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Practical Model Building for Quantitative Population Ethology
with Event-Driven Competing Risks

Bland Ewing1, Brian S. Yandell2, James F. Barbieri3, Robert F. Luck4

Abstract

Ideas have been presented elsewhere on a framework for quantitative
population ethology using event-driven competing risks. In today’s climate, it
is not enough to have an idea--one must have an implementation of the idea.
To that end, we present the beginnings of such a system built on a public
domain, statistical system called R. We use spline-based graphical tools to
craft the mean value functions of the competing risk structure, based either on
data or on prior belief. Spatial location of individuals is developed on a
hexagonal grid at the resolution of the model, with a triangular coordinate
system to reduce computation of distances. The components can be quickly
developed and tested in R, and later translated to C for more efficient coding
of the most highly used loops. We also discuss some of the design
requirements that affect the development of an efficient competing risk model
of large problems.
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1 Introduction

In a previous paper (Ewing et al. 2001) we described an innovative modeling technique
that allows one to model population dynamics at the level of resolution of individual members of
a population.  In that paper we describe the stochastic framework for such a model, but the
simulation techniques were not discussed.  The purpose of this paper is to discuss a prototype
model simulation system and to outline a plan for more advanced model development.

Section 2 discusses the choice of software modeling system, namely R. Section 3
presents our scheme for conveying information about organisms, including species features, life
stage events, movement and interactions among organisms. Future event scheduling is presented
in Section 4, showing the competing risk structure and a sample simulation run as well as a
graphical tool to design curves for scheduling future events. Span and resolution in space and
time are discussed in Section 5. Here triangles form the building blocks for spatial relationships,
leading to great time savings with little loss of precision. Further, the graphical mapping of hours
to degree-days is presented. Further considerations, including some technical details and future
plans, are sketched in Section 6.
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2 Choice of Modeling System

The model is being developed in R, one of the S family of statistical languages (Venables
and Ripley 2000).  This system is in the public domain, is easy to learn, and includes standard
statistical tools.  In addition, it was designed from the start as an object-oriented language with
device-independent graphical engines.  Its chief drawback in this venture is that execution of
loops can be slow.  This is important since our model is executed serially rather than in parallel.
This drawback can be overcome by "hardening" the code--that is, rewriting the inner loops in C
or Fortran--once the basic fabric of the operations has stabilized.

We are developing a library of routines specific to the Event-Driven Competing Risk
modeling effort (Ewing et al. 2001). Assuming one has installed the R system and has it running,
the library is invoked by typing (after the ">" prompt):

½ library(ewing)

This attaches a library of objects--data, functions, and possibly C or Fortran dynamically linked
libraries.

The S system is a flexible and powerful environment for implementing statistical ideas
that was developed at AT&T Bell Laboratories by Rick Becker, John Chambers and Allan
Wilks. This system allows quick implementation of ideas, with easy-to-use graphical display
tools that provide publication quality figures. The S system is available in a commercial form as
S-plus from MathSoft (www.mathsoft.com) with GUI pull-down menus and dialogs. The book
by Venables and Ripley (1999) is an excellent introduction to S, with comprehensive overview
of basic and advanced features.

Recently, R has emerged as a public domain implementation "not entirely unlike" S,
initially developed by Ross Ihaka and Robert Gentleman and now maintained by an informal,
international team of volunteers known as the R Project (www.r-project.org). While it does not
have all the features of S or S-plus, such as Trellis graphics and pull-down menus, it has a solid
base and a rapidly growing library of contributed routines. Venables and Ripley (2000) has more
technical detail on programming in the various flavors of S and R.

R is closely aligned with a large effort known as the Omega Project (www.omegahat.org)
which will eventually provide an open-source development framework for statistical
applications, interfacing with statistical manipulation environments, database systems and
graphical display technologies using CORBA. This system has been under development since
July 1998 using Java in a web-based setting. We anticipate migrating to Omega in the future,
which should be easy since the R group are heavily involved in this development.

3 Organism Information Structure

Biologists want intimate control of simulation details to incorporate realism. Typically
this involves events, that is significant biological changes that can be marked and counted. The
events themselves can often be laid out in tables, which we can then use as raw inputs to
simulations. These tables not only describe the life events, but they also identify the organisms,
units, and other features, allowing the simulation software itself to be free of specific reference to
any one system. At present these files all reside in library(ewing) in the data folder.
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3.1 Organism Features

The simulation code has no organism information per se. All organism information is
designed by the scientist in tables as ordinary text files that can be incorporated into our internal
structure, which is appropriately called Organism. This internal structure contains simulation
features, schedules for future events, and process information for interactions among organisms.
For our prototype simulation, the primary organisms are Red Scale, Aphytis, Encarsia and a
greatly simplified orange tree as a substrate. Here, orange is actually a static substrate with
certain properties that are important for the life histories of the other organisms.  The "master"
information on these organisms is in the organism.features.txt file:

units offspring attack substrate deplete subclass parasite move
redscale DD 10 NA orange 100 host NA crawler
aphytis hr redscale redscale orange 24 adult ecto adult
encarsia hr redscale redscale orange 12 adult endo adult
orange NA NA NA NA NA NA NA NA

Notice that the orange "organism" has missing values (NA) for the features since it is
considered static.  In addition, redscale (Californai Red Scale) has no attack feature, as it is only
a host for aphytis (Aphytis sp.), Encarsia (Encarsia sp.) and other parasitoids.  Some features
such as offspring may have either a number or the name another organism.  The number signifies
a mean value, while the name of an organism signifies that there is some interaction for this
feature.  For instance, Red Scale have on average 10 offspring, but the number of Aphytis
offspring depends on the condition of its Red Scale host.  Units of "biological time" may differ
among organisms; Red Scale is temperature sensitive and grows by degree-days (DD), while
Aphytis is diurnal, dependent on hours (hr). Other columns have to do with other features of the
simulation:

units biological time units (DD=degree-days, hr=hours)
offspring mean number of offspring, or name of host
attack name of host to be attacked
substrate substrate on which organism lives
deplete time in units to energy depletion worth 1 offspring
subclass age class of life stages to be plotted by substrate
parasite type of parasite or parasitoid
move life stage that can move

3.2 Organism Future Events

An organism may have many potential future events, many of which correspond to stages
of its life history. Other events, such as sex determination, feeding, starvation and death can be
included as well. For instance, here are the future event schedules and other information by life
stages for Red Scale, in object future.redscale.txt:

        current       future fid DD pch     color ageclass  event init
1       crawler first.instar   2 55   0     brown  crawler future   10
2  first.instar   first.molt   3 92   1     green     host future    4
3    first.molt     second.1   4 48   1     green     host future    4
4      second.1     second.2   5 30   2 turquoise     host future    1



4

4

5      second.2     second.3   6 30   2 turquoise     host future    1
6      second.3       female   8 52   2 turquoise     host future    1
7      second.3         male   9 52   2 turquoise     host future    1
8        female  second.molt  10  0   2 turquoise     host future    0
9          male        death  16  0   2 turquoise     host  death    0
10  second.molt      third.1  11 48   2 turquoise     host future    1
11      third.1      third.2  12 55   3      blue     host future    1
12      third.2      third.3  13 55   3      blue     host future    1
13      third.3       virgin  14 95   3      blue     host future    1
14       virgin       gravid  15 90   V    violet     host future    1
15       gravid       gravid  15 10   G     black   gravid  birth    0
16        death        death  16  0   D       red       NA  death    0
17      starved        death  16  0   D       red   gravid future    0

The times here are the mean number of degree-days (DD) to the event. The time to a scheduled
future event, say from third.1 to third.2 would be a random draw T from the future event
distribution, in this case F(t) = 1-exp(-M(t/55)). The mean value function M(t) is assumed to be
the identity unless it is otherwise provided (see the next section). The future events for Aphytis,
future.aphytis.txt, are similar with some notable exceptions:

    current   future fid  hr pch     color ageclass   event init
1       egg   larvae   2  48   E     brown    young  future   10
2    larvae prepupae   3  60   L     green    young  future    5
3  prepupae    pupae   4  24   p turquoise    young  future    3
4     pupae    adult   5 144   P      blue    young  future    2
5     adult     feed   7  12   F    orange    adult  future    1
6     adult     ovip   8  12   H    purple    adult  future    0
7      feed    adult   5  12   F    orange    adult  attack    0
8      ovip    adult   5  12   H    purple    adult  attack    0
9     death    death   9   0   D       red       NA   death    0
10     male    death   9   0   D       red    adult   death    0
11  starved    death   9   0   D       red    adult   death    0

Here the adult Aphytis may either feed or oviposit (ovip) on its host. Future events 5 and
6 are competing risks, which in this case are sorted out in the simulation code based on the size
of the selected host. [This is one part that is still particular to this host-parasitoid system.] The
event column identifies the type of event; either future event, birth or death (both immediate
events); or attack (another immediate event that involves interaction with other individuals). The
"fid" column simplifies some coding when relating current to future stages. The last column
specifies the initial relative abundance of life stages: both species are weighted heavily toward
young organisms.

The other columns for both Red Scale and Aphytis are used for plotting. The pch and
color are used when plotting the spatial arrangement (temporarily disconnected), while the
ageclass specifies how the life events are to be summarized. Recall that Red Scale "host" and
Aphytis "adult" ageclasses are to be plotted by substrate according to the organism feature file.

3.3 Interactions among Organisms

The third type of spreadsheet concerns interactions among organisms. While this could
be encoded directly into subroutines, such a table can provide more generality to the simulation
modeling system. Here is redscale.aphytis.txt, including information about Aphytis
can use various stages of Red Scale:
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              ovip feed offspring male
crawler          0    0       0.0   NA
first.instar     0    5       0.0    5
first.molt       0    2       0.0    5
second.1         0    5       0.0    5
second.2         3    2       0.0    5
second.3         4    1       0.0    5
second.molt      2    0       0.0    4
third.1          3    0       1.3    2
third.2          5    0       1.3    1
third.3          5    0       1.3    1
virgin           2    0       2.7    0
gravid           0    0       0.0   NA
death            0    0       0.0   NA
parasite         0    0       0.0   NA
male             0    0       0.0   NA
female           0    0       0.0   NA

Most columns have a 0-5 scale which serve as individual host weights during sampling. That is,
if there are 10 hosts in the area, Aphytis will chose one based on the weights associated with their
life stage. Thus, Red Scale prefers to oviposit on second and third instars, and is more likely to
produce male offspring for smaller Red Scale. It will feed if the Red Scale is very small. The
mean number of Aphytis eggs that an emerging Aphytis would have ready to lay is dependent on
Red Scale stage as well.

The following type of interaction, orange.aphytis.txt, indicates how a species
interacts with its substrate. In this case, Aphytis can move around the orange. Our prototype
orange consists of a two-sided leaf, a 20-sided orange (icosohedron), and a twig connecting the
two. Again, a 0-5 scale is employed. This file really only has information about movement
among fruit-twig-leaf, while a second file, not shown, has topological information about
movement within each of these (e.g. movement on icosohedron is restricted to the three adjacent
triangles).

      substrate side find move fruit twig leaf init
fr1   fruit        1    5    1     3    2    1    1
fr2   fruit        2    5    1     3    2    1    1
fr3   fruit        3    5    1     3    2    1    1
fr4   fruit        4    5    1     3    2    1    1
fr5   fruit        5    5    1     3    2    1    1
fr6   fruit        6    5    1     3    2    1    1
fr7   fruit        7    5    1     3    2    1    1
fr8   fruit        8    5    1     3    2    1    1
fr9   fruit        9    5    1     3    2    1    1
fr10  fruit       10    5    1     3    2    1    1
fr11  fruit       11    5    1     3    2    1    1
fr12  fruit       12    5    1     3    2    1    1
fr13  fruit       13    5    1     3    2    1    1
fr14  fruit       14    5    1     3    2    1    1
fr15  fruit       15    5    1     3    2    1    1
fr16  fruit       16    5    1     3    2    1    1
fr17  fruit       17    5    1     3    2    1    1
fr18  fruit       18    5    1     3    2    1    1
fr19  fruit       19    5    1     3    2    1    1
fr20  fruit       20    5    1     3    2    1    1
twig  twig        NA    1    5     3    1    2    1
lftop leaf       top    3    3     3    2    1    5
lfbot leaf    bottom    2    4     3    1    2    0



6

6

Notice that Aphytis is more likely to find fruit than leaf top, and twig has the lowest
probability.  Also, Aphytis tends to move short distances if on a fruit, and long distances if on a
twig. Perhaps we need only rely on probabilities to transfer between orange components.  A
similar file exists for orange.redscale.txt, with perhaps slightly different values.

We are not completely settled on this system, but it provides a convenient starting point
for spatial simulation. Fine detail movement is based on triangular grid system and is introduced
in Section 5.

4 Future Event Scheduling

Once the various organism files discussed in the previous section have been constructed
and placed in the appropriate location, the simulation is ready to be initialized.  The simulation is
initialized with the command:

½ init.simulation ( myrun, c("redscale","aphytis") )

In this example, this command reads in the appropriate information for both Red Scale and
Aphytis, and any dependent organisms identified in the organism.features.txt file (in
this case, orange), and it prompts the user for the number of organisms, and initializes the
populations. It also initializes other simulation features, such as the temperature regime (see
Section 5). Once the simulation is initialized, the simulation is executed by using the command

½ step.future(myrun,1000)

This command executes 1000 future events of reproduction, death, parasitization and aging
through the various life stages. The summary plot changes with each 50 events.  In this de novo
use, the time to next event is drawn from an exponential with the mean time to event given by
the "future.redscale.txt " file as explained in the previous section.  During a
simulation, as currently implemented, there are two graphical time summaries for each species.
These show number of organisms by age class (left) and number of organisms by spatial location
(right).  For instance, Red Scale is counted by crawler, host, and gravid (host is all stages that can
be parasitized by Aphytis), while Aphytis is counted by young and adult. The three spatial
locations are leaf, twig and fruit.

<<Figure 1 here>>

Summary tables are provided at the end of the run indicating timing results and, if
desired, age distributions before, during and after the simulation.

Changing the number of either species, or the relative timing of future events, can lead to
an exponential growth or decay in the Red Scale population. The simulation displayed in Figure
1 is far from equilibrium.  Because the system is inherently nonlinear, it is extremely hard to
predict behavior. It is challenging to adjust the number of each species, time to events,
movement and number of offspring to balance the population.
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4.1 Competing Risk Structure

The simulation sorts all events such that the next future event has minimal time. This sort
technique typically only involves rearranging one or two events, and is very fast.  Essentially we
are reordering a priority queue in such a way that the top of queue contains the next event to be
processed (see Section 6.2 for details).  That event is processed by setting the current event to the
future event, processing any immediate events (e.g. scheduling birth of crawlers for gravid
females), and then proceeding to the next event.  Death is treated in this way as an immediate
event.  At the time of death, the individual is removed from the simulation.  Competing risks
arise when there are more than one possible future events following a given current event.

The competing risk structure has been described in a companion paper (Ewing et al.
2001) and is only briefly referred to here. The important steps in the current implementation are

(1) efficient computation of M( ��DQG�M–1( ��XVLQJ�IRUZDUG�DQG�EDFNZDUG�splines
(2) static lists of individual characteristics that do not change over the span
(3) interaction among species

In a future development of the simulation, we plan to incorporate more realistic settings and
feedbacks.  Currently the competing risk structure for Aphytis allows for a choice between
feeding and ovipositing, as shown in the future event structure of the previous section. Aphytis
proceeds from egg to larvae to prepupae to pupae to adult with mean future event times in DD as
indicated earlier. However, in the adult stage, Aphytis may either feed or oviposit.  After each
feed or oviposit, the adult has a number of choices.  Feeding sustains the insect, allowing it to
potentially oviposit more offspring at a later time, while ovipositing depletes resources, but
contributes to survival of the species.  The choice Aphytis makes depends on a number of
environmental factors including the number of eggs it has in reserve, the last time ovipositing
took place, the availability of hosts, and the condition of the Aphytis in question.  The decision to
oviposit is also determined by the size of the scale and the number of Aphytis eggs previously
oviposited. Many but not all of these features have been implemented.

4.2 User Friendly Graphical Design of Biological Processes

The major theme of this work in quantitative population ethology is the development of a
modeling system that captures the essential features observed by field ecologists within a sound
mathematical framework, presented with intuitive graphical tools. To accomplish this, it is
essential to have graphical design of the mean value functions M( ��WKDW�DUH�XVHG�WKURXJKRXW�WKH
modeling process to schedule future events. At present, we use the R implementation (due to
Bates and Venables) of forward and backward cubic splines in a graphical setting where the user
can select knots to create the shape needed.

One of the beauties of quantitative population ethology is the ability for a scientist to
design mean value curves for each future event based on data and experience.  In order to do this,
we have developed an interactive system to craft such curves, which are then made available to
the simulation.  The underpinning of this system is a set of forward and backward interpolating
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splines as implemented in R by Bates and Venables in library(splines).  The back-spline
is not actually a spline, but it functions much the same.  The routines are simple to use:

½ library(splines)
½ meanvalue <- interpSpline( data$x, data$y )
½ invmvalue <- backSpline( meanvalue )

Here the data are columns "x" and "y" of the data frame "data".  These resultant structures
include the spline knots and coefficients, and are readily understood by R for plotting.  One
could for instance design the mean value curve for the future event of "virgin" by invoking the
ewing library routine:

½ init.meanvalue( redscale, "virgin" )

This opens a graphics window with a side bar. The default is a constant rate of 1, leading to a
linear mean value curve with slope 1. In this example, the mean value is plotted from 1 to 5 time
units, as the probability for an event beyond 5 units with this rate is less than .01.  Notice that
"replace" and "mean value" are both active, as indicated by their green color.  That is, the shape
of the curve can be modified using the cursor and clicking to move one or more nodes.

<<Figure 2 here>>

Figure 2(a) has three nodes moved upward to yield a slight curve. The blue line is the
forward spline, while the red line is the backward spline.  Notice that in this case they do not
quite agree at the upper end.  Further, if the forward spline is not monotonic, the backspline will
not work and is not plotted.  There is a certain art in designing cubic spline curves, especially
when using back-splines. Here it might be useful to add a point at the upper end to bring the blue
and red lines together.

The "rescale" button allows you to enter new limits for "time" and "mean value" (you
have to switch over to the command screen). The "shrink to 1" button is important.  This
command attempts to shrink the curve toward a mean of 1 event over [0,����7KLV�VWDQGDUGL]DWLRQ
of the mean value curve is needed for the future event simulations. Note that the curve is
extrapolated linearly past the upper time limit.

It is also possible to work on the curve as a cumulative probability by clicking the word
"probability" (Figure 2(b)). The vertical axes switch sides, but you can still move nodes around.
Here the math is operating on the mean value curve, although you are viewing the cumulative
probability. Here the discrepancy at the upper tail between the forward and backward spline is
not noticeable.  Hence, one might choose to ignore it for design purposes.

The rate, or derivative of the mean value function, can be plotted (Figure 3), but one
cannot redesign this curve at present.  The rate is a quadratic spline, an exact derivative of the
mean value function.  Similar comments apply to the density, and to the derivative of probability.

<<Figure 3 here>>

The Kolmogorov-Smirov statistic can provide error bounds for data driven cumulative
probability and cumulative hazard curves.  For instance, one can put curves above and below for
realizations that almost always deviate from the true (10% in blue), exceed half the time (50% in
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green), and almost never are crossed (90% in red). The width of these bands depends on the
inverse of square root of sample size.  This could be done as bands around an empirical curve or
as bands around estimated curves.  For instance, one can notice that several different curves
would fit any particular set of data. This is implemented with a new "data" button, but is not
shown here.

The advantage of such a system is that one can in some situations begin with data and
then adjust the curve based on other information.  If there are many data, then the confidence
limits would be tight and the curve well determined from the start.  However, the data may be
obtained from an indirect measure of the process, or may be rather imprecise.  Small data sets
would have wide confidence limits, highlighting how little one really knows about their shape.
One might then feel justified in playing with the shape, which would allow an investigation of
sensitivity.

5 Span and Resolution: Space and Time

5.1 Span and Resolution for Model

Orange fruit are mature for about 8 months.  Luck (see Yu and Luck 1988 and references
in Ewing et al. 2001) suggests that the time in days from egg to gravid adult for the insect species
involved are roughly 2-4 weeks (red scale 24-25 days; Aphytis 13-14 days; Encarsia 19-28
days).  Thus, 8 months corresponds to 10 or more generations for each species.  This gives us our
span of roughly 240 days or 6400 degree-days (DD), using 1 day = approximately 26.7 DD on
average.

Resolution is more difficult to determine.  Luck (cf. Yu and Luck 1988) often recorded
red scale life histories to the precision of 1-3 DD, with a recognition of inherent variability.
Information on Aphytis and Encarsia is often recorded to the precision of 1 day.  However,
multiple events of feeding and ovipositing probably occur on any given day for adults.  For
simplicity, we consider the resolutions of approximately 1 DD and 1 hour.  These are roughly
equivalent on average.

Given a particular span and resolution, what are the implications for the size of the
simulation?  Consider roughly 500 individuals at any one time, with on average 20 events per
individual.  We are running 10 generations, which makes 100,000 events.  Version 3 of the
software can handle about 3000 events per hour on a Pentium II 150Mhz system.  Thus one
simulation could be completed in a day or two.  There are some issues about space management
that need to be redesigned to make this happen, however, but they are solvable.

Suppose one were to use classical modeling techniques, running each individual a DD at
a time.  Assuming there are 500 individuals, there would be 3,200,000 steps (500 individuals
times 6400 DD), or if you consider cycling through say 10 types of events per individual,
32,000,000 operations. This is a considerably more costly and time consuming operation.

Notice also that we do not explicitly need to set things up rounded to the smallest
resolution.  In fact, it can be useful to have a smaller precision to resolve ties.  The important
thing is to have a resolution that is relevant to the events under study, and vice versa. Note
further that the choice of future events implicitly determines the resolution; coarser events
correspond to coarser time resolution.
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5.2 Quadratic Spline via Ramped Steps to Relate Hours to Degree-Days

How do we relate time to degree-days?  Computationally, trigonometric functions are
expensive and rather crude. In this simulation we model temperature (degrees) as a ramped step
function.  Below is a sketch where the nighttime temp falls below the threshold of biological
activity, but exceeds it as the temperature increases during the daylight hours.  The beauty of this
technique is three-fold.  First, it is simple to construct.  Second, we can use the same spline
functions that are already in place for designing probability to event curves.  Notice that the
degree-day curve is the integral of the temperature, which in this case is a quadratic spline.
Finally, we can replace artificial constructs such as the one above with real data by producing a
spline fit to the actual data.

<<Figure 4 here>>

The temperature/degree-day translation is incorporated into the simulation now.
However, the tools to design them are still primitive. The routine initTemp() creates an arbitrary
scenario that can be edited by hand for he changes over a day (Figure 4). The routine
spline.temp() is a graphical tool much like the mean-value curve that allows one to modify the
daily high and low temperatures (Figure 5). Below are the commands

½ initTemp() # set up Figure 4
½ spline.temp() # modify Figure 5
½ temp.plot() # show Figure 6
½ temp.plot(derivative = TRUE)

<<Figure 5 here>>

In the current simulation, degree-days are the units ultimately used to calibrate the
development of the various individuals within the simulation. However, parasitism is inherently
a diurnal process. It appears that neither Aphytis nor Encarsia are active at night. There is
evidence that in the summer season Red Scale may be able to pass though its various
developmental stages during a particularly warm summer evening. In such warm circumstances,
parasitism may not occur. Figure 6 shows cumulative degree-days incorporating the daily and
high/low temperature curves together.

<<Figure 6 here>>

5.3 Dodecahedron of Triangular Faces to Approximate Spherical Orange

First let us acknowledge that we don’t really know how these insects move around the
surface of an orange. We believe that they may move to someplace "close" or someplace "far
away", but we may have little data to develop this.   For example, Red Scale moves longer
distances if it is on a twig substrate, but settles rather rapidly on the fruit substrate, and Aphytis,
is known to be a reasonably poor flier, hence one might expect its search techniques to be
compact, walking quickly from one Red Scale to another.  It appears unlikely for Aphytis to
routinely fly between distance branches. Since there is a risk of building artificial relationships
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by pushing too hard on a fine mechanistic model of movement, we are keeping this simple for
now. However, we have implemented a finer scale triangular coordinate system that can be used
for more precise movements (Section 6).

We have postponed development of the fine scale triangular grid described below for
now. Consider instead a 20-sided polygonoid, an icosohedron with triangular faces.  Red Scale,
for instance, might reside on one of these 20 faces. In fact, there may be a modest population of
red scale on a single face.  We keep track of which face the insect resides on, but ignore fine
detail of exact position.  We could incorporate some density-dependent feedback, say on the
chance that a crawler successfully settles on a given face.  Migration would be between faces on
an orange, and on or off the orange via the green twig.

6 Triangular Spatial Coordinate System

For any ecological system in which one desires to simulate the dynamics of individuals,
one must be able to calculate the distance between individuals and features of their environment,
including other individuals. Since the distances and directions between objects must be
computed a large number of times, an efficient computing algorithm is a necessity. We have
simplified that on a coarse scale above using triangular faces on an orange. When it is necessary
to locate organisms more finely, we propose a triangular coordinate system that is accurate to
about 6% while providing fast computation.

Given the Cartesian coordinates p=(xp,yp) of objects in two-dimensional space, the
standard method for distance between two points p and q is simply to take the square root of the
sum of the squares d=[(xp-xq)

2+(ypyq)
2]1/2. The angular position, relative to the origin is

FDOFXODWHG� DV�  WDQ-1[(yp-yq)/(xp-xq)]. The inverse calculation relative to the origin is (x,y) =
(GFRV� ��� GVLQ� ����&RPSXWDWLRQDOO\�� WKH� DULWKPHWLF� RSHUDWLRQV� XVHG� DUH� H[WHQVLYH��$� WULDQJXODU
coordinate system with a hexagon overlay has been developed to reduce the cost with a modest
loss of precision. The properties of the triangular coordinate system are as follows (Figure 8):

i. 3 axes, 120 degrees to one another.
ii. The address (triplet) of any point on the grid sums to zero.  Therefore only two of the

three coordinates is stored as the third can be calculated by subtraction.
iii. Any point can be considered the origin of the coordinate system -- this implies the

geometry of distances and direction relative to any given point.
iv. The origin of the triangular coordinate system can be translated to any arbitrary point by

simple subtraction.

To calculate the distance between any two points p and q with coordinates (ap, bp, cp) and
(aq, bq, cq), one simply computes d = max{|ap-aq|, |bp-bq|, |cp-cq|}. Using this technique one need
only perform three subtractions, three absolute values and a maximization to obtain the distance.
This calculation is accurate to within 7.5% (see Figure 8).  This appears to be an acceptable error
when compared to other uncertainties in both the input data and to the assumptions made in the
simulation.

To calculate the direction from p to q one constructs a hexagon centered on p in the
triangular coordinate system.  Then by a series of comparisons of the relative values of ap-aq, bp-
bq, cp-ca and their absolute values one can determine direction down to one of the 12 half-sectors.
This is accurate to within 15 degrees, or 4.2% (Figure 7).
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Figure 7: Cumulative Degree Days and Simulating random dispersion from some origin
is straightforward. Begin by selecting a distance d from the origin according to some distribution.
Then select a sign (- or +) and major axis (a, b or c) and set that axis, say c, to ±d. Then select a
second axis, say b, and sample uniformly between 0 and -c. The third axis, a, is computed as the
difference a = -(b+c). Thus one needs to only compute one distance d and pick one of the 12
half-sectors (±a, ±b, or ±c for primary axis, plus the secondary axis). With Cartesian coordinates,
RQH� ZRXOG� FKRRVH� D� GLVWDQFH� G� DQG� D� GLUHFWLRQ� �� DQG� WKHQ� FRQYHUW� EDFN� WR� �x,y) using
multiplication and trigonometric functions sin(��DQG�cos(��

The triangular coordinate method, though not as precise as the standard method, is
significantly more efficient. The conversion from the Cartesian coordinate system to the
triangular coordinate system is also straightforward.  To convert from the Cartesian coordinate
system to the triangular coordinate system one need only to solve the following equations:
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and c=-(a+b), where (a,b,c) are the coordinate triplets in the triangular coordinate system and
(x,y) are the coordinate pairs in the Cartesian system.  To convert from the triangular coordinate
system one need only to solve the following equations:
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Once a hexagon structure of some suitable size is selected, it becomes possible to overly
the whole study area with a honeycomb of hexagons that are related to the underlying triangular
coordinate system. The location of any adjacent hexagon can be found by simple arithmetic
(Figure 1) providing direct access to all trees in that hexagon through a linked data structure.

The appropriate computer algorithms for the triangular coordinate system with hexagon
overlay have been written and tested using R.

<<Figure 7 here>>

6.4 Sierpinski Search Algorithm

One of the more fascinating attributes of this modeling scheme is the ability to simulate
the activities of individuals localized in both time and space.  Of those activities none is more
intriguing than the search techniques of an individual parasite as it tries to locate a viable host
while attempting to avoid predators that are likewise looking for it. Aphytis is not a particularly
adept flier and hunts only during daylight hours.  At night, Aphytis tends to stay near the interior
of the citrus tree in an apparent attempt to avoid predators such as spiders.  During the day it will
search individual twigs, leaves and fruit for available Red Scale, concentrating mainly on fruit.
Other parasitoids such as Encarsia seem to display a preference for hosts residing on twigs and
leaves (Yu and Luck 1988).  One of the key questions concerning both predation and parasitism
is how does a particular parasite optimize a search strategy?  Clearly random searching may not
be the optimal way for a given individual to find an available host.  In the case of the Red
Scale/Aphytis complex, it appears that the substrate may emit a chemical that attracts parasites to
a particular area of active Red Scale.

In the current simulation, we have been using a simple random movement and search
algorithms with mixed success. It may be advantageous to use a modified Sierpinski gasket
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algorithm to determine the migration patterns of individual Red Scale and search patterns of
Aphytis.

We are developing a search algorithm based on the Sierpinski gasket (see Wirth 1968), a
recursive curve that exhibit a fractal quality.  In the simulation we define a local area to be
searched and select the order of the Sierpinski search (Figure 9) based on the number of hosts in
the area. Essentially, the order determines the amount of time that a given individual spends in a
given local area, which translates into the intensity that a given area is searched.  As the order of
search algorithm is increases the resolution of the basic search pattern increases.  By using an
explicit order the organism’s search is guaranteed to terminate, at which point the organism must
select another behavior, such as leaving the area.

<<Figure 8 here>>

7 Future Considerations

At present, we have developed a protype simulation which relies on implementations
implicit in R of the items listed below. This works in practice for hundreds or thousands of
individuals over thousands of future events. However, in order to simulate systems with millions
of individuals and events, it will be necessary to carefully consider how to optimize speed and
use of dynamic storage.  Some of the concerns that must be address in a more comprehensive
simulation are:

(1) pseudo-random number generation
(2) methods to organize future event scheduling (priority queues and leftist trees)
(3) dynamic storage allocation to handle the changing population
(4) garbage collection
(5) Hilbert and Sierpinski Curves

There are, however, reasons to postpone (1) and (3).  The newest versions of S (version 4) and R
(version 1.2) have very efficient memory management, and may obviate the need for
implementation of our own DSA scheme as outlined below.  In the next few section we shall
discuss a bit of the “philosophy” inherent in the design of a simulation based on the dynamics of
individuals with the population.

7.1 Deepening the Simulation

Bland Ewing continues to have ideas about how to deepen the realism of such
simulations. He offered another level of environmental "indirection" which might be useful later.
Consider that each of the 20 faces on an orange might be classified in terms of its micro-
environment, say shady (1), partial shade (2) or sunny (3). These might affect how insects
behave on the face, etc.

Since we are considering a fruit as a 20-element structure, and similarly a leaf as a 2-
element structure (top and bottom, ignoring actual spatial location), we have in some senses a
compartment model, with 20 fruit faces, one twig and 2 leaf sides connected in a graph.  It is not
much of a effort to add more leaves down the twig, making a more realistic branch.  However,
we do not really need to use the physical geometry of the branch explicitly.  Instead, we have
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probabilities of moving among objects (fruit face, leaf top, etc.).  Extending this, there is a small
probability that a crawler could eventually move, perhaps over several generations, to another
fruit.  It is much more probable that Aphytis move between various substrates.

The possibilities are endless. There is the very real possibility that a model of an entire
tree could be performed on today’s multiprocessor computer system.  Such a simulation might be
extended to a simulation of an entire grove.  However, we should step back and consider the
span and resolution.  It is highly unlikely that there will be much movement between one tree
and another over a month for a Red Scale crawler.

On another front, the triangular system can be extended to arbitrary three-dimensional
surfaces. The icosohedron being used to simulate an orange can be tiled with triangular systems
on each surface that perfectly match with adjacent triangles. Further, additional cylinders each of
10 triangles can be inserted in the middle of the "orange" to turn it into a "banana". Modern
image processing uses triangular meshes to capture arbitrarily complex objects, and there is no
reason that our system could not be similarly extended.

7.2 Competing Risk Structure Implementation

In most biological systems, one is generally impressed with the rich structure even the
simplest of biological organism displays, and when one studies interrelationships in small groups
of complex individuals one perceives a complex mosaic of their possible interactions.  It has also
become apparent that the advancement in computer technology has been very beneficial in
aiding the tasks faced by most biologists.  What may not be as apparent is that computers,
particularly computer languages and operating systems also possess an intricate structure that
can, in some cases be extremely efficient in solving certain types of problems, and totally
inappropriate in other applications. In constructing a computer simulation of a problem in
population biology, there are significant advantages to be gained if a given computer system,
including its implemented languages, can efficiently handle the dynamics of a structured
biological system.

In this section, we explore the general structure of a biological system in the context of a
structure common to nearly all computers. However, no attempt will be made to describe any
one computer or system of computers.  The discussion of the modeling technique in terms of a
particular computer language, in this case, R was described above.

For any biological system, there are myriad different biological structures that can be
analyzed in many different ways.  There is a temporal structure of interacting individuals and
there is a also a spatial distribution of that individuals may change as a function of time.  In
addition there is the inherent structure of the organism itself, and there is a hierarchical structure
in which that organism is imbedded.

In the computer implementation envisioned here, each individual organism is represented
by a block of computer storage called a cell. This cell can be further subdivided into three
partitions: unique attributes such as sex, age, location, and health; a membership method to relate
the organism to other members of the population; an event structure with the events that can
occur to that organism (Figure 9).

<<Figure 9 here>>
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Given this basic structure, we can now consider a structure that is comprised of a number
of individuals as shown in Figure 10. We consider the group called species “A’ to be a list of
individuals that comprise that species. There may be empty cells in the list. Further, each cell has
pointers that multiply connected to other cells within the list, and possibly to other species. The
property of being multiply connected defines a ring structure.

<<Figure 10 here>>

It is now possible to connect various species or list by defining a pointer structure F, that
locates the first individual of that species, and a second pointer structure that locates the first
empty location in each species table or list, where the empty locations are crosshatched (Figure
11).

<<Figure 11 here>>

This ring structure can further be decomposed into multiple substructures.  There is the
possibility of connecting individuals with common characteristics.  In the case of the Red
Scale/Aphytis simulation one might wish to group Red Scale on a twig as one subgroup and Red
Scale on the fruit as a separate subgroup.  For larger simulations, one might wish to group
branches that are comprised of stems, twigs, fruit and leaves as a subgroup.  We shall define a set
as the links that join individuals in terms of common, and we shall refer to a group as a
specialized set that defines any sub-population.  It is clear that we can combine the ring structure
into extremely complicated family of structures such that it is possible to mimic the structure of a
population that has been resolved to each individual in the system (Figure 12).

<<Figure 12 here>>

7.3 Competing Risk Structure and Priority Queues

In the absence of mathematical or statistical indicators suggesting a preferred method for
defining the competing risk structure, any method is acceptable. However, the choice of a
particular method can determine the simulations ability to run efficiently.  The competing risk
structure is complicated hierarchical structure containing of all of the events in the simulation.
Those events can be placed into three broad categories: (1) system events, (2) species-specific
events (birth, death, etc), and (3) interaction events (parasite/host or predator/prey). At the
system level there are essentially four types of events: (a) start/stop events, (b) edit events, (c)
graphics and statistics gathering events, and (d) a priority queue.

Knuth (1968) defines a simple queue as having a “first in-first out” behavior in the sense
that every deletion from the lists removes the oldest item. The competing risk structure described
above has a “smallest in – first out” behavior in which every deletion removes the item with the
smallest key from the list. (The key, in our case time, governs the sort of the queue.) Such a list is
defined to be a priority queue. In the context of our simulation, the priority queue contains all of
the events for each individual in the list.
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Crane (1971) represents priority queues as linked binary trees.  His method requires two
linked fields and a small count field in every record, and has the following advantage over other
methods:

i. When the priority queue is treated as a stack (Knuth 1968) the insertion and deletion
operations are very efficient, taking a fixed amount of time independent of queue size.

ii. The records never move; only the pointers change.
iii. Two disjoint priority queues having a total of n elements can be merged into a single

priority queue in only O(log n) steps.

Crane’s original example is a special kind of binary tree called a leftist tree structure (see Knuth
(1971) for properties and appropriate search and sort algorithms). The algorithm to merge two or
more ordered leftist trees can be used to insert or delete a single element from a leftist tree. For
the simulation discussed here, the leftist tree structure is dynamic, with each element containing
the time of the next future event and required pointers.  The occurrence of an event for an
individual leads to scheduling its next future event, changing its position on the priority queue
through a combination of deletion and re-insertion. This event may cause changes for other
individuals, resulting in other deletions or insertions as well.  Clearly this dynamic priority queue
changes in both size and content as a function of the sequence of events.

As a prototype, computer codes were written to sort both leftist trees and doubly linked
rings to determine their ability to perform a set of desired tasks and their efficiency. Figure 13
shows the time required to search both a doubly linked ring and a leftist tree that contains n
items. When n is small, a ring search is more efficient. However, with more than 70 elements in
the priority queue, a leftist tree search becomes much more efficient. Figure 5 suggests that the
efficiency of the simulation is inversely proportional to the number of events in the priority
queue.  Because of this relationship, it appears that some sort of efficient method of allocating
and de-allocating storage as events occur is extremely important.  In the next section we discuss
some of the properties of the dynamic storage allocation (DSA) routine.

<<Figure 13 here>>

7.4 Dynamic Storage Allocation

Dynamic storage allocation is defined as the allocation and de-allocation of blocks of
storage in which the block of storage may vary in size. Various DSA techniques are describe in
Knuth (1968). We focus on the requirements that influence the design of DSA for simulations
using a priority queue such as that discussed above. Ewing, et al, (2001) discussed a typical
problem in which two hundred individuals with ten attributes were followed for five generations.
The dimensionality foe such a simulation is on the order of 104.  If each individual is resolve into
ten states then the state space for the simulation is on the order of 1010,000. Such a problem is
intractable unless there is some way to reduce the size of the state space. It is critical that the
only those events in the active event list or priority queue actually occupy storage.  For this class
of simulations to be effective the DSA must be able to efficiently allocate storage for those tasks
entering the event queue and de-allocate storage for those event deleted from the event queue.

Unfortunately most traditional DSA techniques are designed to allocate or de-allocate
large blocks rather infrequently. That is, they are not designed to operate in the tightest loops of
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the simulation.  Such DSA routines cannot search large numbers of small elements of storage to
obtain the required blocks of storage to process.  Our simulation requires precisely those features
that traditional DSA techniques are not designed to handle.  Specifically our simulations requires
a DSA procedure that can:

i. allocate and de-allocate storage of a highly dynamic system;
ii. coalesce unused storage as soon as possible;
iii. operate at the innermost simulation loops and allocate very small amounts of storage (on

the order of five words); and
iv. minimize search time for available storage.

The process of joining adjacent blocks of storage can result in a high percentage of
fragmentation. There will be a large number of small blocks of storage, as opposed to a few large
blocks, and an efficient method for minimizing search time is highly desired. With these
requirements in mind, a dynamic storage allocation procedure was developed in which a rather
complex pointer routine was devised to minimize search times.  The procedures that were
developed were:

1. CREATE(ADDRESS,SIZE): Given a request for a block of storage of length SIZE,
return the location of available storage in ADDRESS, if available.  This requires the
following procedures:
a. LEAVE(ADDRESS,SIZE): Remove a block of storage of length SIZE from the

head of the junk ring, returning the location of the storage in ADDRESS.
b. APPORTION(ADDFREE,ADDLOC,REMAINS): Split a free block designated

by ADDFREE into a free block of length REMAINS and a allocated block.  The
location of the allocated block is stored in ADDLOC, and the size of the allocated
block was determined by the external variable SIZE.

c. JOIN(ADDRESS,SIZE): Add a small block of length SIZE located at ADDRESS
to the tail of the junk ring

2. DESTROY(ADDRESS): De-allocate the block of storage located at ADDRESS.  The
size of the block is determined by its last use. This requires additional procedures:
a. ENTER(ADDRESS): Insert a large block of freed storage at ADDRESS into an

appropriate place in the junk ring.
b. DELETE(ADDRESS): Remove a free block located at ADDRESS from its junk

ring.

In addition to the above procedures, we need two computer specific procedures generically
called ACQUIRE and RELEASE. ACQUIRE(SIZE) can acquire additional storage from the
operating system-controlled DSA system.  This routine is only used when there is no storage
available in the user-controlled stack. RELEASE(ADDRESS) returns free storage to the system
DSA controlled stack.  Everything “above” ADDRESS is released and is no longer available to
the simulation without a call to ACQUIRE.

In the current simulation using R, we have not made an effort to optimize the dynamic
storage allocation of priority queue using the procedures describe above.  In order to effectively
implement these procedures, we may need to rewrite the R procedure is amore flexible language
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such as C++.  However, it may be that improvements in R with version 1.2 will significantly
improve memory management such that DSA considerations can be postponed.

7.5 Multiprocessor Implementation on the HPCF

With the advent of sophisticated multiprocessor systems, such as the 32 Silicon Graphics
(SGI) ONYX, the possibility of simulating complex interconnected process become possible.
For example it should be feasible to simulate thirty-two branches of a citrus tree using each
processor to simulate a complex branch containing fruit, twigs, and leaves at some level of
resolution. Each processor simulates a branch under possibly different environmental conditions.
Since Red Scale are relatively sedentary, each branch can be treated as being quasi-independent.
Aphytis and Encarsia appear to move randomly from branch to branch searching for hosts.
However, those events are rare, as both parasitoids have a tendency to remain in the local area.

In the context of a multiprocessor system such as the Onyx System a branch would be
handled by a single processor called a node, and information concerning the relationship between
various nodes is handled using the Inter-process Communication Protocol (IPC).  The IPC allows
processes to coordinate the use of both shared data objects and processors.  In our example, a
single processor is capable of updating the node stored in memory without interfering with its
neighboring processors, unless directed to do so.  Alternatively, a process is capable of making
data available to its neighbor process.  The network is capable of either operating synchronously
or asynchronously and processors may be dynamically added to or deleted from the simulation.
In our application any one processor has direct communication with only it’s nearest neighbors.
Communication between any two connected processors is accomplished by creating a segment of
storage that is mapped into the address space for the neighboring processors.  Such connections
establish signals which allow notification of a software and/or hardware event asynchronously,
and semaphores that coordinate access to various resources.

<<Figure 14 here>>

The IPC functions require the use of a shared arena, which is the segment of memory that
is mapped into the address space of multiple processes.  The shared arena is identified with a file
that acts as backup storage for arena memory and communicating processes gain access to the
arena by specifying its filename.  This implementation makes it relatively easy for “unrelated”
processes to communicate.  The data stored in any one of the node processors is specific to the
branch being simulated.  All other information resides in the fusion processor.  On the SGI
ONYX, we shall use thirty-one node processors to update thirty-one branches in shared memory.
Since each multi-processor can operate asynchronously, we shall assign one additional node the
task of monitoring progress of all the other nodes. This processor performs bookkeeping and
graphics function in addition to scheduling the inter-processor events. In addition to the inter-
processor events, this processor will also monitor any global “events” and calculate the change in
global parameters such as diurnal and degree-day events.  Those events may be calculated using
various “continuous time simulation and then sent to a particular processor or groups of
processors as modified piecewise continuous functions.  Essentially this processor acts a “fusion
processor” to monitor the entire simulation, and monitor the system level events.

The modeling technique described here is inherently nonlinear, and the simulation
attempts to model processes that are far from equilibrium.  One very important study involves



19

19

placing identical versions of the simulation on each of the processors and then running each
processor independently of its neighbors. However, each processor would use a different starting
seed for the random number generator.  Essentially, the HPCF would be used to perform a large
number of independent runs in order to explore the properties of this highly non-linear
simulation.  Such Monte Carlo studies require a significant amount of computer time if
performed sequentially, however such problems should be extremely efficient on the HPCF.  In
order to use the HPCF effectively, all graphical routines would be performed after the
simulations were completed.

We have learned that the R system has been successfully installed on an SGI ONYX
machine. Thus, while efficiencies can be gained by converting R code to a multiprocessor
compatible version of C++, this may not be crucial at the present time.  We are currently
developing an effective and flexible method for parallelizing the program for use on the HPCF.
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