripley, 1979a). The right hand side 
an beestimated byR̂v(�; �) = 1nu ny nuXl=1 nyXj=1Nj(tv) exp8<:��� X[xi;ri℄2	'(k xi � yj k; ri; ul)9=; ;where the yj form a latti
e of ny points in W , ul form a sample of numarks from the distribution 
hosen to estimate M1, and Nj(tv) denotesthe number of events [xi; ri℄ with k xi � yi k� ri + ul.To implement (12), we used a regularly spa
ed grid of ny = 81�xed points in the unit square, V = 5 and tv = 0:05v. We 
hosethese values trying to get a reasonable but not too expensive estimator,
omputationally speaking. Of 
ourse the a

ura
y of the estimation 
analways be improved.We 
onsidered for the estimation the same 
ases we 
onsidered inthe pseudo-likelihood estimation in terms of mean radius, distributionsof the marks and �. As the distribution from whi
h we sample theul's (weight distribution), we 
onsidered the uniform distribution (as inthe pseudo-likelihood method) and the distribution we used to generatesamples of the Strauss dis
 pro
esses (�1).Figure 6 shows the mean square error. There is little di�eren
ebetween the two weight distributions results (
urves TFM and TFU)when we have a gamma distribution as \primary" distribution. Thismeans that the estimator is not sensitive to the 
hoi
e of weightdistribution for the 
ases we 
onsidered. Figure 7 shows that a
onsistent bias is present, although small. The bias is slightly bigger forthe smaller mean radius in this 
ase too.4.4 Comparison of methodsAs far as the 
ases we 
onsidered here, the pseudo-likelihood estimatorproposed by Goulard et al. (1996) presented the best performan
e interms of estimation of the parameter 
. For 
omparison purposes wehave that the standard deviation for the mean square error (MSE) 
anbe approximated by MSE q2k , with k being the degrees of freedom(sample size minus one) and we 
an also 
al
ulate the standard deviationof the mean bias for the sample. We found that the standard deviation17



for the mean square error is approximately 0.038 for the Taka
s-Fikselmethods and maximum pseudo-likelihood method and 0.054 for theminimum-
ontrast methods. The standard deviation for the mean biasis approximately 0.004 for the Taka
s-Fiksel methods and maximumpseudo-likelihoodmethod and 0.005 for the minimum-
ontrast methods.The minimum-
ontrast estimator presents a signi�
ant bias,
ompared to the others (Figure 7). Further, the mean square errors arehigher than for the other two methods, espe
ially for strong intera
tions(Figure 6). But an improvement of performan
e with respe
t to bothbias and mean square error 
an be seen as we in
rease the radius mean.If we look at both Figures 6 and 7, we see that the 
urves approa
h theones for the pseudo-likelihood estimator.The Taka
s-Fiksel estimators based on theK-fun
tion present 
loserresults to the pseudo-likelihood than to the minimum-
ontrast methodin terms of mean square error (Figure 6), but there is the problem ofbias appearing for all 
onsidered 
ases (Figure 7). The 
hoi
e of theweight distribution seemed not to matter when the radii distributionwas gamma. We 
an noti
e almost no di�eren
e between the 
urvesTFM and TFU in both Figure 6 and Figure 7. Most probably whathappens with respe
t to the bias is that although we introdu
ed in theequation some 
orre
tion for the marks on the right side of the mean-value relation equation, we are losing some information related to theintensity of the marks. This is taken 
are of in the pseudo-likelihoodestimation when they 
onsider the 
hemi
al a
tivity as non
onstant.Thus, although Goulard et al. (1996) implied that the 
hoi
e ofthe weight distribution may in
uen
e the pseudo-likelihood estimationperforman
e, whi
h means that the estimator 
an still be improved,the best results were found using the uniform distribution as weightover the 
ases and methods of estimation we 
onsidered. In this 
ase,the mean bias is 
onsistently around zero and smaller than any othermethods, 
onsidering their standard deviation (Figure 7) and the meansquare errors are smaller than for the minimum-
ontrast (Figure 6).However, it would merit further investigations in terms of other weightdistributions.An important feature of this study is that we may be able to getni
e 
omparison tests of Strauss dis
 patterns based on this pseudo-likelihood estimator for the intera
tion parameter.
18



5 Con
lusionsWe fo
used our studies on the intera
tion parameter of the Strauss dis
pro
ess 
, whi
h in general is of the greatest interest in appli
ations. Aquestion that arises naturally is how we 
ould estimate this parameterin the 
ase of Strauss dis
 pro
esses. The issue was 
onsidered inearlier work by Goulard et al. (1996) using the pseudo-likelihoodmethod, but studies about properties has not been reported. We
ompared three methods, pseudo-likelihood, minimum-
ontrast basedon the K-fun
tion and the Taka
s-Fiksel method also based on the K-fun
tion through MCMC simulation. The pseudo-likelihood estimatorwas 
onsidering the uniform distribution as the weight distribution,while for the Ta
aks-Fiksel we 
onsidered both uniform and gammadistribution. Our simulation study indi
ated that the pseudo-likelihoodestimator for the intera
tion parameter has the best performan
e,
ompared to the minimum-
ontrast and the Taka
s-Fiksel method.The pseudo-likelihood estimator was shown to be robust in terms ofvarying mark distribution shape and size of the dis
s (mean radius).Further investigations should be done for the pseudo-likelihood methodusing weight distributions other than the uniform. New methods likemaximum likelihood and even nonparametri
 methods 
ould be alsoinvestigated.Another issue that was not 
overed here whi
h deserves someinvestigation is about the intensity of the pro
esses, whi
h dependson the intera
tion parameter, distribution of the marks, and on theintensity � of the pro
ess when 
=1. This is related to the 
hemi
ala
tivity, and whi
h was 
onsidered by Goulard et al. (1996) as a
orre
tor fa
tor for the estimation, most probably the reason for theestimator to present better properties than the others.Referen
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Figure 6: Mean square error versus 
 for Strauss dis
 patterns with meanradius equal to r, for estimates of 
, obtained using the methods minimum-
ontrast (MC) for the K-fun
tion, pseudo-likelihood (PL), Taka
s-Fiksel usingthe mark distribution as weight (TFM) and the uniform distribution (TFU).
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Figure 7: Mean bias versus 
 for Strauss dis
 patterns with mean radiusequal to r, for estimates of 
, obtained using the methods minimum-
ontrast(MC) for the K-fun
tion, pseudo-likelihood (PL), Taka
s-Fiksel using themark distribution as weight (TFM) and the uniform distribution (TFU).
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