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Abstract

The California red scale Aonidiella aurantii (Maskell) (Homoptera: Diaspididae) is a major pest of California citrus,

with infestations causing growers significant financial losses. It has recently developed resistance to traditional

insecticide sprays. An alternative suppression tactic is the release of a biological control agent, Aphytis melinus DeBach

(Aphelinidae: Hymenoptera) that feeds on red scale. Although many aspects of the red scale�/Aphytis interaction are

now understood, it is difficult to differentiate the effects of temperature and population fluctuations in the field. To

investigate such complex interactions, we propose a new stochastic modeling technique, based on event-driven

competing risks, that incorporates details of life histories as well as the host�/parasitoid interaction. Our continuous-

time, individual-oriented modeling approach quantifies relationships among individuals and describes the resulting

coupling between the interacting populations. The event-structured simulation drives time in contrast to the usual time-

driven stochastic dynamic programming. Our system, developed in the public domain using the R statistical package,

allows for different biological clocks, since both red scale and Aphytis development respond to temperature (degree-

days) while searching female Aphytis follow a diurnal time schedule, contingent upon temperature-dependent egg

maturation.
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1. Introduction

Stochastic models in ecology attempt to incor-

porate key underlying processes of an ecological

system, allowing the study of multiple realizations

through simulation. We focus here on models of

life history events for interacting populations. The

life table approximation of dividing time into
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discrete ‘‘quanta’’ migrated early into stochastic
models in ecology. Modern ecological simulation

studies consider ever smaller time increments using

this same fixed time step framework (Mangel and

Clark, 1988; Wolff, 1994; Hutchinson and McNa-

mara, 2000). While finer scale increments can

capture more intricate events, they require more

time simulating null activity. Further, their dis-

crete nature can introduce unintended artifacts
that are difficult to unravel.

Work in complexity (Langton, 1986) suggests

that higher level structure can emerge from self-

organizing processes occurring at lower levels.

However, such models to date suffer from the

same quantization problem found with life-table

derived methods. Recently, Gronenwold and Son-

nenschein (1998) used cellular automata based on
Petri nets to model a host�/parasite interaction.

Unfortunately, efforts to globally synchronize

their model to reflect annual cycles introduced

unacceptable network complexity. Such synchro-

nized models cannot detect emergent patterns.

Alternatively, we propose to base models on the

actual time of events. The difficulty with this shift

in perspective is that events for individuals are no
longer synchronized, making life table and gen-

eration summaries problematic. The development

below of a simulation structure for competing

risks in a biological system is built upon the

concept of potential lifetimes using the cumulative

risks as a basic building block. This approach uses

detailed knowledge of the biological system under

study, providing a framework to incorporate
known and suspected aspects of that system. Our

approach has close connections to continuous-

time stochastic Petri nets (Ajmone Marsan et al.,

1995; Lindemann, 1998) that are event-driven.

However, we believe our perspective offers a

much simpler way to develop ecological models,

focusing on the next scheduled event and the local

structure of competing risks for event transitions.
The study of any biological system is intrinsi-

cally dependent on the choice of measurements

and the manner of sampling. Typically, a sample

of members of a population is observed with each

individual viewed as an integral organism func-

tioning as a single unit, albeit interconnected to

others. Activities of these individuals are recorded

in terms of life history events described at some
resolution of time, space and detail depending on

the purpose of the study. Observations measured

over some span of time and space form the basis

for understanding the biological system. We can

develop a model framework directly driven by

these measurements.

We first consider a living system as a stochastic

process, recasting concepts of events for an
individual and a population of individuals in a

biological system. We then detail the biology of

the red scale/Aphytis host�/parasitoid system to

identify features of life histories and inter-species

interactions important in simulation. We develop a

competing risks framework with attention to

modeling an individual’s biological clock in a

simple but effective manner. Finally, we show
initial results of our red scale/Aphytis ecosystem

simulation.

2. Event-driven considerations for living systems

Consider a living system as a complicated

stochastic process X that progresses through time

from one event to the next. An event is defined as a
significant biological change that can be marked

and counted, resulting in an instantaneous state

change. That is, at time t the process changes state

to X (t )�/s . The composite state s may be rather

intricate, specifying the state of every individual in

the system explicitly or implicitly. Stochastic

processes are usually described as time-driven.

This has led to a whole simulation industry in
stochastic dynamic programs (Hutchinson and

McNamara, 2000), stepping through finer and

finer time increments to approach ‘‘reality’’.

Imagine a living system as a sequence of events,

beginning in state s0 at time t0�/0, with events, or

state transitions, s0 0 s1 0 s2 0 � � � and event

times t1Bt2B � � � : If the structure of the system

does not change, events can be scheduled as far
forward as desired. However, a change in state

may alter the entire state space for the future of the

stochastic process. Thus X actually depends on

both time t and the current state s . Imagine a

progression of stochastic processes indexed by the

current state, {X (t ,sk ), t �/tk}, k�/0, 1, . . ., with s0
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the initial state at t0�/0 and sk the current state
after the future event at time tk . The realization of

this stochastic process is equivalent to a sequence

(t0, s0), (t1, s1), . . ., (tk , sk ), etc. While this can

theoretically be accommodated within the frame-

work of semi-Markov processes by extending the

sample space to be arbitrarily large, it provides

little insight into how to implement a simulation in

practice. Even for small simulations, this structure
can become cumbersome and expensive, as the

occurrence of each event requires rebuilding the

entire event space.

Think of a living process as moving from event

to event, with time defined implicitly through the

sequence of realized events, yielding a practical

construction of simulations. That is, if the current

state s1 was realized at time t1, then the future
event s10/s2 could happen at some random future

time t2�/T (s10/s2jt1, s1). This property allows a

smooth transition between the time domain of the

biological system and the event domain in model-

ing the biological system.

The investigator decides up front the aspects of

a biological system to be studied based on

measurable events and the focus of scientific
inquiry, implicitly setting the resolution and span

of the model. Resolution is the smallest increment

of time and space that contributes useful biological

information, with events over smaller scales as-

sumed to occur instantaneously. A finer scale

model would increase the cost of simulation while

providing negligible insight. Span is the largest

amount of time and space the model can encom-
pass, with aspects occurring over longer intervals

considered as essentially constant or slowly vary-

ing in a smooth fashion. Changing the resolution

and span of a model profoundly affects what

features of a biological system can be studied, and

vice versa. For example, an Aphytis parasite

feeding on California red scale would appear to

be instantaneous with a resolution of minutes, but
would require detailed modeling with a resolution

of seconds. A mature orange fruit could be

considered static as a substrate for red scale over

a span of 6 months. It may be appropriate to

model at several different spatial and temporal

spans and resolutions to address different facets of

a biological system.

We can schedule the next event for every

individual in a population. However, individuals

may interact, in some cases leading to births or

deaths that can change the structure of the system.

We define three special types of events to address

these contingencies:)�/

1) Future events are events that are scheduled to
occur at some future time based on the

competing risks system. Examples include

reproduction and developmental stage transi-

tions.

2) Immediate events handle multiple events that

are not resolved individually at the resolution

of the simulation. Such events*/the birth of

multiple offspring*/appear to be coincident.
3) Pending events are events whose occurrence

depend conditionally on other events or parti-

cular states of the model. This is especially

designed to deal with predators and prey, or

parasitoids and their hosts. It can also address

events that depend on environmental changes

such as rainfall and fire.

It is helpful to draw connections to Petri nets (cf.

Ajmone Marsan et al., 1995; Lindemann, 1998),

which put equal emphasis on states (places) and

events (transitions) connected by arcs. Future

events are instantaneous transitions from places

that have continuous, stochastic delay times.

Individuals (tokens) are reserved for an instanta-

neous transition by the scheduling of a future

event; for instance, an insect scheduled to molt

between instar stages. Future events may involve a

stochastic choice among several competing risks,

such as whether to feed or lay eggs, whether to

search for food or move. Competing risks are

analogous to race policies for conflicts in Petri

nets, although our emphasis is on modeling the

stochastic decision process itself.

Reproduction is a future event that may result in

the birth of offspring. These births may be

considered as immediate events with multiple

arcs emerging from the birth transition. All arcs

are followed, and hence all such immediate events

are realized. These are sometimes described as

deterministic events in Petri net literature. Typi-

cally immediate events result in scheduling of
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several future events. For instance, birth brings
new individuals into the simulation, each having

scheduled future developmental transitions.

Death is often a pending event, since it may

hinge on locating and consuming an adequate

amount of resources while avoiding predation. We

focus on ‘‘finding food’’ rather than ‘‘food avail-

ability’’, modeling the process of obtaining a

resource as well as its presence. Pending events
depend conditionally on other events and on the

model state, such as cooperation among indivi-

duals for group hunting or germination of fire-

sensitive seeds. Pending events are not scheduled in

advance, avoiding the need for a complicated

competing risks structure involving groups of

individuals. Instead, pending events are interrup-

tions to individual life histories arising from
environmental changes or events involving other

individuals. We represent pending events by

dashed arcs to distinguish them from future

events. If an individual is interrupted by parasit-

ism, the pending event of being parasitized is

realized. The individual may be killed or hurt in

some way, depending on the nature of parasitism,

canceling or altering its previously schedule future
event.

3. The red scale/Aphytis system

In California, red scale, Aonidiella aurantii

(Maskell) (Diaspididae: Homoptera) is a major

insect pest of citrus, especially in California’s San

Joaquin Valley where most of the State’s citrus is
now grown. At moderate densities, the scale infests

the fruit, while at higher densities they cause leaf

and twig death, which can reduce fruit production.

Dense scale populations can kill branches or

portions of the tree with the subsequent loss of

all or part of the crop. California’s citrus is

marketed as fresh fruit. Fruit with scale are

downgraded or culled and most culled fruit are
juiced, which does not cover production and

processing costs. Thus, marketing conditions

make cosmetic damage economic.

Growers in the San Joaquin Valley traditionally

suppressed scale infestations with broad-spectrum

insecticides. Recently red scale has evolved resis-

tance to these pesticides, making them ineffective
(Grafton-Cardwell, 1994). An alternative suppres-

sion tactic employs the release of a small wasp,

Aphytis melinus DeBach (Aphelinidae: Hymenop-

tera). Aphytis parasitizes specific stages of the

scale insect to produce its offspring, killing the

scale as a consequence. When sufficient scales are

parasitized, the scale population is suppressed at

densities below those of economic concern. Re-
lease of this wasp in the absence of broad-

spectrum insecticides can suppress the scale at a

cost equal to or less than that achieved with the

traditional insecticide program. Moreover, the

quality of the fruit harvested under such a

program is equal to or better than that harvested

under the traditional program. (Haney et al., 1992;

Luck et al., 1997).

3.1. Red scale life history

Red scale’s life cycle begins with the crawler

stage, a brief mobile stage that allows the young

scale to find a suitable location on a branch, leaf or

fruit on which to ‘‘settle’’. It then inserts its

mouthparts into the substrate and transforms
into a sedentary feeding stage. Once settled, a

female scale remains immobile for the rest of her

life. In contrast, the male once settled remains

immobile until its adult stage when it transforms

into a winged adult and seeks a virgin female with

which to mate. Both the male and female grow by

molting periodically, alternating between a feeding

instar and a non-feeding or molting stage. During
the molting stage, the scale sheds its exoskeleton

and increases its size so that it can grow when it

initiates feeding during the next instar. A female

red scale has three feeding stages (instars) with two

intervening molts. At the end of the third instar, it

mates and transforms into a gravid female, matur-

ing its eggs, and subsequently produces crawlers.

The eggs develop within the female. Immature
males have two feeding instars separated by a molt

stage. Following the second molt, the male trans-

forms into a prepupa followed by a pupa, finally

emerging as a winged adult. The winged adult

locates a virgin female with whom to mate via a

sex pheromone. This is illustrated in Fig. 1.
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Since red scale’s development is temperature-

dependent, the average time it takes the scale to

complete its development during an instar or molt

is represented in degree-days (DD8), which are

approximately the cumulative degrees (8C) above
11 8C (Yu and Luck, 1988). It takes both female

and male scales about 183 DD8 to reach the end of

the second instar. Males remain prepupae for an

additional 17 DD8 before molting to a pupa, and,

after 11 DD8 as a pupa, emerge as a winged adult.

In contrast to males, second instar females, on the

other hand, molt, which last approximately 28

DD8 after which they reinsert its rostrella and feed
as third instars. Red scale is subject to parasitism

during the development process, until it becomes a

mature adult. A mated female becomes attached to

her scale cover and begins to mature her eggs. In

approximately 50 DD8, the mature female begins

to produce crawlers. The cycle for a female from

crawler to crawler producing female takes ap-

proximately 360 DD8.

3.2. Aphytis life history

A. melinus is a small wasp that lays its eggs

externally on the body of red scale (�/host) but

beneath the scale cover (Forster et al., 1995). It
paralyzes the scale before it lays its egg. Normally,

Aphytis lays its egg on a second or a third instar

female or on a second instar male scale. Aphytis

prefers instar stages to molt stages of red scale.

During the instar stage, the scale cover is free of

the body and Aphytis can lay eggs on either or

both the dorsal and ventral surfaces of the scale

(Abdelrahman, 1974; Luck et al., 1982). During
the molt and mature female stage, the cover is

rigidly fused to a hardened body. The wasp larva

hatching from the egg feeds on the paralyzed scale,

consuming the contents of the scale, which kills it.

This is referred to as parasitization. The food

available to the developing Aphytis is determined

by the size of the scale body at the time the scale is

paralyzed. Aphytis passes through four immature
stages during its development: egg, several larval

stages, prepupa and pupa. Generally, Aphytis

allocates a male offspring on second instar scales

and on male and female scales. About 20% of the

male scales are allocated a female Aphytis. About

70% of the third instar female scales are allocated a

female Aphytis offspring, about 25% are allocated

a male Aphytis offspring and about 5% are
allocated two Aphytis offspring (usually a male

and a female) (Luck et al., 1982; Luck and

Podoler, 1985). The two eggs are laid during the

same host visit and represent a case of gregarious-

ness (Luck et al., 1982).

Once having allocated an offspring to a host

scale, the Aphytis egg or larva is vulnerable to

usurpation of the host by a second female Aphytis

encountering the host. A previously laid Aphytis

egg or the first instar larva arising from it may be

killed when a second female encounters and

oviposits on the previously parasitized host (For-

ster and Luck, pers. obs.). The second female

distinguishes the scale as previously parasitized

and, while walking on the scale cover or probing

the scale, detects chemical cues that were left by an
Aphytis that previously oviposited on the scale

(van Lenteren and DeBach, 1981). It punctures the

previously laid egg and then lays its egg on the

host, usurping the scale as a resource for its

offspring (�/super-parasitism) (Forster and

Luck, pers. obs.). This usurpation increases in

frequency as the ratio of unparasitized to para-

Fig. 1. Red scale life history. Red scale remains in a particular

state (ellipse) for a scheduled period of time measured in degree-

days (see text), and then experiences an event (rectangle) that

moves it to the next stage. Some labeled rectangles represent

complicated processes such as host�/parasite interaction that

may take time to be realized. Arcs connect events to states and

vice versa. Dashed arcs indicate interruptions, for instance

parasitism, or death due to some unknown cause. Gravid

females have some reservoir n of potential young based on their

size, which is depleted each time they bear a crawler until they

finally die. Bearing young may involve time delays. Settling of

crawlers is not detailed here.
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sitized scales decreases. This form of intraspecific

competition can occur more than once on a host

but, with each usurpation, the survival of the wasp

larva arising from each newly laid egg decreases.

A. melinus development is also temperature-

dependent. At 26.7 8C, in a parasitized or super-

parasitized host, a wasp egg hatches after about 2

days. The resulting larva feeds for approximately 5

days before becoming a prepupa for 1 day. It

pupates for 4�/5 days before chewing a hole

through the scale cover and emerging as an adult

Aphytis . Thus, the entire process from egg to adult

takes 12�/13 days. Aphytis prefers instar stages to

molt stages of red scale. During the instar stage,

the scale cover is free from the body. The devel-

opment of Aphytis is illustrated in Fig. 2, while

parasitism is shown in Fig. 3.

Female Aphytis usually mature their first batch

of eggs, approximately 12% of its lifetime egg

supply, within 24 h of emergence using resources

from their larval stage. They produce eggs during

their entire adult lifetime, relying on periodic

feeding on body fluids of small, immature hosts

for sustenance (Opp and Luck, 1986; Heimpel and

Rosenheim, 1998; Collier, 1995; Luck and Nun-

ney, 1999). Adult Aphytis host feed by probing the

scale body more extensively than when they

oviposit, feeding on the body fluids that ooze

from the wound. Aphytis feed on small hosts

(scales) while searching for larger scales to serve

as suitable hosts on which to lay eggs. Host feeding

kills a substantial percentage of California red

scale beyond those killed through parasitism.

Within 12�/18 h of host feeding, the female

develops approximately 1.3 eggs if it has not

recently oviposited, or about 2.7 eggs if it has.

Host feeding appears to provide resource for both

metabolic maintenance and egg production. Coll-

ier (1995) showed that Aphytis that do not have

access to hosts for either oviposition or host

feeding will reabsorb about 1 egg per day. How-

ever, egg reabsorption will not supply the meta-

bolic needs of the wasp in the absence of honey or

other carbohydrates.

Aphytis , as with most parasitoids, controls the

sex of its offspring by optional fertilization of eggs:

males normally arise from unfertilized eggs while

females arise from fertilized eggs (Yu and Luck,

1988; Godfray, 1994). Larger scales are allocated

female eggs as large daughters are more reproduc-

tively successful on average than a smaller daugh-

ters. Thus scales growing on fruit are more likely

to be parasitized due to their larger size (Luck and

Podoler, 1985; Hare and Luck, 1991).

Fig. 2. Aphytis life history. All stages but the adult occur

within a parasitized red scale host. A parasite may be displaced

by a subsequent parasitism event. See Fig. 1 for details on

symbols.

Fig. 3. Host�/parasite interaction for ectoparasite, including

super-parasitism. Parasite stops host development and kills any

other parasite, including its own species that may be residing on

the host. Parasite continues to locate new hosts until its

reservoir (n ) is depleted. Locate process is not detailed here.

Choice of feed or oviposit depends on n and on the size of the

selected host, which may also affect the probability of a male

parasite egg.
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4. Competing risks for life events

Competing risks arose initially in mortality

studies of risks that ‘‘compete’’ for an individual’s

life (Chiang, 1968, 1972). Competing risks and

related life table methods have been used regularly

in ecological modeling (Caswell, 1989), usually

with discrete, synchronized generations. Here we

adapt the building blocks of competing risks to
study life history events for asynchronous, inter-

acting individuals in an ecological community. We

show how the linear structure of competing risks

over continuous-time allows a simple modeling

approach, as we only need to examine the next

scheduled event in an ecological community. In

addition, we introduce a parameterization of the

cumulative risk, or mean value function, that
allows quick adjustment of individual biological

clocks.

While the competing risks literature has largely

focused on inference (cf. Fine, 1999), we concen-

trate on simulation models grounded in measur-

able events. Fix and Neyman (1951) introduced an

illness-death process, generalized by Chiang

(1968), with individuals moving between healthy
and sick states, continually exposed to competing

risks of death. Clifford (1977) proved the non-

identifiability of competing risks with a single

measurement per individual even if an illness is

progressive. Yandell (1982) showed that indepen-

dent competing risks can only be identified with

measurements at the actual times of transition

between states. Thus, it is crucial to select events
whose time of occurrence can be estimated.

Simulation models should reflect this constraint.

The ethologist tries to define the probabilities

for each event to reflect the observed data. Since

events contain all the measured dynamics for the

population; there is an added advantage in model-

ing simulations from the event domain. Future

events change time in the model and control the
competing risk sequencing. When a future event

occurs, the simulation stops. Action is taken on

any immediate events induced by the future event,

and any pending events are modified as necessary.

Immediate or pending events can change the

underlying structure of the model, requiring the

rebuilding of the stochastic process. In most

situations, only a few competing risks are altered
by the immediate or pending events, requiring only

modest changes to other scheduled future events.

Finally, the stochastic process is reconstructed to

contain only future events from the current time

onward.

Thus a biological system can be simulated by

alternating between future events and immediate

events, addressing pending events as they arise.
However, the competing risks structure for future

events now depends on the past history of events.

Risks may be altered by discrete state changes of

other individuals or by discrete or gradual changes

in environmental conditions. Nevertheless, the

stochastic process is still predictable and hence is

still well defined.

4.1. Competing risk structure

An individual in an ecological community has

several ‘‘choices’’ about future events, such as

dying from one of several competing reasons,

eating, reproducing, or migrating to another

locale. The chance of the jth type of event

occurring during the time instant t is proportional
to its competing risk, or hazard, mj (t ), which may

change over time but is assumed to be fairly well

behaved. We assume the probability of two or

more events occurring simultaneously is negligible.

Thus the risks add up to the chance of any event in

an instant as m (t )�/amj(t). The cumulative com-

peting risks, or mean value functions Mj(t)�
fmj(t) dt with Mj(0)�/0, count the expected num-
ber of events of type j up to time t . These are

assumed to be right-continuous and non-decreas-

ing with derivative mj(t) at all but a countable

number of time points. The random count of the

number of events over time is a non-homogeneous

Poisson process with time-varying risks and in-

dependent increments between distinct time inter-

vals.
An alternative approach models potential life

(or event) times Tj for each type of risk j (cf.

David, 1974). The observed time to next event

would be the minimum of these potential event

times, T�/min{Tj}. Hence, the chance that no

event occurs before time t is
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PrfT �tg�Prfmin(Tj)�tg�
Y

PrfTj �tg

�
Y

exp(�Mj(t))�exp

�
�

X
Mj(t)

�
:

The product
Q

is justified if the potential event

times, or equivalently the competing risks, are

independent. The linearization property reduces a
potentially complicated probability to a summa-

tion over the competing risk structure. Tsiatis

(1975) showed that without independence Tj , and

hence Mj(t) and the sub-probabilities Pr{Tj �/t},

cannot be uniquely determined from the data.

Further, it is impossible to investigate this assump-

tion of independence with these data; as a result,

these potential lifetimes have fallen out of favor.
While we agree that inference cannot be based on

these potential event times, they can be extremely

useful for simulation models of complex living

systems.

Each individual i has a set of potential times

{Tij , j�/1, 2, . . .} for its future events. These may

depend on the history and current state of the

biological system. Its next future event is at the
minimum Ti �/min{Tij}. The next event in a

community of n individuals occurs at the mini-

mum over all individuals, T�/min{Ti , i�/1, . . . ,

n}. In a simulation with a high degree of structure

and many levels of events, this minimization

property provides an efficient method to find the

next event for the community. Note that the mean

number of events for a community is the sum
M(t)�aMi(t); with the mean number for indivi-

dual i being Mi(t)�aMij(t): That is, the compet-

ing risk structure until the next future event

decomposes in this linear fashion as if the indivi-

duals were independent.

4.2. Time depends on events

Control over the shape of the mean value

functions M allows considerable flexibility to
incorporate relevant knowledge of biological pro-

cesses into the distribution of the scheduling time

T . The mean value function M could be ‘‘esti-

mated’’ from prior experimental data, partial

knowledge and hunches. We show in this section

how to schedule future events by drawing uniform

or exponential random numbers and using M to
transform to future event times.

Consider a single individual and a single com-

peting risk, dropping subscripts for now. We can

schedule the time T for its next future event by

picking a random probability U , uniform between

0 and 1, and defining time T in terms of U as

M�1(G (U ))�/T with G (u)�/�/log(1�/u ) and

M�1 the (generalized) inverse of M . Thus

PrfU �ug�u�1�exp(�M(t))�PrfT �tg
with some adjustment necessary for the chance

Pr{T�/�}]/0 that no event occurs. Hence, time

T becomes an implicit, dependent variable, driven

by the event structure embodied in M . Fig. 4

shows this mapping for a distribution that has a
plateau in the middle.

The random variate V�/G (U )�/M(T ) has a

standard exponential distribution Pr{V�/v}�/1�/

exp(�/v). If the risk is constant, m (t )�/c , then

T�/V /c . Sampling V instead of U involves only

modest extra work (Ahrens and Dieter, 1974,

1988) and avoids calculating logs, which are

expensive computationally. Events may, therefore,
be scheduled by sampling a standard exponential

random variable V and constructing the random

time T as M�1(V )�/T using the fact that Pr{V�/

M(t)}�/Pr{T�/t}. Thus, the mean value function

M transforms the exponential waiting time V

based on constant risks to a biological time that

may encompass the ongoing processes of the

simulated ecosystem (see Fig. 4).

4.3. Event structure for an individual

This generic mean value function M must be

fine-tuned to each individual in a species, and to

different species in a community. Future event

times may need to be adjusted based on the

individual histories and situations. In practice,

many individuals may have similarly shaped

mean value functions for a given competing risk.
Changes during the simulation may slow or delay

each biological clock, or increase the risk of certain

types of events. Thus it is feasible to design a few

such curves and then shift, stretch or otherwise

modify them to suit multiple needs. This can

enhance the biologist’s control over model simula-
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tions while keeping the decisions simple. The

development below shows how this generic biolo-

gical time can be easily modified to adjust to

individual biological clocks. It allows considerable

flexibility with environmental effects and interac-

tions among individuals.

For each individual i and possible future event

j , there is a mean value function Mij and a random

potential times Tij when that future event may be

scheduled to occur. We characterize possible

modifications to an underlying common mean

value function Mj(t) in terms of five non-negative

parameters that approximately transform clock

time into individual biological time: a�/disper-

sion, b�/location, c�/intensity, d�/truncation

and e�/rejection (Table 1). Mj(t) is developed

using prior experimental knowledge, but the five

parameters change during the simulation based on

an individual’s life history. The future event time is

scheduled by sampling V and setting

Tij �M�1
ij (V )�aM�1

j

�
G(d) � V

c

�
�b

unless V�/G (e ), in which case the event is rejected

(censored) and hence never scheduled. Further,

events before time aMj
�1(G (d )/c )�/b are trun-

cated and never observed. Dispersion a is analo-

gous to Cox (1972) proportional hazards, while

intensity c corresponds to accelerated lifetime

(Viertl, 1988; Clarotti and Lindley, 1988).

The flexibility of this family of curves is

illustrated in Fig. 5, where each parameter except

rejection is varied individually. Fig. 6 shows how

to achieve a modest reduction or extension in
mean time to event by changing each of the five

parameters, with markedly different results. These

parameters adjust individual biological clocks with

useful, intuitive biological interpretations. Disper-

Fig. 4. Time depends on events: (a) usual interpretation of probability F of event by time t ; (b) inverse relation with t a function of F ;

(c) transform from F to mean value M shows how to map time by first randomly picking mean value. Curve is a cubic spline with eight

knots.

Table 1

Effects of each of the five parameters that transform clock time into biological time based on exponential random variate V

Description Parameters Time Mean value Range

Identity [1,0,1,0,1] T�/M�1(V ) V�/M (T )

Dispersion [a ,0,1,0,1] T�/aM�1(V ) M (T /a ) a �/0

Location [1,b ,1,0,1] T�/b�/M�1(V ) M (T�/b ) b ]/0

Intensity [1,0,c ,0,1] T�/M�1(V /c ) cM (T ) c �/0

Truncation [1,0,1,d ,1] T�/M�1(V�/G (d )) max(0, M (T )�/G (d )) 0�/d B/1

Rejection [1,0,1,0,e ] T�/M�1(V ) provided V B/G (e ) min(M (T ), G (e )) 0B/e�/1

Mean value is expected number of events. Parameters are non-negative, with range constraints indicated.
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sion can slow or speed the time to the next event.

Location is often set to the time of the previous

future event, or it can shift probabilities uniformly,

postponing events in response to changing condi-

tions. Intensity can raise or lower the mean

number of future events, while keeping the same

shape M , corresponding to changes in the envir-

onment such as reduced food supply.

Truncation and rejection ease simulation of

immigration and emigration, respectively. Immi-

grants can move into an area and continue life

processes based on imperfect information. An

important future event for such a truncated

individual may have happened at some unknown

time before it entered the simulation. Emigrants

can leave an area with future events unknown and

irrelevant. Rejection allows removal of such in-

dividuals, eliminating scheduling of their future

events. As an example, consider an adult Aphytis

arriving at an orange to attack red scale. This
individual may enter the simulation with very little

knowledge of its previous life history except its

age, egg load and direction of travel. The Aphytis

is an immigrant, with a truncated life history.

Eventually this invader may oviposit in red scale,

laying eggs and ultimately creating a new popula-

tion of adult Aphytis that may either attack nearby

red scale or emigrate to another orange tree.
Finally, the original flying adult may leave the

orange, never to return. While it, and its offspring,

may attack other red scale, it is lost to the present

simulation. Therefore, at emigration its remaining

life history is rejected, as its future is irrelevant.

4.4. Handling immediate events

There are occasions when it may be appropriate

to schedule an event without knowing its outcome.
At the time of that future event, its specific

outcome may be predicted based on the environ-

ment and current state of the simulation. Which of

the n hosts is attacked by a parasite? The future

event is scheduled based on the parasite, but its

consequence disrupts a particular host, chosen

when the parasitism event occurs as an immediate

event. Hosts in the vicinity of the parasite are
scored in terms of proximity, size, developmental

stage and other factors that may affect the chance

of being chosen. The parasite selects a host on

which to oviposit with probability proportional to

this score. Once a host is selected, there is a further

chance mechanism as to whether a male or female

egg would be oviposited. Either way, the red scale

is immediately rescheduled for death (see Fig. 3).
In some situations, it may be more appropriate

to schedule the future event of a prey dying,

handling the predators with immediate events.

For instance, with a host death at time t , the

probability that predator i is the primary bene-

ficiary may be proportional to its mean value

function

pi�
Mi(t)

M(t)
; i�1; . . . ; n:

The immediate event that predator i has the kill is

processed with probability pi . This immediate

Fig. 5. Four of the five parameters transform the probability to

time mapping. Basic curve is from Fig. 1 with dispersion�/10

and location�/100: (a) dispersion varies from 5 to 15; (b)

location varies from 90 to 110; (c) intensity varies geometrically

from 2.25 to 1/2.25; (d) truncation varies from 0 to 1.

B. Ewing et al. / Ecological Modelling 158 (2002) 35�/5044



event may cause scheduling of future feeding

events for one or more other predators, based on

how much the top predator consumes. Once these

are scheduled, the process continues as before, but
with a newly modified competing risk structure.

An immediate event that spawns multiple future

events may need a decision of how many events are

to be created. The number of live births may be

random, and hence can be drawn from an appro-

priate distribution, say a histogram based on

experimental data suitably modified by environ-

mental considerations (temperature), health of the
individual, and actions of other individuals.

5. Simulations

A simulation system has been developed using

the event-driven competing risk structure outlined

above. The initial implementation focuses on the

California red scale�/Aphytis system, although the

software module has no code specific to this

system except details of event handling. Our

parameterization can dramatically reduce disk

storage needs and run time for simulations.

Calculations involve no integration, reducing to

an exponential random variate, a pair of linear

transformations and an evaluation of M�1. The

structure of an individual is divided into the

‘‘static’’ properties, such as physical attributes

and relationships with other individuals, and the

‘‘dynamic’’ event structure, influenced by the

competing risks and other individuals in the

community.

Since red scale is temperature-dependent (ap-

proximated by degree-days, the integral of degrees

above 11 8C) while Aphytis is diurnal (active from

about 9 a.m. to 4 p.m.), we allow the two species to

Fig. 6. Modification of five parameters for time reduction or extension: (a) 5% and (b) 10% time reduction via dispersion (dot),

location (dash), intensity (long dash) and rejection (solid); (c) 5 and 10% time extension via dispersion (dot), location (dash), intensity

(long dash) and truncation (dot dash). Horizontal dashed line is at original mean time; solid line at reduced or extended mean time.
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operate on different biological clocks. Mean value
functions for future events are by default linear in

the species-specific biological clock (degree-day or

diurnal), but can be tuned using a graphical

interface. The software is written in the R lan-

guage, which is graphical, extensible, and in the

public domain (Venables and Ripley, 2000; see

http://www.r-project.org). We compute M and

M�1 and the hour/degree-day translation using
forward and backward cubic splines via library

(splines) in R, and efficiently generate standard

exponential pseudo-random numbers using the R

implementation of algorithms by Ahrens and

Dieter (1974, 1988). Details of the simulation

and access to public domain software can be

found at http://www.stat.wisc.edu/�/yandell/ew-

ing.
The simulation uses life history information

from Forster et al. (1995) as summarized earlier

in this paper. A temperature range 15 8C�/30 8C
is used to represent springtime conditions in the

interior regions of California or the San Joaquin

Valley. The cool evenings slow development of red

scale. We simulate the red scale�/Aphytis system

with varying number of individuals of each
species. Here we present a limited set of simula-

tions to demonstrate proof of concept. Initial

simulations are run for up to 10,000 events, or

several generations of each species.

An isolated population of red scale demon-

strates, as expected, an exponential increase in

total population over generation (not shown).

Since the underlying orange resource is not
restricted, we see uncontrolled growth. However,

both gravid females and crawlers tend to show

inherently discontinuous dynamics, with periods

of growth and decline.

A simulation with 200 red scale and 200

Aphytis , weighted initially toward immature in-

dividuals, shows the characteristic lag in response

to parasitization (Fig. 7). The number of red scale
initially rises, and then is dramatically reduced by

the emerging adult Aphytis . Both decline for some

time, but the red scale shows evidence of recovery

with an increased number of crawlers, and sub-

sequent increase in instars that can serve as

Aphytis hosts. The decline in Aphytis appears to

be arrested late in the simulation, but there are

only a few individuals left. The frequent vertical
spikes in number of Aphytis young represent male

offspring that are born and immediately removed

from the simulation. This crash in parasite popu-

lation may be due to the artificial isolation of this

simulation. In a larger simulation, there could be

immigration of new adult Aphytis from neighbor-

ing orange fruits as well as the emigration of

males.
The next example differs in having initial

populations of 300 red scale and 50 Aphytis , and

a slower depletion of adult Aphytis egg resources.

Fig. 8 shows that Aphytis can maintain its

population for a few generations. However, as

the number of adult Aphytis stabilizes at around

35, they begin to seriously reduce the host

population. The Aphytis population drops as
well, as the adults fail to find red scale that are

mature enough to support female Aphytis eggs.

Eventually the remaining Aphytis adults would

perish for lack of food.

6. Summary and conclusion

This report presents a new and different ap-
proach to modeling the structure and dynamics of

interacting populations. The philosophy behind

the technique has one guiding principle that the

biology imbedded in the data collected by the field

researcher should drive the model. Both data and

model have implicit resolution and span. The keys

to this approach are the integrity of data, their

relevance to the ecological questions and faithful
modeling of their dynamics in the simulation. For

example, if the model assumes a random search for

prey but the organism displays a very sophisticated

search technique, then the model may produce

questionable results. In addition, the researcher

needs some idea of the various parameters that

drive the system such as temperature and possibly

humidity for red scale.
We examined the effects of temperature varia-

tion on the dynamics of Aphytis with respect to red

scale. As expected, simulations with many Aphytis

showed a rapid drop in the red scale population.

Further, red scale is rarely driven to ‘‘extinction’’

while Aphytis is more likely to disappear, perhaps
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Fig. 7. Red scale and Aphytis simulation. Abscissa in units of degree-days and ordinate is log number of individuals with multiple

scales by sub-population. Left plots show red scale total (top panel), and summaries for crawlers (crawler), all other stages that can

serve as potential parasite hosts (host) and gravid females (gravid). Right plots show Aphytis totals (top panel) and summaries by pre-

adult stages (young) and the mobile adult stage (adult). Simulation started with 200 red scale and 200 Aphytis and ran for 10,000

events, roughly 100 days or 1500 degree-days. This is equivalent to about three generations of red scale and eight generations of

Aphytis.
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Fig. 8. Simulation started with 300 red scale and 50 Aphytis run for 10,000 events, roughly 70 days (six Aphytis generations) or 650

degree-days (one red scale generation). Aphytis had half the depletion rate of its egg resources in this simulation. See Fig. 7 for

description of plot lines.
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because Aphytis and red scale operate under
different constraints. The development of red scale

is essentially temperature-dependent, whereas

parasitism by Aphytis is a time-dependent phe-

nomenon.

The structure of our model system allows easy

implementation of modular event algorithms as

they become available. We readily admit that the

present implementation simplifies the migration
pattern for red scale and search strategies for

Aphytis. We are developing more realistic search

and migration algorithms that are fast to compute.

In addition to Aphytis , other parasites such as

Encarsia perniciosi , Comperiella bifasciata contri-

bute to red scale mortality (Forster et al., 1995).

Our simulation system can handle multiple species,

and we are investigating these complex interac-
tions.

Analysis of these simulations could proceed

using the methods developed for stochastic Petri

nets (Ajmone Marsan et al., 1995; Lindemann,

1998; Bobbio et al., 2000), except these methods

cannot handle simulations with multiple non-

exponential delay times. Instead, we propose to

design experiments (Latin hypercubes and re-
sponse surface methods) by adjusting simulation

components and to evaluate the model perfor-

mance using Bayesian approaches to uncertainty

analysis (cf. Kennedy and O’Hagan, 2001 and

references therein).
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