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Abstract 

 
Since the advent of theoretical population biology, there have been a number 
of attempts to simulate the dynamics of biological systems using any number 
of individual-based modeling techniques. In some cases such techniques have 
been successful, while in other applications the same approaches have failed 
miserably. We present some of the properties that an individual within a small 
population may exhibit and discuss general properties a modeling approach 
must possess to account for the dynamics of individuals within a population. 
We offer a possible modeling technique that is uniquely dependent on the 
information that the biologist observes. 

 
1. Introduction 

 
Knowledge about the dynamics of populations comes from two intrinsically different 

types of research. Ethology involves extensive examination of the physical and behavioral 
properties of an individual and its relationship to other members of its community. At the other 
end of the spectrum, theoretical population biology studies the general characteristics and 
dynamics of whole communities. Quantitative population ethology (QPE) combines these two 
perspectives to simulate the dynamics of a population by accounting for the behavior of each 
individual within that population. This approach is quantitative in two senses. It is primarily 
based on quantitative laboratory measurements and field sampling techniques and can 
summarize spatial-temporal information over time and over populations of individuals. In this 
paper we examine some model requirements for simulating the properties, dynamics and 
structure of populations through events that occur to individuals. 
 The description of individual behavior combines both quantitative and qualitative data 
into an intriguing but incomplete mosaic of information about both the individual and its 
relationship to other individuals. Each member of a community responds to its unique history, 
environment, health and social position, possibly affecting the potential success or failure of 
other segments of that community.  

One problem inherent in using individuals to describe an entire biological system is that 
individuals respond uniquely to stimuli in ways not easily characterized by `density response' 
summaries or ‘rate functions’. In addition, simulating a population of individuals, unless done 
judiciously, ultimately leads to substantial dimensionality problems. The complex operational 
properties of an individual preclude elegant analytic solutions at the population level (Judson 
1994). On the other hand, simulations that closely mimic individual behavior tend to be weak in 
mathematical structure and are usually computationally intractable. QPE develops a simulation 
paradigm that balances attention to biological details with sufficient mathematical structure to 
yield relevant results. 

In the following sections we examine some of the constraints on any effort to simulate 
population dynamics by accounting for individual behavior. In section 2 we review the seminal 
work of Holling (1959a,b) and formally define the properties of an individual. From those 
properties we assert that there are only a few possible simulation approaches. Using those 
observations, Section 3 outlines the probabilistic nature of QPE, arguing that key population 
processes ultimately are played out among individuals. We suggest studying the dynamics and 
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structure of a population of individuals using an event driven competing risk simulation (Ewing 
et al. 2002). In section 4, we describe how this perspective affects our perception of ‘models’. 
That is, the researchers understanding of a system being studied can be mimicked by a collection 
of interconnected simulations. In Section 5, we summarize the ideas discussed in this paper. 

 
2. Individual-Based Population Dynamics 

 
Holling’s (1959a,b) seminal papers on the functional response of the praying mantis 

(Hierodula crossa, Giglio-Tos.) to a population of houseflies (Musca domestica) set the stage for 
effective models of individual-based population dynamics. He found that the predator-prey 
process is inherently complex, and decomposed mantid predation into three basic components: 

 
1. Rate of successful search, depending on reactive distance of predator to prey, 

proportion of prey successfully attacked and movement speed of predator and prey. 
2. Time prey are exposed to predator, depending on prey feeding and other activities. 
3. Time spent handling each prey, including pursuing, subduing, eating and  digesting. 

 
Holling's analysis suggests viewing predator-prey interactions as a sequence of events involving 
individuals. An event is defined as a significant biological change that can be marked and 
counted, resulting in an instantaneous state change. Events occur under conditions that depend 
on the morphological and ethological characteristics of both predator and prey. For instance, a 
predator-prey interaction event depends on a sequence of many conditional probabilities that, in 
turn, depend upon the states of a particular pair of predator and prey. Implicit in Holling’s study 
is the concept of localization: the process called predation is an event with one predator 
consuming one prey at a specific time and place. Individuals carry the dynamics. 

Since the concept of an individual is paramount, what constitutes an individual? The 
following twelve properties define an individual as a higher level living system: 

 
1. An organism is inexhaustibly complex. 
2. Its state cannot be completely determined. 
3. It has no natural state-space representation. 
4. It is highly organized internally. 
5. It is unique relative to all other organisms. 
6. It is unique relative to its own entire past and future. 
7. It is sharply differentiated from its environment. 
8. It has memory of its past that modifies its present behavior. 
9. It responds to its environment as a discrete integrated unit. 
10. It changes continuously and irreversibly. 
11. It exchanges mass, energy, and information with its environment. 
12. Its perception of its environment is incomplete, abstract, and specialized. 

 
Properties 1-4 state that the internal system of an individual is operationally unresolved. While 
an organism can be partially described in terms of constituent parts, a ‘complete’ understanding 
of its internal dynamics involves a hopelessly nonlinear system with deep hierarchical structure. 
Properties 5-9 assert that an organism functions as a unique, complete individual, reacting in 
novel ways to stimuli based upon its present state and partial memory of past events. Properties 
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10-11 imply that an organism obeys entropy, traversing a sequence of non-equilibrium states 
until it dies. Property 12 says each organism has finite memory, cannot recall all sensed stimuli, 
and responds selectively to only a few available stimuli.  
 An individual with the above twelve properties is an ‘emergent phenomenon’ that is 
irreducible. Intricacies of a biological system tend to emerge at the individual level. Each 
individual has a biased view of its environment and operates with subjective, incomplete and at 
times erroneous information. Coping strategies that may ultimately evolve into species 
characteristics initially appear in individuals. Some ‘primitive’ entities exhibit reasonably 
constant strategies during their lifespan. Highly developed individuals experience periods of 
learning that tend to improve their ability to exploit the local environment. 

Any attempt to simulate the structure and dynamics of a population at the individual level 
is potentially so complex to become operationally intractable. Such a simulation probably 
possesses the following properties: 

 
1. The individual is an inexhaustibly complex entity that is unique and operates with an 

incomplete view of its local environment. 
2. The behavior of an individual depends upon a complicated sequence of conditional 

probabilities relative to its history. 
3. These conditional probabilities change as events occur through feedback loops. 
4. An underlying historical structure over a large number of events gets exploited via 

suitable strategies by both individuals and the researcher. 
5. The high dimensionality of the state space forces the description to be probabilistic. 
6. Numerical and analytic analogs are either impractical or impossible. 

 
The biological structure emerges over a large number of events. The high dimensionality 

of the biological description forces the researcher to sample only a small part of the available 
state space. Prediction of future events for an individual or groups of individuals involves a level 
of abstraction. It may be possible predict global properties of a particular ecosystem, but these 
probably cannot be directly measured, and hence cannot be experimentally validated. Our 
philosophical caveat is that a particular mathematical or numerical technique should mimic the 
biological process as much as possible rather than constrain it. We suggest simulations be driven 
by how the biologist perceives a system and collects data. 

 
3. The Probabilistic Nature of Quantitative Population Ethology 

 
Ewing et al. (2002) presented a mathematical structure for a QPE simulation to study a 

biological community based on probabilistic choices for events that affect individuals, either 
singly or through interaction with other individuals. The non-homogeneous Poisson process 
provides a mathematical vehicle to mimic the biological process based solely on input provided 
by biologists. Discrete events drive this process, making time a function of those events. This 
implies a time ordering of future events across individuals that may be rearranged depending on 
the outcome of any current event. Each individual schedules its next future event based on its 
own state description and its perception of other individuals. There is no need to track all 
possible events and interactions. Instead we process next future event and allow the simulation to 
evolve its own structure. 
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Thus a biological system is simulated as a collection of individuals, each realizing a 
sequence of events over time based on its life history and interactions with other individuals and 
with the environment. Each event prompts the scheduling of one of several possible future 
events, implicitly setting a future event time, and possibly rescheduling or eliminating other 
individuals in the case of an interaction. An example of interaction is predation, in which a 
predator finds and kills a prey at a particular location, canceling future events for that individual 
and possibly modifying the future event structure of the predator. The simulation proceeds from 
event to event, processing future events in time order across all individuals in the biological 
system. 

We reduce model dimensionality in three ways. First, the simulation is event driven, with 
action only at future event times. Second, the state space is minimized by considering only 
events that are defined within a given span and resolution. Resolution is the smallest increment 
of time and space that contributes useful information, with events over smaller scales assumed to 
occur instantaneously. Span is the largest amount of time and space the simulation can 
encompass, with aspects occurring over longer intervals considered as essentially constant or 
slowly varying in a smooth fashion. Third, spatio-temporal interactions for individuals are 
scheduled using distance-based probabilities rather than by stepping across a spatial grid. For a 
more detailed presentation of these concepts, see Ewing et al. (2002) and simulation tools 
available at www.stat.wisc.edu/~yandell/ewing. 

 
4. A Network of QPE Models 

 
What properties should simulations possess to capture the structure and dynamics of a 

biological system comprised of interacting individuals? Simulating individual-based population 
dynamics requires defining properties of an individual at some arbitrary operational level. 
Biologists do this all the time, having in mind some understanding at various scales of 
resolution. Those perceptions are ultimately translated into a series of field and/or laboratory 
experiments resulting in collected data, which reflects the researcher’s understanding of the 
system at a particular time.  

The usefulness of any individual-based simulation paradigm depends on its ability to 
correctly interpret collected data. Conversely, simulating a biological system is intrinsically 
dependent on what is measured and how individuals are sampled. Sampling ‘quantizes’ a system, 
restricting what facets of an individual are studied, which leads to an incomplete description of 
the dynamics of each organism. Researchers observe certain individuals and assign them to a 
sequence of quantifiable states. Unobserved individuals have unknown states, leading to a 
probabilistic projection of the observed states onto the whole population. Thus the measurement 
process chosen by the researcher restricts the class of possible models for understanding system 
dynamics. Further, measurement and comprehension of any complex system is itself a dynamic 
process. Typically a field biologist collects data at various resolutions in order to learn about 
particular aspects of biological processes. Further, processes may have different implications at 
different spatial scales. For example, studies of the Verticicladiella—Ponderosa Pine interaction 
develops over several decades while the Western Pine Beetle—Ponderosa Pine interaction lasts 
days or weeks, yet these processes are interrelated (Wood et al. 1972; Stephan and Dahlsten 
1976a, 1976b; Wood et al. 1977).  

Since field biologists view a biological system at multiple spatial and temporal scales, it 
makes sense to consider a network of QPE simulations over different spans and resolutions. The 
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scope of questions asked of a biological system through a particular QPE simulation is implicit 
in the span and resolution of collected data from corresponding field experiments. Changing the 
resolution and span profoundly affects what features of a biological system can be studied, and 
vice versa. In essence, the QPE approach uses a network of interrelated simulations to study a 
biological system over many scales (Figure 1).  

 
 
Figure 1. A network of simulations for a host-parasite system. Grey area contains 
range of biologically relevant scales. Each numbered circle is a simulation at a 
particular span and resolution. Connecting lines show information exchanges 
between different simulations. 

 
The largest span may be at evolutionary and global scales, perhaps best studied by 

coalescent theory using individual DNA sequences across the host and parasite taxa. A much 
smaller scale models details of how a parasite probes a host to determine whether to attack it, at 
a resolution of fractions of a second and millimeters and a span of minutes and centimeters. For 
example, egg load studies might require a resolution of a few seconds and a span of a few days 
(Ives 1995; Rosenheim 1999; Casas et al. 2000; Rosenheim et al. 2000). Information gleaned 
from one simulation can feed into other simulations, either as constant aspects or instantaneous 
changes depending on the relationship of spans and resolutions across simulations. 

 
5. Discussion 

 
The need for and value of individual-based models for studying biological systems is 

demonstrated by the vast literature over the past decade (Judson 1994; Lambertson 2002). Faster 
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and faster computers have driven efforts to model populations of interacting species using global 
population characteristics such as birth, death and migration rates. Stochastic dynamical systems 
have incorporated individual-based behavior (Mangel and Clark 1988; Wolff 1994; Ruxton 
1996; Broom and Ruxton 1998; Gronenwold and Sonnenschein 1998; Ruxton and Saravia 1998; 
Wiegand etal. 1998; Wilson 1997; Hutchinson and McNamara 2000). Most individual-based 
simulations divide time and space into discrete `quanta' of equal size. Discrete time introduces 
probabilistic artifacts such as periodicity and synchronicity that persist as time steps get smaller. 
Similarly, discrete spatial patterns artificially constrict the type of interactions that can be 
modeled. Even recent successful simulations have been severely limited in population size and in 
temporal and spatial resolution relative to the span to compensate for the vast number of 
computations. Such models step through time, checking every individual at each point.  

Donalson and Nisbet (1999) discussed some of the limitations of traditional modeling 
techniques when analyzing populations that exhibit spatial constraints. Analytical models of 
population dynamics have traditionally assumed that systems are spatially well mixed and large 
enough to be treated as continuous fluids. The Lotka-Volterra (Volterra, 1926) model is the 
classic example while the individual-based stochastic birth-death (SDB) model (Bartlett 1957) 
allows for demographic stochasticity (May 1973). Donalson and Nisbet (1999) compared SBD to 
their heuristic asynchronous discrete simulation (HADES) model, showing that predator-prey 
models become unstable if the system is not well mixed. Individual-based models are able to 
incorporate local behavior that reflects more realistic biological systems in a manner that is 
pragmatically impossible in global models. QPE extends the concept of HADES by providing an 
event driven simulation system that is tailored to the needs of biologists and their data.  
 An event-driven competing risk simulation steps from event to event (Donalson and 
Nisbet 1999; Ewing et al. 2002). It is only necessary to follow a few events per individual, hence 
computation is reduced dramatically. The computational complexity of an event-driven 
competing risk simulation is almost linear in the number of individuals and events, while time-
driven models are exponential in the number of individuals. Partial memory can be added 
selectively to individuals or to types of events without dramatically increasing this number. 
 Another intriguing class of modeling techniques called ‘agent-based’ or SWARM models 
(www.swarm.org) take advantage of object oriented computing. Though many SWARM 
techniques are directly applicable to event driven competing risk simulations, we believe their 
philosophy would benefit from recognizing the inherent properties of ‘agents’ as unique 
individuals. It seems crucial that the researcher incorporate the properties of an individual into a 
simulation system to avoid spurious artifacts.  

In this paper we have discussed the QPE paradigm as an addition or alternative to 
traditional population biology models. We suggest this as an alternative rather than a 
replacement to traditional techniques. Our focus on the uniqueness of individuals provides a 
philosophical alternative to standard techniques, giving field biologists a perceptual framework 
for analyzing the various processes and the structure of populations observed in the field using a 
network of QPE simulations. In addition, our approach has potential for analyzing self-
organizing systems (Kauffman 1993, 1995; Paczuski and Bak 1999; Paczuski et al. 1995) in a 
potentially consistent manner.  
 Is this perspective capable of obtaining results one would expect under field conditions? 
The answer to that question depends on the fidelity of data and depth of understanding of the 
system by the field biologist. For example, if Aphytis uses a search algorithm for California red 
scale (see Forester et al. 1996; Forester et al. 1998) based on possible chemical queues (Vet 
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2001) but the simulation uses an ad-hoc search algorithm, then the simulation may be of limited 
use from the researcher’s perspective. Perhaps this is the true value of the QPE paradigm. It 
provides a direct connection between how the researcher perceives the system under study and 
how event driven competing risk simulations are designed. QPE can provide tools to rapidly test 
various field scenarios, rather than for discerning global properties of a biological model. 
Quantitative population ethology should be applicable to a wide variety of problems including, 
for example, the Redscale/Aphytis/Encarsia/Comperiella system (Forester and Luck 1996; 
Forester et al. 1998; Luck and Nunney 1999; van Lenteren and DeBach 1981), the Western Pine 
Beetle, Verticicladiella, Ponderosa Pine interaction (Stephan and Dahlsten 1976a, 1976b; Wood 
et al. 1972, 1977), and wading bird nesting colony studies (Wolff 1994).  
 Perhaps most relevant is, what does QPE provide the researcher that is not already 
available? The approach suggested here is tied directly to data the biologist collects with a 
minimum of underlying mathematical requirements. QPE could allow a researcher to examine 
various scenarios in order to design an efficient sampling technique before actually performing a 
set of field experiments, serving as a virtual field study. Finally the direct relationship between 
simulation and data can highlight facets of the biology that are poorly understood, suggesting 
where and how to conduct future field observations. 
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