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ABSTRACT DNA microarrays to evaluate gene expression present tremen-
dous opportunities for understanding complex biological processes. How-
ever, important genes, such as transcription factors and receptors, are ex-
pressed at low levels, potentially leading to negative values after adjust-
ing for background. These low-abundance transcripts have previously been
ignored or handled in an ad hoc way. We describe a method that ana-
lyzes genes with low expression using normal scores, and robustly adapts
to changing variability across average expression levels. This approach can
be the basis for clustering and other exploratory methods. Our algorithm
also assigns p-values that are sensitive to changes in variability with gene
expression. Together, these two features expand the repertoire of genes that
can be analyzed with DNA arrays.

0.1 Introduction

Microarray technology to measure gene expression is now widespread. The
application of microarray analysis to such diverse biological processes as
aging (Lee et al., 1999), cancer (Golub et al., 1999; Perou et al., 1999),
diabetes (Nadler et al., 2000), and obesity (Nadler et al., 2000; Soukas
et al., 2000) have provided important insights. The power of microarrays to
simultaneously evaluate the level of expression of thousands of genes creates
the challenge of identifying those few genes that demonstrate significant
changes in expression from among numerous genes that show little or no
change.

Several approaches have been proposed to interpret microarray data.
Clustering methods (Eisen et al., 1998; Tamayo et al., 1999) to search
for genes showing similar changes in expression across experimental condi-
tions require extensive pre-filtering to eliminate genes with low intensity or
modest fold changes. Furthermore, it has become apparent that at differ-
ent gene expression levels, different thresholds for significant changes are
needed (Roberts et al., 2000; Wittes and Friedman, 1999; Hughes et al.,
2000). More recent methods model the variability across average expres-
sion levels to establish thresholds, but still rely on ad-hoc methods for genes
expressed at very low abundance (Newton et al., 2001).

We present a robust statistical approach to pick genes showing signifi-
cant differential expression across abundance levels from microarray exper-
iments. The application of this method to mouse experiments studying di-
abetes and obesity uncovered changes in gene expression at low abundance
that were missed by other methods. Details of the method are provided,
including information on how to obtain public domain software.
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0.2 Methods

Our gene array analysis algorithm uses rank order to normalize data for
each experimental condition, and estimates the variability at each level of
gene expression to set varying significance thresholds for differential expres-
sion across levels of mRNA abundance. This procedure can be used to pre-
filter data in detecting patterns of differential gene expression, for instance
using clustering methods. We propose assigning Bonferroni-corrected p-
values, which requires only minimal assumptions. While expression data
may be acquired from a variety of technologies, we focus attention on the
oligonucleotide arrays, in Affymetrix chips used in a mouse experiment on
diabetes and obesity.

Our approach was motivated by a series of experiments on diabetes and
obesity. Nadler et al., 2000) used Affymetrix MGU74AV2 chips with over
13,000 probes representing about 12,000 genes on mRNA from adipose tis-
sue to examine the relationship between obesity and mouse genotype (B6,
BTBR or F1). Further experiments have grown out of this collaboration us-
ing replicates and will be reported elsewhere. The primary goal was to find
patterns of differential gene expression in mouse tissue between strains.
Thus we have a two-factor experiment with possible replication for each
chip mRNA.

0.2.1 Background subtraction

Raw microarray measurements are typically normalized to account for sys-
tematic bias and noise to attempt to restore expression levels from raw data
(Lockhart et al., 1996). One important source of bias is background fluores-
cence. Other factors that require attention include variations in array, dye,
thickness of sample, and measurement noise. Background fluorescence may
be measured in several ways, depending on chip technology, and is typically
removed by subtraction (cf. Chapters 4 and 5 and Lockhart et al., 1996; Li
and Wong, 2001; Schadt et al., 2001). Affymetrix chips handle background
by comparing perfect match (PM) with mismatch (MM) intensity. We
use weighted averages PM and MM across oligo probe pairs using recent
”low-level” analysis (Chapter 5, Li and Wong, 2001; Schadt et al., 2001) to
reduce measurement variability.

The following model motivates the simple subtraction for background,
although it is not required for our methodology; see Hughes et al., 2000)
and Li and Wong, 2001) for other approaches. The background intensity b
for a gene may be attenuated at some level α ≤ 1 that could depend on the
array. The gene signal g may be affected in a relative way by the degree of
hybridization h, blurred by intrinsic noise ε (with variance depending on g)
and the abundance (β) of material administered to an array. Measurements
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for gene j are further subject to reading error ω:

MMj = αbj + ωMj

PMj = α[bj + β exp(gj + hj + εj)] + ωPj

Notice that the gene signal g is confounded with h unless hybridization
efficiency is independent of the experimental condition. Subtracting the
background intensity MM from PM yields the adjusted measurements

∆j = PMj − MMj = αβ exp(gj + hj + εj) + δj = αβGj + δj

where the measurement error δ = ωP − ωM is symmetric around 0 and
log(G) = g + h + ε is the log expression level. Thus G would be observed
if there were no measurement error and no array attenuation. Hence it is
natural under this model to consider the log transformation xj = log(∆j).
This model forms the basis for simulations presented later.

0.2.2 Transformation to approximate normality
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FIGURE 1. Log Transform. Expression data from one chip: (a) relative histogram
of raw values ∆ = PM−MM , deleting 5% of values beyond ±5000 for display; (b)
relative histogram of log(∆) with 23% of values being negative, hence dropped.

Background-adjusted intensities are typically log-transformed to reduce
the dynamic range and achieve normality. Various authors have noted that
comparisons based on such log-transformed gene expression levels appear
to be approximately normal (cf. Kerr and Churchill, 2001). However, nega-
tive adjusted values can arise from low expression levels swamped by back-
ground noise (Figure 1). Some authors have proposed adding a small value
before taking log to recover some of these data (Kerr and Churchill, 2001).
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Our alternative normalization method leverages this idea while providing
comparisons that are more robust to difficulties with the log-normal as-
sumption. For further discussion on normalization, see Chapters 3 and 9.

Our procedure converts the background-adjusted expression values into
normal scores without discarding negative values. This normal scores trans-
formation has been employed for microarray data using a different approach
(Efron et al., 2001). If expression data are really log normal, then this nor-
mal scores transformation is indistinguishable from a log transformation
after rescaling. We have found that log-transformed data (Figure 1b) ap-
pear roughly normal in the middle of the distribution, while the normal
scores (Figure 2) are normal throughout.
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FIGURE 2. Normal Scores Transform. Sample of 30 from one chip for illustration:
(a) relative histogram of ranks with equal mass; (b) normal scores transformation
with equal probability mass.

Our procedure depends on the existence of some unknown monotone
transformation of the data to near multivariate normal. There is always
such a transformation in one dimension: let F be the cumulative distri-
bution of adjusted values ∆ and Φ be the cumulative normal distribu-
tion. Then Φ−1(F (∆)) transforms ∆ to normal. If F is log-normal, then
Φ−1(F (∆)) = log(∆), but we prefer not to make this assumption up front.
Instead we approximate the transformation by Φ−1(FJ(∆)), where FJ is
the empirical distribution of the J adjusted values ∆1, · · · , ∆J . The differ-
ence between this approximate transformation and the ideal one is small,
on the order of 1/

√
J . This is known as the normal scores transformation,

and is readily computed as

x = Φ−1(FJ(∆)) = qnorm(rank(∆)/(J + 1))

where rank(∆) is the rank order of adjusted gene measurements ∆ = PM−
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MM among all J genes under the same condition. The normal quantiles,
qnorm(), transform the ranks to be essentially a sample from standard
normal: a histogram of these x is bell-shaped and centered about zero
(Figure 2b), with normal scores equally spaced in terms of probability mass
(Figure 2a). Thus these normal scores are close to a transformation that
would make the data appear normal (Efron et al., 2001). If done separately
by condition, this normalization automatically standardizes the center to 0
and the scale (standard deviation) to 1. Alternatively, if the experimental
conditions are viewed as a random sample of a broader set of possible
conditions, data across all conditions could be transformed together by
normal scores. Normal scores are unaffected by monotone transformations
of adjusted intensities or by global factors such as array, dye, and thickness
of chip sample. Ranks may be disturbed by local noise, but that effect is
unavoidable in any analysis of such an experiment.

0.2.3 Differential expression across conditions

Differential expression across conditions of interest can be computed by
comparing their transformed expression levels. Information on comparison
of two conditions, 1 and 2, is summarized in pairs of normal scores, x1 and
x2, across the genes; plotting x1 against x2 yields points dispersing from the
diagonal. However, differential gene expression between experimental con-
ditions may depend on the average level of gene expression, with genes at
different average expression having intrinsically different variability. Thus
we recommend plotting the average intensity a = (x1 + x2)/2 against the
difference d = x1 − x2, which involves just a 45 degree rotation similar to
(see Chapters 3, 4, 7, 9 and 14, and Roberts et al., 2000). Since our normal
scores may be considered a forgiving approximation to the log transform,
we prefer to represent the plotting axes as if the data were log transformed–
that is use an anti-log or exp scale. Thus the a axis is centered on 1 and
suggests fold change in intensity, while the d axis suggests fold change in
differential expression.

This method can be extended to experiments with multiple conditions,
multiple readings (e.g. dyes) per gene on a chip, and replication of chips
(Chapter 14 and Kerr et al., 2001). Consider an anova model

xijk = µ + ci + gj + (cg)ij + εijk

with i = 1, · · · , I conditions, j = 1, · · · , J genes, k = 1, · · · , K replicate chips
per condition, and εijk ∼ Φ(0, σ2

j ) being the measurement error for the kth
replicate, and ci = 0 if there is separate normalization by condition. Both
the gene effect gj and the condition by gene interaction (cg)ij are random
effects. In general all variance components may depend on the gene effect
gj . Adding multiple readings per chip introduces a nested structure to the
experimental design that we do not develop further here (cf. Lee et al.,
2000).
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The major biological research focus is on differential gene expression,
the condition i by gene j interaction. We assume that most genes show
no differential expression; thus with some small probability π1 a particular
interaction (cg)ij is non-zero, say from Φ(0, δ2

j ). Let zj = 1 indicate differ-
ential expression, Prob{zj = 1} = π1. The variance of the expression score
is

Var(xijk) = γ2

j + δ2

j + σ2

j if zj = 1 (differential expression)
Var(xijk) = γ2

j + σ2

j if zj = 0 (no differential expression)

for i = 1, ..., I, k = 1, ..., K, with γ2

j the variance for the gene j random
effect. This differential expression indicator has been effectively used for
microarray analysis (Newton et al., 2001; Kerr et al., 2001; Lee et al., 2000).
This anova framework allows isolation of the (cg)ij differential expression
from the gj gene effect by contrasting conditions. Suppose wi are condition
contrasts such that

∑

i wi = 0 and
∑

i w2

i = 1. The standardized contrast

dj = (x̄1j· − x̄2j·)
√

K/2 with x̄ij· =
∑

k xijk/K compares condition 1 with
condition 2. More generally the contrast

djk =
∑

i

wix̄ij·

√
K =

∑

i

wi

√
K[ci + (cg)ij + ε̄ij·]

with ε̄ij· =
∑

k εijk/K has E(dj) =
∑

i wici

√
K and

Var(dj) = δ2

j + σ2

j if zj = 1 (differential expression)
Var(dj) = σ2

j if zj = 0 (no differential expression) .

Again, condition effects ci drop out and E(dj) = 0 if each chip is standard-
ized separately, but in general they remain part of the contrast.

While microarray experiments began by contrasting two conditions, this
approach adapts naturally to contrasts capturing key features of differen-
tial gene expression across design factors. Time or other progressions over
multiple levels, such as a linear series of glucose concentrations, might be
examined for linear or quadratic trends using orthogonal contrasts (Lent-
ner and Bishop, 1993). For instance, with five conditions the linear and
quadratic contrasts are, respectively, (dropping subscripts except for con-
dition)

dlinear = (2x5 + x4 − x2 − 2x1)
√

K/8

dquadratic = (2x5 − x4 − 2x3 − x2 + 2x1)
√

K/14 .

With conditions resolved as multiple factors, such as obesity and genotype
in our situation, separate contrasts can be considered for main effects and
interactions. Each contrast can be analyzed in a similar fashion to the
above. Alternatively, one can examine factors with multiple levels, say three
genotypes, by an appropriate anova evaluation (Lee et al., 2000).



viii Lin, Nadler, Lan, Attie, Yandell

0.2.4 Robust center and spread

For the majority of genes that are not changing, the difference dj reflects
only the intrinsic noise. Thus genes that do change can be detected by
assessing their differential expression relative to the intrinsic noise found
in the non-changing genes. While it is natural to use replicates when pos-
sible to assess the significance of contrasts for each gene, microarray ex-
periments have typically had few replicates K, leading to unreliable tests.
Some authors have considered shrinkage approaches that combine variance
information across genes (Efron et al., 2001; Lönnstedt and Speed, 2001).

Measurement error seems to depend on the gene expression level aj =
∑

ik xijk/IK, and it may be more efficient to combine variance estimates
across genes with similar average expression levels (Roberts et al., 2000;
Hughes et al., 2000; Newton et al., 2001; Kerr et al., 2001; Baldi and Long,
2001; Long et al., 2001). Further, if there were no replicates, as in early
microarray data, then it would be important to combine across genes in
some fashion. There may in addition be systematic biases that depend on
the average expression level (Dudoit et al., 2000; Yang et al., 2001). We
noticed that empirically the variance across non-changing genes seems to
depend approximately on expression level in some smooth way, decreasing
as a increases due in part to the mechanics of hybridization and reading
spot measurements. Here we consider smooth estimates of abundance-based
variance to account for these concerns. In a later paper we will investigate
shrinking the gene-specific variance estimate using our abundance-based
estimate and an empirical Bayes argument similar to (Lönnstedt and Speed,
2001).

Our approach involves estimating the center and spread of differential
expression as it varies across average gene expression aj to standardize the
differential expression. Specifically we use smoothed medians and smoothed
median absolute deviations, respectively to estimate the center and spread.
Smoothing splines (Wahba, 1990) are combined with standardized local me-
dian absolute deviation (MAD) to provide a data-adapted, robust estimate
of spread s(a). A smooth, robust estimate of center m(a) can be computed
in a similar fashion by smoothing the medians across the slices. We use
these robust estimates of center and scale to construct standardized values

Tj = (dj − m(aj))/s(aj)

and base further analysis on these standardized differences.
For convenience, we illustrate with two conditions and drop explicit refer-

ence to gene j. Revisiting the motivating model helps explain our specifica-
tion for spread. Consider again log(G) = g+h+ε and suppose hybridization
error is negligible, or at least the same across conditions. The intrinsic noise
ε may depend on the true expression level g: for two conditions 1 and 2,
the difference d is approximately

d ≈ log(G1) − log(G2) = g1 − g2 + ε1 − ε2 .
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If there is no differential expression, g1 = g2 = g, then Var(d|g) = s2(g),
and the gene signal g may be approximated by a. However, the true formula
for Var(d|a) is not exactly s2(a), and cannot be determined without further
assumptions.

Thus differential contrasts standardized by estimated center and spread
that depend on a should have approximately the standard normal distribu-
tion for genes that have no differential expression across the experimental
conditions. Comparison of gene expression between two conditions involves
finding genes with strong differential expression. Typically, most genes show
no real difference, only chance measurement variation. Therefore a robust
method that ignores genes showing large differential expression should cap-
ture the properties of the vast majority of unchanging genes.

The genes are sorted and partitioned based on a into many (say 400)
slices containing roughly the same number of genes and summarized by
the median and the MAD for each slice. That is, with 12,000 genes, the
30 contrasts d for each slice are sorted; the average of ordered values 15
and 16 is the median, while the MAD is the median of absolute devia-
tions from that central value. These 400 medians and MADs should have
roughly the same distribution up to a constant. To estimate the scale, it is
natural to regress the 400 values of log(MAD) on a with smoothing splines
(Wahba, 1990), but other non-parametric smoothing methods would work
as well. The smoothing parameter is tuned automatically by generalized
cross validation (Wahba, 1990). The anti-log of the smoothed curve, glob-
ally rescaled, provides an estimate of s(a), which can be forced to be de-
creasing if appropriate. The 400 medians are smoothed via regression on a
to estimate m(a).

Replicates are averaged over in the robust smoothing approach. That is,
contrasts dj =

∑

wix̄ij·

√
K factor out replicates. We are currently investi-

gating shrinkage variance estimates of the form

s2

j =
ν0s

2(aj) + ν1σ̂
2

j

ν0 + ν1

with σ̂2

j =
∑

k(xijk− x̄ij·)
2/ν1, ν1 = I(K−1) and ν0 is the empirical-Bayes

estimate (cf. 20) of the degrees of freedom for σ̂2

j /s2(aj).
It should be possible to combine estimates of spread across multiple

contrasts, say by using the absolute deviations |xijk −aj | for all genes with
average intensity aj within the range of a particular slice to estimate the
slice MAD. This is sensible since these absolute deviations estimate the
measurement error for most genes and most conditions. Those few genes
with large differential effects across conditions would have large absolute
deviations that are effectively ignored by using the robust median absolute
deviation.

It may be reasonable in some cases to use ‘house-keeping genes’ that
are generally believed to not change over different conditions (cf. Baldi
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and Long, 2001; Chen et al., 1997). However, this may not capture the
finer details of the center and scale as average intensity changes over the
microarray. We use a robust estimation procedure to guard against the
influence of the small proportion of changing genes that ”contaminate”
microarray data when we estimate the intrinsic noise level. Notice, however,
that this contamination is of primary interest in a similar fashion to the
problem of outlier detection.

0.2.5 Formal evaluation of significant differential expression

Formal evaluation of differential expression may be approached as a col-
lection of tests for each gene of the ”null hypothesis” of no difference, or
alternatively as estimating the probability that a gene shows differential
expression (Newton et al., 2001; Kerr et al., 2001). Testing raises the need
to account for multiple comparisons, here we use p-values derived using a
Bonferroni-style genome-wide correction (Dudoit et al., 2000). Genes with
significant differential expression are reported in order of increasing p-value.
Further details of this procedure and the software can be found below.

We can use the standardized differences T to rank the genes. The con-
ditional distribution of these T given a is assumed to be standard normal
across all genes whose expressions do not change between conditions. Hy-
pothesis testing here amounts to comparing the standardized differences
with the intrinsic noise level. Since we are conducting multiple tests, we
should adjust the test level of each gene to have a suitable overall level
of significance. We prefer the conservative Zidak version of the Bonfer-
roni correction: the overall p-value is bounded by 1 − (1 − p)J , where p
is the single test p-value. For example, for 13,000 genes with an overall
level of significance of 0.05, each gene should be tested at level 1.95 ∗ 10−6,
which corresponds to 4.62 score units. Testing for a million genes would
correspond to identifying significant differential expression at more than
5.45 score units. Guarding against overall type one error may seem con-
servative. However, a larger overall level does not substantially change the
normal critical value (from 4.62 to 4.31 with 13,000 genes for a .05 to .20
change in p-value). This test can be made one-sided if preferred. We re-
port gene-by-gene results in the obesity data analysis below in terms of the
overall significance level rather than the single test level in order to avoid
confusion.

Apparently less conservative multiple comparison adjustment to p-values
are proposed in (Yang et al., 2001). However, the results are essentially the
same with all such methods, except when more than 5–10% of the genes
show differential expression across conditions. Figure 3 shows p-values from
a typical mouse experiment with about J =13,000 genes. The Bonferroni
(p/J) and Zidak (1 − (1 − p)J) significance levels are virtually identical,
3.64 and 3.74 ×10−6, respectively. Further, the Holms methods discussed
in Dudoit et al., 2000), which adjusts for the number of genes remaining to
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FIGURE 3. Multiple Comparisons Criteria. Typicial mouse chip evaluation with
roughly 13,000 genes. Circles are raw p-values on semi-log plot in rank order.
Grey curved line at top for uniform p-value ideal under null hypothesis. Dotted
line at nominal 5% level. Dashed lines at about 3.7 × 10−6 where Bonferroni,
Zidak and Holms methods meet. Curved solid line is Holms. (a) all p-values; (b)
top 5% of p-values.

be tested, agree with these two for the most significant 5–10% of the genes,
picking the top 124 while Bonferroni picks only 123. The Westfall-Young
method recommended by (Dudoit et al., 2000) is not shown but should
have similar properties to Holms. Thus we are quite comfortable using the
Zidak method in situations where only a small portion of the genes show
differential expression.

It may be appropriate to examine a histogram of standardized differences
T , using these critical values as guidelines rather than strict rules. The
density f of all the scores is a mixture of the densities for non-changing f0

and changing f1 genes,

f(T ) = (1 − π1)f0(T ) + π1f1(T ) .

By our construction, f0 is approximately standard normal. Following Efron
et al., 2001), set π1 just large enough so that the estimate

f1(T ) = [f(T ) − (1 − π1)f0(T )]/π1

is positive. This in some sense provides a ‘liberal’ estimate of the distri-
bution of differentially expressed genes. It lends support to examination
of a wider set of genes, with standardized scores that are above 3 or be-
low –3. We suggest using this set as the basis for hierarchical clustering.
Notice also that this provides an estimate of the posterior probability of
differential expression (zj = 1) for each mRNA,

Prob{zj = 1|Tj} = π1f1(Tj)/f(Tj).



xii Lin, Nadler, Lan, Attie, Yandell

Gross errors on microarrays can be confused with changing genes. Repli-
cates can be used to detect outliers in a similar fashion to the approach
for differential gene expression. Residual deviations of each replicate from
the condition*gene mean, xijk − x̄ij·, could be plotted against the aver-
age intensity, aj . Robust estimates of center and scale could be used as
above in formal Bonferroni-style tests for outliers. Separate smooth robust
estimates of center and scale are needed for each contrast. Perhaps an ad-
ditional Bonferroni correction may be used to adjust for multiple contrasts.

0.2.6 Simulation Studies
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FIGURE 4. Simulation of expression data. Scatter plots of difference d against
average intensity a (a) before and (b) after adding 5% contamination.

Three simulation studies were conducted to examine properties of our
procedure. The first study shows how well the smoothed median absolute
deviations can estimate the variability among unchanging genes. The sec-
ond study verifies that the normal scores procedure can essentially extract
the ”true differential expression” that would be observed if there were no
measurement error. Simulated data from the second study was used to
compare our procedure with other procedures that have been previously
proposed.

The following simulation demonstrates the effectiveness of the robust
standardization. We generated 9,500 (a, d) pairs, with a from standard
normal and d normally distributed with mean 0 and standard deviation
σ(a) = 1/[a/3 + 2.5]. Then we generated another 500 pairs by adding
independent standard normal random numbers to each d value. Thus given
the same X, the standard deviation of the contaminated d is [1 + (a/3 +
2.5)2]1/2 times that of the uncontaminated d (1.8 to 3.64 as a goes from
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FIGURE 5. Simulation study of spread. Simultated data has 5% contamination
shown in Figure 4b. (a) True (solid line) and estimated (dotted line) spread s(a);
(b) Q-Q plot reveals ”contamination” by differentially expressed genes.

–3 to 3). We applied our robust scaling function to the combined data of
10,000 pairs. Figure 4 show scatter plots of the simulated data before and
after the addition of contamination. Figure 5a shows how close are the true
(solid line) and estimated scale (dotted line) scale. While there is always
some bias with non-parametric estimation, the key bias problem arises in
estimating spread in the presence of differentially expressed genes. The
robust procedure reduces the influence of this contamination. The normal
quantile plot of Y/s(X) in Figure 5b shows the middle portion to be almost
straight, as expected with normal data, while the tails diverge due to the
”contamination” by differentially expressed genes.

We tested the normal scores procedure on simulated data with two con-
ditions and constant intrinsic variance across average expression levels. We
generated samples with 10,000 genes and 5% differential expression and
increasing amounts of measurement error. First, we randomly generated
9,500 normal variates with mean 4 and variance 2. Next, we generate 500
random numbers from the same distribution and added normal ”contami-
nation” which was either up regulated or down regulated with probability
1/2. This contamination had variance 1/2 and mean tending from 3 to 2
as average expression level ranged from low to high abundance. The in-
trinsic noise ε was generated with variance 0.5, attenuations β were set
at 1. We considered a range of measurement error variances from none to
high (δ = 0, 1, 2, 5, 10, 20). In the ideal situation of no measure error, the
‘best’ ranking would be based on the differential expression between the
two conditions. We use the performance of this ideal ‘best’ ranking as the
benchmark against which to test our procedure. Figure 6 compares the
top 500 ‘best’ ranks when there is no measurement error with the ranks
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FIGURE 6. Capture efficiency. The top 500 ‘best’ ranks when there is no mea-
surement error with the ranks produced by our procedure under different level
of measurement error (δ = 0, 1, 2, 5, 10, 20).

produced by our procedure under different level of measurement error. In
the absence of measurement error, our ranks essentially matches the ‘best’
ranking (line 0). When a typical level of noise is applied to the silmulation,
the ranks produced by our procedure still comes close to the ‘best’ ranking.

In practice, analysis of low-abundance mRNA’s leads to negative ad-
justed values, which are ignored or set to an arbitrary value by most
other procedures. In the absence of measurement error, previously proposed
methods perform well when they are first rank-ordered as done in our algo-
rithm (Figure 8a). In practice, measurement error becomes high with genes
of low abundance and therefore background correction masks changes in
gene expression. Despite a high level of noise, our method successfully de-
tected numerous differentially expressed low-abundance mRNA’s (Figure
8b). None of the non-changing genes were identified in our simulations.
In contrast, an early analytical method assuming a constant coefficient of
variation (Chen et al., 1997) yielded conservative, flat thresholds (Figure
8b, dashed line). The Bayesian approach (Newton et al., 2001) missed the
pattern of changing variation with average gene intensity and misses most
of the differentially expressed genes (Figure 8b, dotted line).

0.2.7 Comparison of methods with E. coli data

We reexamined some of the E. coli data reported in Newton et al., 2001).
Figure 9 shows (a) log-transformed and (b) normal scores transformed data,
with decisions based on Newton et al., 2001) as red dotted lines and our
method as purple solid lines. Both methods and both figures agree in choos-
ing the three extreme genes associated with IPTG-b. However, the normal
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scores (b) handles these in a natural way while the log-transform (a) uses
an ad hoc approach–leaving negative values out for computation and then
including them at the margin for inference. Note in addition that our line
based on a non-parametric estimate of variance better reflects the variabil-
ity in the data, particularly at both extremes of mean intensity.

0.3 Software

The analysis procedures are written as an R language module. The R sys-
tem is publicly available from the R Project, and our code is available
from the corresponding author as the R pickgene library. The function
pickgene() plots d against a, after backtransforming to show fold changes,
and picks the genes with significant differences in expression. Examples in-
clude the simulations and graphics presented here. This library can be
found at www.stat.wisc.edu/∼yandell/statgen.

In its simplest form, pickgene() takes a data frame (or matrix) of mi-
croarray data, one column per array. We assume housekeeping genes have
already been removed. Columns are automatically contrasted using the pre-
vailing form of orthonormal contrast (default is polynomial, contrasts =

"contr.poly" ).

library( pickgene )

result <- pickgene( data )

This produces a scatter plot with average intensity a along the horizontal
axis and contrasts d along the vertical, with one plot for each contrast
(typically one fewer than the number of columns of data).

With two columns, we are usually interested in something analogous
to the log ratio, which can be achieved by renormalizing the contrast. If
desired, log transform can be specified by setting rankbased = F. Gene
ideas can be preserved in the results as well.

result <- pickgene( data, geneID = probes,

renorm = sqrt( 2 ), rankbased = F )

print( result$pick[[1]] )

The pick object is a list with one entry for each contrast, including the
probe names, average intensity a, fold change (exp(d), as if Φ−1(F (∆)) =
log(∆)), and Bonferroni-adjusted p-value. The result also contains a score
object with the average intensity a, score T , lower and upper Bonfer-
roni limits, and probe names.

The pickgene() function relies on two other functions. The function
model.pickgene() generates the contrasts, although this can be bypassed.
More importantly, the function robustscale slices the pairs (a, d) into 400
equal-sized sets based on a, finds medians and log(MAD)s for each slice,
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then smooths them using splines (Wahba, 1990) to estimate the center,
m(a), and spread, s(a), respectively.

Estimates of density are based on the density() function, packaged in
our pickedhist() routine.

pickedhist( result, p1 = .05, bw = NULL )

We pick a bandwidth bw that provides smooth curves and then adjust π1

= p1 so that f1 is positive.
The standard deviation s(a) is not returned directly in result. However,

it is easily calculated as log( upper / lower ) / 2.

0.4 Application

0.4.1 Diabetes and Obesity studies

Our approach was motivated by a series of experiments on diabetes and
obesity (Nadler et al., 2000) using Affymetrix mouse MGU74AV2 chips
with over 13,000 RNA probes representing roughly 12,000 genes or ESTs.
Here obesity was controlled by the leptin gene. Each chip was treated with
RNA extracted from adipose tissue combined over sets of four mice. Three
chips were assigned to lean mouse sets from strains of B6, BTBR or F1
mice; the other three chips were for obese mice from the same strains.
Thus we had a 3x2 factorial design with genotype and obesity as the main
effects. The primary goal was to find patterns of differential gene expression
in adipose tissue between obese and lean mice.

The majority of individuals with Type 2 diabetes mellitus are obese. Adi-
pose tissue is thought to influence whole-body fuel partitioning and might
do so in an aberrant fashion in obese and/or diabetic subjects. Almost half
of these genes had at least one negative adjusted value in the dataset at
low expression (Figure 10a, green dots), and were missed by other meth-
ods. Our earlier study using clustering methods found interesting genes
at high expression levels, including many at smaller fold changes (purple
dots). Clearly fold change is not the whole story.

However, this earlier analysis ignored genes at low expresssion, which
we detected here. Roughly 100 genes were determined to have significant
(p < 0.05) fold changes in gene expression using the robust normal scores
procedure (blue circles). A handful of significant genes with low expres-
sion (green dots in blue circles) were evaluated using RT-PCR, with a false
positive rate of about 50%, reflecting high noise in Affymetrix data at low
intensity. Nevertheless true positives detected by this method correspond-
ing to transcription factors or receptors have potential to shed important
light on adipocyte signaling pathways.

We also examined genotype effects (Figure 10b), finding numerous genes
that seemed to have either additive or dominance effect, but not both. Red
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lines in Figure 10 correspond to Bonferroni limits for one contrast; the blue
circle in Figure 10b is a simultaneous limit for the two genotype contrasts.
The 5% criteria is based on the Zidak adjustment for multiple comparisons,
which essentially agrees with both the Bonferroni and Holms when only a
small fraction of genes show differential expression. We employed a permu-
tation check of our method to verify the size of the test. That is, we took
two of the chips (B6 and BTBR), randomly permuted the data for one chip
relative to the other, and applied our method on the permuted data. This
procedure was repeated 100 times. Our method picked out one significant
gene in four permutations, plus a fifth permutation had one gene right on
the boundary; this agrees well with the expected 5% error rate.
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FIGURE 7. Investigation of differential density and gene-specific variance. (a)
Density f of obesity T scores: all values (solid) overlaid on standard normal f0

(dotted), with good agreement to 2 SD; dashed for f1 differentially expressed
genes; arrows at Bonferroni critical value. Thick lines near ±2.5 show where
f = 2f0. (b) Gene-specific SDs for experiment with 5 replicates per two condi-
tions: solid line is our smoothed MAD estimate of s(a); dashed lines are upper
and lower limits based on χ2

8.

Figure 7a shows the density f of standardized differences T for obe-
sity overlaid on the standard normal density f0 , with good agreement for
standardized differences between –2 and 2. The long-dashed line shows an
estimate of the density f1 for differentially expressed genes as described
above, picking the proportion of changing genes just large enough to en-
sure the density is positive (cf. Efron et al., 2001). This illustrates just
how conservative the Bonferroni approach is. We have since begun examin-
ing the genes with differential expression exceeding 3 SDs using hierarchi-
cal clustering after removing mean expression level. Initial results suggest
important rearrangement that might imply functional association among
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genes in clusters.
While this early experiment had no replication, subsequent experiments

have employed more chips to increase power. One study, to be reported
elsewhere, had 10 mice, five from each of two strains, that were sepa-
rately applied to 10 chips. Using our procedure on the mean differences,
we computed the spread estimate s(a) described above. Figure 7b shows
s(a) overlaid on gene-specific estimates of standard deviation. That is, for
each gene, an SD was estimated using 8 d.f. (10 chips – two groups). The
abundance-based s(a) appears to capture the central tendency in spread
over the range of average intensity for this experiment. Notice that the SD
confidence band based on χ2

8
variability of gene-specific SDs covers most

of the SDs, suggesting that our abundance-based approximation may not
be too bad. However, since this band spans an almost 10-fold difference in
SD, a shrinkage-based estimator that combines gene-specific and average
intensity based estimates of spread is adviseable.

In conclusion, this novel method adapts to the dynamic range of expres-
sion data while handling low intensity signals, including negative adjusted
values. No data need be ignored, as the method finds a transformation
to identify differentially expressed genes from large microarray data sets.
Further, we have demonstrated the feasibility of putting p-values on dif-
ferential gene expression without making many of the assumptions other
methods require.

This method can be extended to general experimental designs (Lee et al.,
2000) by adjusting for variability in expression across all conditions rela-
tive to the average gene expression. The utility of clustering (Eisen et al.,
1998; Tamayo et al., 1999) and classification (Golub et al., 1999) meth-
ods can be extended by relying on the standardized normal scores rather
than log-transformed values. This can uncover novel relationships, particu-
larly involving low-abundance transcripts. The p-values proposed here can
further refine relationships uncovered by these omnibus methods.

Transcriptional regulation plays a particularly important role in the bi-
ology of low-abundance mRNA transcripts. This new algorithm now ex-
tends the powerful techniques of DNA array analysis to the world of low-
abundance mRNA’s.

0.4.2 Software Example

Data analysis was based on a data frame from Affymetrix chip processing,
which after some manipulation has six columns of Affymetrix ‘Log.Avg’
values plus the probe set name. These data have the ‘house-keeping genes’
and other Affymetrix references already removed. Suppose the data frame
has the probe names in column 1 and the next six columns contain the
three lean chips, followed by the three obese chips, with B6, F1 and BTBR
genotypes within each obesity class. The pickgene routine will show the
three main effects plots and return a data analysis list with the following
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command:

> library( pickgene )

> Leanob.pick <- pickgene( data[,-1], data[,1],

faclevel = c(2,3), facnames = c("Obese","Genotype"),

marginal = T, mfrow = c(2,2),

renorm = c( sqrt(2)/3, sqrt(2)/2, sqrt(6)/4 ) )

Contrasts for the experimental design are automatically created with
faclevel and facnames through a call to model.pickgene. That is, there
are 2 levels of factor Obese and 3 levels of factor Genotype. The default
normalization is for the sum of squared weights

∑

i wi to be K times the
product of levels of other model factors. Often it is useful to change this
using the renorm option.

> apply( model.pickgene( faclevel = c(2,3),

+ facnames = c("Obese","Genotype")),

+ 2, function(x) sum( x^2 ) )

(Intercept) Obese.L Genotype.L Genotype.Q

6 3 2 2

## renormalize so contrasts have natural meaning

> model.pickgene( faclevel = c(2,3),

+ facnames = c("Obese","Genotype"),

+ renorm = c( sqrt(2)/3, sqrt(2)/2, sqrt(6)/4 ) )

(Intercept) Obese.L Genotype.L Genotype.Q

1 1 -0.333333 -0.5 0.25

2 1 -0.333333 0.0 -0.50

3 1 -0.333333 0.5 0.25

4 1 0.333333 -0.5 0.25

5 1 0.333333 0.0 -0.50

6 1 0.333333 0.5 0.25

attr(,"assign")

[1] 0 1 2 2

attr(,"contrasts")

attr(,"contrasts")$Genotype

[1] "contr.poly"

It is also possible to explictly enter a design matrix for conditions using
the model.matrix option to pickgene

The overlay in Figure 4a of green dots is found by simple use of apply
to identify genes with any( x <= 0 ). In order to plot these values, one
has to explicitly recompute the normal scores and find the average and
contrast:

> datanorm <- apply( ddata[,-1], 2, function( x )

+ qnorm( rank( x ) / ( 1 + length( x ))))

> datamean <- apply( datanorm, 1, mean )
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> dataleanob <- apply( datanorm, 1, function( x )

+ mean( x[1:3] ) - mean( x[4:6] ) )

Figure 4b comes directly from the pickgene results. Note that all three
sets of scores are ordered by the same average intensity per gene.

> names( Leanob.pick$score )

[1] "Obese.L" "Genotype.L" "Genotype.Q"

> plot( Leanob.pick$score[[2]]$score,

+ Leanob.pick$score[[3]]$score )

The red lines come from the Zidak adjusted value,

> zidak <- qnorm( 1 - exp(( log( 1 - .05 ))/ nrow( data )) / 2,

+ lower.tail = F)

The density plot in Figure 4c was constructed with the pickedhist

command. This can be applied to a single contrast contrast using the show

option, or to all simultaneously. Since this is an ad hoc procedure (cf.
Efron et al., 2001), a bit of trial and error is required. First it is advisable
to increase the smoothing by raising the bandwidth (bw). Then adjust the
prior proportion of changed genes (π1 = p1) until density estimates do not
cross negative.

## automatic bandwidth selection with p1 = .05

pickedhist( picked )

## refined selection by hand

pickedhist( picked, bw=.5, p1 = .1145)

Figure 4d came from another experiment. Gene-specific variances were
computed by using apply on rows of the data frame and then overlaying
the abundance-based variance. Details are left to the reader.
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(b) methods with noise

FIGURE 8. Effect of measurement error on shape of differential expression. Flat
black dashed line for Chen et al., (1997); curved red dotted line for Newton et

al., (2001) odds ratio of 1; smooth red solid line for our method. Blue circles are
genes beyond odds ratio of 1. Horizontal red dashed line at 1 = no fold change.
(a) no measurement error; (b) high measurement error (δ = 20).
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(a) raw IPTG−b values
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(b) normal scores of IPTG−b

FIGURE 9. Escheria coli IPTG-b analysis to compare gamma-gamma Bayesian
to normal scores method. Each point is a gene, with blue circles for genes with
odds ratio above 1 (red dotted at odds ratio of 1, black dotted lines at 106

incrementes in odds; see Newton et al., 2001). Solid purple line for our Bonferroni
5% criteria. (a) log-log scale of original expression levels, with negative values
plotted along diagonals at far left; (b) normal score transformed data, anti-logged
and plotted on log-log scale. Note three genes with huge IPTG-b signal. Our
procedure is more conservative with no noise, but detects pattern of variability
when noise present.
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FIGURE 10. Diabetes and obesity study. Solid red line is our 5% Bonferroni limit.
(a) obesity main effect: green points have 1–6 negative adjusted values; purple
points detected in Nadler et al. (2000); blue points beyond 5% line detected by
our procedure. Clearly methods based only on fold cannot detect all interesting
patterns. (b) genotype main effects: T scores scatter plot with blue circles on
detected genes.


