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SUMMARY

Plant and animal studies of quantitative trait loci provide data which arise from mixtures
of distributions with known mixing proportions. Previous approaches to estimation
involve modelling the distributions parametrically. We propose a semiparametric alterna-
tive which assumes that the log ratio of the component densities satisfies a linear model,
with the baseline density unspecified. It is demonstrated that a constrained empirical
likelihood has an irregularity under the null hypothesis that the two densities are equal.
A factorisation of the likelihood suggests a partial empirical likelihood which permits
unconstrained estimation of the parameters, and which is shown to give consistent and
asymptotically normal estimators, regardless of the null. The asymptotic null distribution
of the log partial likelihood ratio is chi-squared. Theoretical calculations show that the
procedure may be as efficient as the full empirical likelihood in the regular set-up. The
usefulness of the robust methodology is illustrated with a rat study of breast cancer
resistance genes.

Some key words: Boundary condition; Breeding experiment; Exponential tilt; Lagrange multiplier; Molecular
marker; Profile likelihood; Weak convergence.

1. INTRODUCTION

Our motivation is the identification of genetic loci influencing quantitative traits. This
use of molecular marker data in breeding experiments has traditional applications in plant
and animal studies, such as improving grain yield in rice and increasing milk production
in cows. Recently, animal models have proved useful for complex human diseases. For
example, controlled crosses of inbred rat strains (Lan et al., 2001) characterised several
genomic regions conferring breast cancer resistance or susceptibility.

The standard method for quantitative trait loci is interval mapping (Lander & Botstein,
1989). Since markers are observed at known locations, the genotypes between the locations
are missing. In backcross studies, this leads to a two-component mixture model at putative
loci. The component densities, f and g, are associated with the possible genotypes. The
mixing probabilities are determined by the recombination fractions between a locus and
the flanking markers (Knapp et al., 1990). The set-up differs from those in which the focus
is inference for unknown mixing proportions when some data are from f and g
(Titterington et al., 1985, Ch. 1). Murray & Titterington (1978) and Hall (1981) discuss
nonparametric approaches. With quantitative traits, the proportions are known, they vary
among observations, and direct information on the distributions may be unavailable. The
emphasis is on testing that a locus has no genetic influence, that is, Hy: f = g.

Following early work on mixture models (Hosmer, 1973), most mapping methods
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employ a likelihood analysis with f and g specified parametrically (Doerge et al., 1997).
Kruglyak & Lander (1995) proposed a rank-based nonparametric test for H,. A formal
procedure for robust estimation of the distributions does not exist, and a challenge is to
relax the usual parametric assumptions. We adopt a semiparametric model subsuming
discrete and continuous outcomes. The densities are related by an exponential tilt but are
otherwise unspecified (Anderson, 1979); that is

g(x) =exp(fo+ B1x)f(x), (1)
where (B, 1) € #, a compact subset of #2 Normal variates with common Varlance
follow (1), as do exponential, binomial and Poisson distributions. Including x% x3, ... in

the log-linear model for g/f enhances its flexibility.

The exponential tilt model resembles the Cox (1972) regression model in which the
ratio of two hazard functions is linear in covariates. A partial likelihood not involving the
baseline hazard gives efficient estimators for the coefficients in the proportional hazards
model (Cox, 1975). An analogous partial likelihood has yet to be developed for model
(1). Qin (1999) used a profile empirical likelihood (Owen, 1988, 1990) to construct confi-
dence intervals for the mixture proportions, and for F = f and G = |g. However, esti-
mation of (f,, f;) enforces constraints on F and G and is computationally involved.
Furthermore, in §2, we show that the constraints induce a boundary condition and
Theorems 1-4 (Qin, 1999) do not hold under H,. That is, the profile likelihood has an
irregularity when f =g.

Irregularities in likelihood methodology for parametric mixture models with unknown
proportions are well documented (Ghosh & Sen, 1985; McLachlan & Basford, 1988). The
likelihood may also have an irregularity with known weights (Goffinet et al., 1992). The
irregularity of the profile empirical likelihood for the semiparametric model (1) occurs
either with or without known weights; that is, knowledge of the mixture proportions does
not eliminate the difficulty under H,,.

To derive a valid test of the null hypothesis, we factorise the profile empirical likelihood
into two pieces. One part involves the constraints while the other, the partial profile
empirical likelihood, does not. The partial likelihood gives consistent and asymptotically
normal estimators for (f,, §;) regardless of f =g, and the log partial likelihood ratio for
testing fo = f; =0 has a chi-squared distribution. Maximising the partial likelihood is
straightforward, avoiding constrained optimisation of the full likelihood. Theoretical calcu-
lations show that, when f =+ g, the estimators may be as efficient as those from the full
likelihood. New estimators for F and G are proved to be uniformly consistent and to
converge to Gaussian processes.

In § 3, simulations show that the partial profile empirical likelihood works well with
realistic sample sizes. The semiparametric methods are illustrated on the mammary cancer
data in § 4 and some remarks conclude in § 5.

2. ESTIMATION AND INFERENCE
2-1. Data and profile empirical likelihood

The data are independent observations from K mixtures with known proportions and
component densities f and g satisfying model (1). Let X,; be the jth observation from the
kth mixture with density

AfX)+(1—-21pgx) (j=12,....n,k=1,2,...,K).
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Assume that 0 < 4, <1, A; + ... * Ak, and f(x) is nondegenerate. If K = 1, then the model
is nonidentifiable. To see this, let d(x)= {i; + (1 — A;) exp(p& + xpF)} f*(x). Setting
(Po, B1,.f) in (1) equal to (p§, p¥, f*) and (0,0,d) yields equivalent models. In the
sequel, K > 2.

If we define

wi(x, f) = A + (1 = A) exp(fo + xB1),
the likelihood is

L(p, F)= 1_[ 1_[ dF(ka) 1_[ 1_[ wk(xkp p) = 1_[ dF(z;) 1_[ 1_[ wk(xkp B)

k=1 j=1 k=1 j=1 k=1j=1
n K
= 1_[ 1_[ 1_[ wk(xkja ﬁ)a (2)
i=1 =1j=
K
WhCI‘C n= Zkilnk, z= (Zl, Zz, ve ey Zn) == (xll, xlz, ceey xKnK) and pi = dF(Zi).

Unconstrained maximisation of L(§, F) does not provide a valid estimate for 5. To see
this, note that the likelihood increases monotonically in p; (i=1,...,n) and S,. For a
given f, it is natural to constrain p to the set

This ensures that the estimators for F and G are cumulative distribution functions. To
compute the maximum likelihood estimator of B,  say, one first maximises L(S, F) over
p € C,. This yields a profile likelihood in g which is then maximised to obtain = (f,, ;)
(Qin, 1999). The estimators

S pi=1,p20, Y pilexp(fot zify)— 1) =0}.

i=1 i=1

F(x)= Zn: Pil(z; < x), G(x)= i eXp(Bo+ZiB1)l~’il(Zi<x)

i=1

are evaluated at p=(p,, ..., p,), where p maximises L(J, F) over pe C;.
Similarly to Qin & Lawless (1994), for any fixed f such that C; is not empty, maximising
L(B, F) over Cp gives

1 1

= , 3
P 0 e, B+ G, )} )
where « is the Lagrange multiplier determined by
12 h(z, p)
- z =Y, (4)
nl:1 +O(h(Z“ ﬁ)

with
h(x, B) = {exp(Bo + xBy) — 1}r(x, B) ", r(x, f)=1+ {exp(Bo + xpy) — 1},
= i ntm(1 = 2).

Plugging (3) into (2) gives the log profile likelihood
HB, a(B)} = 1, 4B, &p)} + ,(B) —nlogn,
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where

1B, 0)) = = 3 logt1-+ 2h(z, )

L(p)=— Z log{r(z;, p)} + Z Z log{c(xi;, B)}

k=1 j=1

and &(f) solves equation (4). Maximising (8, &) in (f, &) may be unreliable because the
function may have many saddlepoints and the maximiser must satisfy a simplex condition
(Qin & Lawless, 1994). Another method evaluates &( ) explicitly for each 8, which may
be more computationally intensive. For example, the bisection method may be used to
solve the constraint for fixed f and may be coupled with the downhill simplex method to
search for the maximiser of /. This contrasts with certain models (Qin, 1998) for which
the parameter of interest and the Lagrange multiplier may be treated separately.

2-2. Irregularity of profile empirical likelihood

The issue is that C; may be empty for some f and the maximiser of L(f, F) may not
exist. The problem occurs when the true value of 8, S+ =(for, Bir), is 0; the irregularity
seems to have been overlooked in Theorems 1-4 in Qin (1999). This is precisely stated
in the following result; see the Appendix for the proof.

THEOREM 1. (i) We have that C, is not empty

< B =(Bo, B1) € Ju(2):=1Po, B1)|min_, (Bo + z;$;) <O <maxi_ (Bo + z;51)}.

(i) If Br=+0, then there exists a neighbourhood N(py) of By, such that, for every
peN(Br), peJ,(z) as n— 0.
(i) If B =0, then there exists no such N(fSz).

If =+ 0, then, for n large enough, there exists a neighbourhood of f; such that, for
every f € N(Br), Czis not empty. However, there is no neighbourhood of 0 in which every
p € J,(z). This happens because = (f,, 0) is not in J,(z) whenever f, + 0. In essence, the
constraints produce a boundary condition at the origin in which all finite « satisfy (4).

It is helpful to visualise the irregularity geometrically. The set J,(z) consists of two cones
in the (f,, f;) plane. The cones have a vertex at (0, 0) and are reflected about this point.
In Qin’s (1999) proofs, all § in a nondegenerate ball around S, must also be in the cones.
The problem is that, for §; = 0, there is always some f in the ball which is outside the cones.

As in Lemmas 1 and 2 of Qin (1993), we can show that when f; # 0 the constraint has
an implicit solution & B) in a O(n~ ') neighbourhood of f; and &(p) is uniformly O(n~173).
Furthermore, it is easy to prove that j is consistent and asymptotically normal. When
Br =0, there is no guarantee that the implicit solution of (4) is O(n~ Y3) in a O(n '?)
neighbourhood of ;. This means that the techniques used to derive the limiting behaviour
of § when ;=% 0 do not apply under H,,.

2-3. Partial profile empirical likelihood
The Lagrange multiplier is a nuisance parameter. The 1rregular1ty of I{B, &(f)} occurs
because o has known value 0 but is estimated to ensure that F and G are distribution
functions in finite samples. The log partial profile empirical likelihood, /,(f), does not
depend on the constraints, while [, {f, & )} does. Hence, the boundary condition is due
to ;.
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A reasonable estimator for f is /Ai = arg max,{/,(f)}. Since [; =0 when &(f) =0, /Ai is the
unconstrained maximiser of the full profile empirical likelihood. The asymptotic properties
of the partial likelihood procedure are given below; see the Appendix for the proof.

THEOREM 2. Assume that |h|® and | 0h/oB| are bounded by integrable functions in
N(Br).

(i) For large enough n, with probability 1, 0l,/0f =0 has a solution [3 in the interior
of the interval |p—Prl<n Y3 that is, [)’ is nY3-consistent for By. Furthermore,
nY2(B — By)— N(O, B), in distribution, where B=S VS, S = E{n~' 02L,(B,)/(0B 08")}

and V = var{ol,(fr)/(3p)}.
(i1) We have that 21,(B)— 3, in distribution, under H,.

The estimator ﬁ is consistent and asymptotically normal and the partial likelihood ratio
test has a chi-squared distribution under H,. However, B may not equal —S 1, as in
classical likelihood theory. Inference for f must be based on the sandwich variance
estimator B= SV 1S, where S =n"1 32L,(B)/(0B 05"),

PP 5r(xk,,ﬁ)/(5ﬂ) da (x5, B)/(0P)) ®*
V=n z z{ r(xkpﬂ) wk(xkj,B) } '

k=1j=1

and, for a vector v, v®% = vo".

2:4. Theoretical comparison of § and [Af

Since /Ai is more easily computed than f§ and is valid regardless of S, the relative
efficiency of the estimators when S5 # 0 is of interest. One might expect that [, and the
constraint (4) have extra information about f. We show formally that B has variance
bounded by that of ﬁ The result is stated precisely below; see the Appendix for details.

THEOREM 3. Under the regularity conditions in Theorem 2 and when f+ %+ 0 we have the
following. L
(i) The estimator 0 = (B, &) from I{B, &(B)} tends to (Br,0)" in probability and

\/n{é_(ﬁT’O)T}_)N(Oag)a (5)
in distribution, where B=8§"17§1,

[ < N S12> 7= <_S — 08155 _5521522>
Sy S , — 081382, $22— 053, '
and S5, Sz1, Sz» and & are defined in the Appendix. Thus, nV*(f — Br)— N(O, By), in

distribution, where

§11= _Sil_ 871S12521871.

S35 — 8518 15'12
(i) We have that

~ 1
B,—-B={6————1]515,,5,,S 1 <0.
H < Sz — 521S1512> 2

For regular f; and two or more mixtures, p has a limiting covariance matrix which
equals that for ﬁ plus the negative semidefinite matrix in (ii).
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The efficiency loss can be quantified in various settings using the formulae for B,, and
B in the Appendix. In all settings, var(f,){var( ﬂl)} 1 =1 after round-off, but not so for
Bo. In Table 1, var(,){var( ﬂo)} ! is given for normal, exponential and Poisson mixtures.
The mixture proportions are A=(1,...,Ag). The probability of an observation with
proportion 4; is p;, where 2., ;=1 and p=(p;,..., px). The relative efficiency is close
to 1 when all data are directly from f and g, and exceeds 0-95 in most other cases, even
when K =2, A, =0-7 and A, =0-5. The smaller |1, — A,]| is, the closer the true model is to
K=1.

Table 1. Relative efficiency of B, to Bo in four scenarios,

(@ p=(0505), A=(1,0), (b) p=(04,02,04), i=

(1,0:5,0), (c) p=(033034,033), 1=(07,05,03),
(d) p=(05,05), 1=(07,05)

g(x) ) Bo B (@) (b) (© (d)

N(,1)  N(2,1) 2 —2 0998 0973 0918 0924
N(201,1) N(2,1) —002 001 1000 1000 1000 1000
N@4,1)  N(2,1) -6 2 1000 0997 0990 0972
Po(1) Po(3) 2 —110 1000 0981 0960 0969
P0(3 01) Po(3) —001 001 1000 1000 1000 1-000

Po(6) Po(3) -3 069 0999 0991 0984 0970
Ex(1) Ex(3) —110 2 0993 0980 0966 0958
Ex(301)  Ex(3) 001 —001 1000 1000 1-000 1000
Ex(6) Ex(3) 069 —3 1000 0986 0987 0989
N(=3,1) N(2,1) =25 —5 0993 0989 0941 0869
N(=2,1) N(2,1) 0 —4 0983 0958 0444 0241
N(-1,1) N(2,1) 15 =3 0990 0966 0777 0698

An anomalous result occurs with normal densities when f(x)=g(—x) and
0<Ay,..., g <1;thatis f and g are reflected about 0. In these cases, the variance ratios
may be less than 0-50. An explanation is that p,=0 but S, +£0. This is confirmed by
calculations under a variety of distributions meeting the condition. The peculiarity is
absent when f==g and both coefficients are roughly zero.

2-5. Estimating F and G

To make inference about F and G, one may first test H,, using I,( ). If H, is not rejected,
then both F and G may be estimated with the empirical distribution from the pooled data.
Otherwise, l[{f, & )} may be used to obtain the estimates (Qin, 1999). Difficulties are that
the inferential properties of this two-step procedure are unclear and estimation of F and
G after rejecting F = G requlres constrained optlmlsatlon We propose a simple alternative.
Setting « =0 and S = ﬁ in (3) gives p; = {nr(z;, ﬁ)} ! Estimators for F(x) and G(x) are

F(x):= Z, pil(zi<x), Gu(x)= Z, pi CXP(BO + ZiBl)I(Zi < x).

By inspection, the estimators are monotone increasing step functions in x, with jumps
at the observed values z; (i =1, .. ., n). Since estimation is unconstrained, in small samples
F, and G, may exceed 1 in the tail. The adjusted estimators F;(x)= F,(x)/F,(c0) and
Gy (x) = G,(x)/G,(0) are always distribution functions.

Recall that f— B, in probability and note that p; and exp(f, + f,z;) have bounded
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derivatives in § for bounded z; and § € 5#. Thus, it is straightforward to establish that

sup

x € [t7,7,]

sup

x € [t1,7,]

Fy(x) = ¥ pid (< %)

G,(x)— Z piexpifo+ Br1z:)1(z; < x)

vanish in probability, where pr(z; <7;)>0 and pr(z; >7,)>0. A uniform law of large
numbers gives that

sup

x € [z;,7,,]

-0, sup

x € [z570,]

F(x)— Z pil(z; < x)

G(x)— Z pi exp(Bo + B1z)(z; < x)| =0

both in probability. As a result, F, and G, are uniformly consistent.
The next theorem is helpful in constructing confidence intervals for the distributions;
see the Appendix for the proof.

THEOREM 4. Under the regularity conditions of Theorem 2,
n'2{F,(x) = F(x)} = Kp(x), n'?{G,(x)— G(x)} - Kg(x),

both weakly, where Kp(x) and Kg(x) are mean zero Gaussian processes with continuous
sample paths for x € [1;, 1,] and covariance functions Zy(x, y) and Zg(x, y) given in the
Appendix.

Estimators for the covariance functions, £, and £, are computed with empirical esti-
mates in place of theoretical quantities in Xz and X;. The resulting plug-in formulae are
tedious and are omitted. A 0-95 confidence interval for F(x) is F,(x)+ n *1-9624(x, x)
and similarly for G(x).

3. NUMERICAL STUDIES

Simulations were run to investigate the small-sample behaviour of j, B and 2L,(p) in a
genetic experiment. Two homozygous lines, P1 and P2, are mated, yielding heterozygous,
F1, children; P1 individuals have genotype a/a at all loci, P2 individuals are A/A at all
loci, and F1 individuals are a/A at all loci. Then F1 is bred to P1, yielding backcross
progeny, BC, which are either a/a or a/A at a given locus. These breedings are designed
in order to study a quantitative trait locus at 30 cM on a hypothetical chromosome. The
BC generation is genotyped at markers at 20 ¢cM and 40 ¢cM.

The distribution of the trait is f(x) for individuals a/a at 30 cM and g(x) for individuals
a/A. There are four possible genotypes at the flanking markers: aa/aa, aa/aA, aa/Aa and
aa/AA. Each of the recombinant genotypes, aa/aA and aa/Aa, occurs with probability
0-082. Conditional on these genotypes, the probability of a/a at the trait locus is 0-5. These
values are based on recombination fractions from the Haldane (1919) map function.
Similarly, the probabilities of aa/aa and aa/AA at the flanking markers are both 0-418,
and the conditional probabilities of a/a at 30 c¢cM are 099 and 0-01. This gives 4=
(0:99,0-5,0-01) and p =(0418, 0-164, 0-418).

Normal, Poisson and exponential mixtures were investigated. Five hundred samples

were simulated for each mixture model with n=100 or 250. In each sample, ﬁ B and
2L( ﬁ) were computed, and the average values of ﬁ and B are in Table 2. The empirical
rejection rates for a nominal 0-05 level test using 2/,( ﬁ) and the empirical variance of ﬁ
are also provided. The bias is small and the empirical and model-based variances agree.
The performance improves as n increases, the test statistic rejects at the nominal level
under H, and it has good power when S, and f; 0.
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Table 2. Results from simulation study, based on 500 samples

Bo By 25,(B)

g(x) f(x) Bo i n ave varl  var2 ave varl  var2 rr
N(2,1) N(2,1) 0 0 100 002 0237 0219 —001 0060 0055 0064
250 0-00 0089 0083 000 0022 0021 0-046

N, 1) N2 1) 2 —2 100 217 0469 0410  —217 0366 0331 1000
250 207 0140 0128 —2:06 0113 0100 1-000

Po(3) Po(3) 0 0 100 005 0178 0159 —002 0020 0018 0056
250 001 0063 0062 000 0007 0007 0050

Po(1) Po(3) 2 —110 100 210 0264 0258 —1-16 0089 0085 1-000
250 207 0101 0096 —1-14 0033 0031 1-000

Ex(3) Ex(3) 0 0 100 000 0063 0057 001 0616 0540 0056
250 000 0020 0021 002 0191 0196 0-050

Ex(1) Ex(3) —110 2 100  —116 0121 0108 215 0565 0485 0996
250 —113 0037 0041 209 0166 0177 1-000

ave, average of B; varl, empirical variance of p; var2, average of B; rr, empirical rejection rate.

4., MAMMARY CARCINOMA DATA

Female rats from the Wistar-Kyoto, WKy, strain resistant to mammary carcinogenesis
were crossed with male rats from the Wistar-Furth, WF, strain susceptible to cancer (Lan
et al., 2001). Each strain was pure bred, leading to WF/WF or WKy/WKy at all loci. The
progeny were mated to WF animals, producing 383 female rats which were either WF/WF
or WKy/WF at each locus. These backcross rats were scored for number of mammary
carcinomas and were genotyped at 58 markers on chromosome 5. Using several interval
mapping strategies, Lan et al. (2001) found that marker D5Rat22 on chromosome 5 was
strongly associated with low tumour counts; that is, female rats with a copy of the WKy
allele at DFRat22 had fewer carcinomas than rats with no WKy allele.

The data are reanalysed with our semiparametric method. At a putative locus, let f(x)
be the distribution of tumour counts for a WF/WF animal and let g(x) be the distribution
for a WKy/WF animal. The mixture is Af(x)+ (1 — A)g(x), where 1 is the probability of
WE/WF at the locus conditional on flanking marker genotypes. In Fig. 1, the partial
likelihood statistic is shown as a function of location on chromosome 5. The likelihood
odds score, LoD = log{L,(f)}{2 log(10)} 1, the conventional measure of genetic linkage, is
also given. For comparison, the profile from a normal mixture using the popular software
package MapMarker/QTL (Paterson et al., 1988) is displayed.

A practical issue is that the analysis requires testing H,, at all loci on the chromosome.
The simultaneous type I error probability is inflated from the pointwise level. Lander &
Kruglyak (1995) presented critical values for the normal mixture which preserve a genome-
wide error rate. The limiting distribution of the test statistic across the genome was
approximated by an Ornstein—Uhlenbeck diffusion. The extreme value properties of the
process were used to derive the thresholds. Interestingly, we can show that the limiting
distribution of 2/,(f) is exactly identical to that in Lander & Botstein (1989); a detailed
proof is available from the authors. This means that the same guidelines apply to the
semiparametric model. Computing exact cut-offs with permutation distributions is another
approach (Churchill & Doerge, 1994; Doerge & Churchill, 1996).

The curves are quite similar and their peaks are very near D5Rat22 and are well above
the usual thresholds. A genome-wide error rate of 0-05 is obtained with cut-offs of 3-3 and
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2(LR)
LOD score

0 20 40 60 80 100
Position (cM)

Fig. 1. Mammary carcinoma data. Likelihood ratio statis-
tic, 2(LR), and likelihood odds, LoD, score as a function
of location on chromosome 5. Solid line is for the semipar-
ametric mixture and dashed line is for the normal mixture.

152 for the LoD and partial likelihood ratio statistics, respectively (Lander & Kruglyak,
1995). The estimated distribution functions for WKy/WF and WF/WF genotypes were
computed at the locus giving the maximum value of LoD under the semiparametric and
normal mixtures. These are displayed in Fig. 2 along with 0-95 pointwise confidence inter-
vals using model (1). The plots show that WF/WF rats have higher tumour counts. The
estimated means for carcinomas in WKy/WF and WF/WF rats are {x dG(x)=2-69 and
fx dF(x) = 545, respectively. The estimated distributions from the normal mixture are
rather different from the semiparametric estimates and may lie outside the confidence
intervals. Other estimates, not shown, from a negative binomial model (Drinkwater &
Klotz, 1981) fall entirely within the 0-95 limits.

(a) WE/WF (b) WKy/WF

_ 10 egizes] 10 JgaeireTTe

g 08 1 0y 08 { 3

2 o 5/

Z061 o 06| o

o v o

Z 04 ° o 044 3/

< * o

'E o o o

E 024 o'/ 02 {7

= + 2 o

S

00 {° ' i ‘ 00 +, . ' -

0 5 10 15 0 5 10 15

Tumour count Tumour count

Fig. 2. Mammary carcinoma data. Point estimates, shown by

crosses, and 0-95 pointwise confidence limits, circles, for cumulative

distributions at location of maximum partial likelihood ratio

statistic. Dashed lines are point estimates from the normal mixture
model.

To assess the goodness of fit of the exponential tilt assumption at the peak locus, we
divided the rats into four groups according to flanking marker genotypes. Recombination
was infrequent and more than 90% of the rats were either WFWF/WFWF or
WKyWKy/WFWF. The empirical distribution functions were calculated for these groups,
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and the distributions were also computed using the fitted semiparametric model. In Fig. 3,
the model-based and nonparametric estimates match closely, indicating that the model

fits well.
(a) WFWF/WFWF (b) WKyWKy/WFWF
101 T e 10 1 '
=1 I
8 ;
5 08 | 0-8
= é
Z 06 ) 0-6
o :
2 04 P04
< T .
E !
g 02 : 02
=3 1
O :
004 : 00

0O 5 10 15 20 0246 8101214
Tumour count Tumour count
Fig. 3. Mammary carcinoma data. Comparison of model-based,

solid line, and nonparametric, dashed line, estimates of the cumulat-
ive distributions for flanking marker groups.

5 REMARKS

The methodology can be adapted to more complicated breeding experiments. For
example, in an intercross, F2, mating of heterozygous animals, there are three distributions
in the mixture. In theory, the model can accommodate an arbitrary number of components.
Another important extension is to incorporate higher powers of x in (1). This is easily
accomplished with our approach.

Empirical likelihood may pose computational difficulties (Owen, 1988, 1990). The par-
tial profile empirical likelihood for the exponential tilt model enables unconstrained esti-
mation of the parameters of interest. It would be worthwhile to investigate whether or
not empirical likelihood has useful factorisations in other scenarios.

The irregularity occurs with either known or unknown mixing proportions. The partial
likelihood is applicable with unknown weights (Qin, 1999) with minor modifications.

APPENDIX

Proofs of Theorems 1-4
Lemma Al is needed for the proof of Theorem 1. The proof is trivial and is omitted.

LemMa Al. For any given a=(ay, as,. . ., a,), the set
{p=(p1,pz,...,p,.) Y pi=Lp;>0and ) piai=1}
i=1 i=1
is nonempty<>min?_, (¢; — 1) <0 <max?_; (¢;— 1).
Proof of Theorem 1. (i) For any given f € J,(2),
min (fo + z; 1) <0< max (fo + z; 1) = min {exp(fo + z; 1) — 1} <0< max {exp(fo +z; 1) — 1}.
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By Lemma Al, there exists p=(pi, pz, ..., Ps) € Cp. On the other hand, if C; is not empty, then
there exists p =(py, P2, - - -, pu) € Cp such that

S pi=1 (pi=0), Y pifexp(fo-+zify)— 1} =0.
=1 i=1

1

Lemma Al gives that
min {exp(fo + z;$1) — 1} <O < max {exp(f, + z;4;) — 1},

or
min (f, + z;4;) < 0 < max (S, + z;5,).

(i) We first show that i € J,(z). If B ¢ J,(2), then either all o7 + z; 8,7 > 0orall for + z; 8,7 <O.
Without loss of generality, assume that Sor + z; 17 > 0, or exp(Bor + z;f17) > 1, fori=1,2,... 1,
which indicates that exp(Byr + xf1r) = 1 for all x. Since F(x) is nondegenerate,

1= feXP(ﬂOT + xB1r) dF (x) > de(x) =1,

but this is a contradiction. Again without loss of generality, assume that exp(Byr + 21 f17) <1 and
exp(for + 22 B17) > 1. Since exp(f, + z; B,) and exp(f, + z, ;) are continuous with respect to ff =
(Bo, 1), there exists a neighbourhood of f+ such that exp(fS, + z1 81) <1 and exp(fo + z,51) > 1.

(iii) If Bz =0, then, for any o + 0, C 4, 0y is empty by (i). Thus, there does not exist an N(0) in
which C, is empty for every f. O

Proof of Theorem 2. (i) Suppose
Bo=Bor +tin~ R, By=Ppip+tan7 1P,
where (13 + t2)V2 = 1. By Taylor expansion in § around f, we have

K 1—4, ~
IZ(ﬂ) N lZ(ﬂT) - kgﬁ -;1 {wk(xk ﬂT) B 7‘()6;6.é )81)} (tl + xkjtz eXp(ﬂOT + /gnxkj)n 17
1E & JAO-4) -9

- 2 Z Z {wi(xkja Br) rz(xkj: Br)

k=1j=1

Define p, =lim, ., (m/n) (k=1,2,...,K), $=lim,_ . E=2F , p,(1— ) and

R(x, f)= lim r(x, f) = 1+ $iexp(fo + xp1) = 1} = 3 puenlx, ).

k=1

} (t1 + t2x1)" exp(Bor + BirXa;)n™ 7 + o(n'?).

Note that

1 K M { 1- &

ny=1j=1 (X)) Br) (xgjs Br)
approaches 0 as n— oo. By Theorem 9-6 in Durrett (1991, Ch. 7) and the strong law of large
numbers, we have

} (t1 + xxjt2) exp(or + BirXuy)

1 K p (1= 1—
L(f) = L(pr) = O{n'" (log log n)'™*} + 5 [ f{g; pwk((x Br) - (Ii((x ﬂf;}

x {exp(for + xPir)(ts + xt2)*} dF(X):| n'® + o(n'?).

Next, we show that

K puh(l=h) (1= )
A Br)= 2 = B RGP

for all x. Define 8 = exp(for + xfB17) — 1. After tedious calculations, we obtain

<0
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A(x, Br) { n (X, Br)R(X, ﬂT)} = l_[ pra(1 = A)(x, Br)R(x, Br) — (1 —¢) n (X, Br)

k=1 I+k =1

=@+1))> {—p,-pj(/li—/lj)z IT a +120)} <0

i) Iil+j
with unequal 4; (i=1,..., K) so that, for n large enough, L,(f) < ,(fr). It follows that l,(f) attains
a local maximum at a pomt B in the interior of the interval |f — | <n~ 2. Solving
L1t 1) APUED Gy,
we obtain
B—Br=—57"0u+o0(n™"?),
where

18* lz(ﬂT) 1 X Al — A4, xkj)T(laxkj)eXp(ﬂOT +ijﬂ1T)

"Tn BT nE A (x> Pr)’
1 z": E(1-9(1,2)'(1, Z)exp(ﬂOT+Zﬁ1T)
ni= r(zuﬂT)

As n— o0, the matrix S, tends to

B LS 0% exp(Bor + xBi1) 1
S= L ol =) f BB on T

&* exp(Bor + xBi7) 1

—9(1—9) f 2B oFt Rex. Ba) dF(x).
The matrix
_EM_l v o _(I=4) dexp(for +Xi;fir) 1 c 9 exp(Bor + ziPir)
" n 0Op n =1 =1 okl(Xiy, Br) op n ; (Zn Br) op

tends to 0 in probability. By Lindeberg-Feller central limit theorem, n'?Q,— N(0, V), in distri-
bution, where

11—/ ¢ dexp(Bor + xB17) | X
v=lim 3 121 f Hwk<x, B T /m} o } O fr) dFG)

0 exp(Bor + xPi7) 1 9 exp(Bor + xP1r) 1 T
s f % Reopn’™ U % R (")}

and 5=Y% p(1=4)2—¢>>0. Thus, n*(f—By)—N(0, B), in distribution, where B=
s-lys—t
(i1) A Taylor expansion of ™1 6l2([§)/6[3 in f? around (0, 0) gives

_Lab(B)_10L(0,0) 18°L(0,0), .0 s
“uap Tn op Tw apapr ProwT= U= X E o™,

where

U={0,n"101,(0,0)/(3B,)}", X = f(l, x)T(1, x) dF (x).
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It follows that f= 81X "1U + o(n~*2). Since

A

TLB 5 o),

ap op*

~—~

0 =21,(0,0)=2L(p) + 2

we obtain

L02L(P)
OB op"
n {1 l,(0, 0)

2
2 Y 2
n aﬂl } +0(1) X1>

in distribution, where o7 = [x* dF(x)— {|x dF(x)}>. The convergence in distribution occurs
because, in distribution,

1 3L,(0,0 K & <
nl/2 {_L)} =n‘1/2{ Z (1—173) Z xp— & Z zi} —N(0, 032). U
n 0py k=1 i=1 i=1

Proof of Theorem 3. (i) When 1 & 0, methods similar to those used in the proof of Theorem 2(i)
give the consistency and asymptotic normality of j. The details are omitted.

(i1)) When operating on matrices, >0 and >0 denote positive definite and positive semidefinite,
and <0 and <0 denote negative definite and negative semidefinite. Define

1
S, = ST, = Ja exp(Bor + xB11)

2L,(p)=—p B +o(1)=ndB™XpB + o(1) = nd *UTX U + o(1)

=52
00%

K
dF(x), 0= Z pi(1— 4 —¢* >0,
k=1

op R(x, Br)
53y = f {1— eXl;(gco;‘:)XﬂlT)}z dF(x).

Note that

% <_S_5S12521 _5812522>>0

— 085152, S22 — 55%2
and —S—68,,5,;>0=5,,S (=85 —6S,,5,:)S " 1S;, > 0. This implies that

HCHCC, _8218_ 1812(1 + 58218_ 1812) > 0, SinCC - SZIS_ 1812 > 0:> 1 + 5821 S_lslz > 0. -
Now, because ¥ > 0, the last element of ¥~ v3;' say, is also positive definite. Calculating ¥,
we obtain
V33 = (S22 = 0823) — (— 0821 522)(— S — 08125,1) (= 0812522)

535525215_15125215_1512
1488,,871S,,

=837 — 0535+ 053,85, 87181, —

_S» + (52187815 — 522)825

Using the first part of the proof and the fact that s,, > 0, we obtain
1

> 0.

5_522—5218_1512 <0
Thus,
B,,—B= <5—;_1> $718,,8,,871<0. n
S22 = 82187 Sy,
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Proof of Theorem 4. Note that

12 1
Fx)=—) ——=I(z;<x
= D S
A Taylor expansion of r(z;, ﬁ) at B gives
E()—Fex) =1 3 — Iz <) - F(
W(X)— F(x)=— z;<x)— F(x
n =y r(z Br)

13 1 oz, Br)

Ta e op [ESXBFr)+Ru)

1z 1
=— I(z; < x)— F(x) + d; ;(x)S~1Q, + R;,(x),
ni; "z Br) ( )—F(x)+dy p(x)S™0Q 2a(X)
where R;,(x) (i =1, 2) satisfies sup;, < <., |Ri(X)| = o(n™'?) and
1 or(z;,
dy p(x)= lim — Z e ﬂT)I(zin)

n-oo M=y 7'2(21', Br) op

_ foo ¢ dexp(Por +ubir)
—© R(“» BT) aﬂ

almost surely. Let d, p(x) =d; p(x)S™%,

I(u < x) dF (u),

et X) = Iu<x) Jx o (u, Br) dF (u)
e r(u, Br) w R pr)
0 oT 1T 0 0 oT 1T 0
Gl = —¢ eXp([i(u;r)ﬂ VP (1-4) eXp(ﬁk(:ﬂ“f) VB =12, k).

Then

n'*{F,(x)— F(x)} =n""? Z Z {ex(xij, X) + da(X)qlxi;)} + 0p(1).

k=1 j=1

Arguments from Qin (1999) show that n'/*{F,(x) — F(x)} — Ky(x) in distribution where Kp(x) is
a zero-mean Gaussian process with continuous sample paths and covariance structure of the form

K
Zp(x1, X2) = Y, prcoviep (Y, x1) + da p(x1)qu(Ye), eri (Yo X2) + do p(x2)qi (%)}
k=1
where Y, ~ w.(y, Br)f(¥). Similarly, n'2{G,(x) — G(x)} = K4(x) in distribution with
K
Zo(xy, X5) = Z Pr Covieg 1 (Y, X1) + dy 6 (X1) (N, €61 (Vi X2) + da 6 (X2) @ (i)},
k=1

where

dy.o(x) = r 0=1 dexpPor ¥ uhir) jo oy dFw),  d i) = dy oIS,

- R(u: ﬂT) aﬂ
_ I(u < x) exp(Bor + ufir) fx exp(Bor + uPir)w(u, Br) dF (u)
&g (U, x) = r(u, fr) B o R(u, fr) . -
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