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SUMMARY

Interval mapping of quantitative trait loci from breeding experiments plays an important role in
understanding the mechanisms of disease, both in humans and other organisms. Standard approaches to
estimation involve parametric assumptions for the component distributions and may be sensitive to model
misspecification. Some nonparametric tests have been studied. However, nonparametric estimation of the
phenotypic distributions has not been considered in the genetics literature, even though such methods
might provide essential nonparametric summaries for comparing different loci. We develop a sufficient
condition for identifiability of the phenotypic distributions. Simple nonparametric estimators for the
distributions are proposed for uncensored and right censored data. They have a closed form and their
small and large sample properties are readily established. Their practical utility as numerical summaries
which complement nonparametric tests is demonstrated on two recent genetics examples.

Keywords: Discrete mixture model; Empirical distribution; Genetic linkage; Least squares; Molecular marker;
Nonparametric identifibility.

1. INTRODUCTION
1.1 Motivation

The motivating application for this paper is the genetic mapping of quantitative traits in breeding
populations. In these settings, inbred lines are mated in a predetermined manner and the progeny are
genotyped at known markers. The goals are to determine the genomic regions influencing the traits and
to quantify genotypic effects. These studies have proven invaluable in understanding the mechanisms
of disease, both in humans and other organisms. Controlled crosses of rats and mice have been widely
used for complex human disorders, like diabetes, cardiovascular disease, and cancer, where the variability
in natural populations precludes in-depth biological investigations. Such experiments are also critical to
commercial agriculture and animal breeding, where the ultimate objective is the identification of genes
influencing profitable phenotypes. Examples include grain yield in rice and milk production in cows.
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The statistical issues in quantitative trait mapping are complicated. A typical application which we
use to motivate these issues is a rat study of the genetics of tumor development (Lan et al., 2001). The
animals were derived from a backcross design with the Wistar—Kyoto (WKy) strain, which is resistant to
cancer, and the Wistar—Furth (WF) strain, which is not resistant. These strains have genotypes WKy/Wky
and WF/WF at each locus, respectively, while the study animals are either WKy/WF or WF/WF at each
locus. When searching for genes, one evaluates the tumor count distributions at all loci in the genome, not
only the markers. The difficulty is that while the genotypes are known at the markers, they are unknown
between the markers. This leads to mixture models where the probability distribution of the genotypes
at putative loci between markers may be calculated with genotypes observed at the markers and known
distances between the loci and the markers. Note that the observed genotypes at the markers may vary
across animals, and hence the mixture models may also vary across animals. The goal is to evaluate the
tumor count distribution for each genotype at the putative loci.

Formally, the observations arise from K (> 2) discrete mixtures, that is, mixtures consisting of a
finite number of components, L (> 2). In the genetics set-up, K is the number of possible genotypes
at the flanking markers and L is the number of possible genotypes at the locus between the markers.
Each observation originates in one of the K mixtures and the label of the mixture generating the datum
is known. The mixing probabilities are also known and may vary amongst the K mixtures, while the
L component distributions are common to all mixtures. The data consist of n = Z,le n; independent
observations, denoted (X¢j, k =1,..., K, j = 1,...,ng), where ny is the number of observations from
mixture k (=1, ..., K). For given k, Xz;, j =1, ..., n, are i.i.d. with

L
Pr(Xy < 1) = He(t) = ) duFi(). (1.1
=1

The unknown mixture distributions, Hr(t),k = 1,..., K, and the unknown component distributions,
Fi(t),l = 1,..., L, are nondegenerate. The known mixing proportions 0 < iy < 1,/ =1,...,L,
satisfy Zle Mg = 1,fork = 1,..., K. The determination of K and L and the computation of iz is
discussed for the rat study and other experimental designs in Section 5.1.

The standard analyses for this data posit parametric models for F; (Doerge et al., 1997). The normal
mixture is the default in the widely used software Mapmaker/QTL (Lander and Botstein, 1989). In
practice, the traits may be non-normal. In Lan ez al. (2001), the outcome is a tumor count, which is discrete
and has an asymmetric distribution. Model misspecification may lead to reduced power to detect genes
effecting a trait or to invalid estimates of the locations of the genes. It may also result in biased estimates
of the genetic effects. Nonparametric tests can be obtained with Wilcoxon rank statistics (Kruglyak and
Lander, 1995). Unfortunately, the parametric analyses are often used because of their availability in the
mapping packages and model checking has been largely overlooked in practice.

Identifying the locations of genes is the primary objective in a mapping study. This is accomplished by
taking as point estimates those locations where the largest test statistics are obtained. However, estimating
the phenotypic distributions at these peak locations is important in quantifying the magnitude of the
genetic effects. These effects are essential for comparing and ranking different genes, as well as for
assessing the validity of parametric assumptions. The former point is not well understood by geneticists,
who tend to rank the locations according to the magnitude of the test statistics, with larger test statistics
assumed to correspond to larger genetic effects. However, the magnitudes of the effects are determined
by the model parameters, not the test statistics. For parametric models, these estimates are a by-product
of the maximum likelihood analysis. However, with rank tests, no such estimates are available. With
this in mind, we investigate model (1.1) with the component distributions completely unspecified. Our
objective is nonparametric estimates of genetic effects which complement the existing nonparametric
tests (Kruglyak and Lander, 1995).
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1.2 Overview of paper

In many applications, estimation of discrete mixture models may involve both unknown mixing
proportions and component distributions (Titterington et al., 1985). Parametric analyses may be based on
maximum likelihood or the method of moments (Hosmer, 1973). Robust alternatives use kernel estimates
of the component densities or the empirical distribution functions (Murray and Titterington, 1978; Hall,
1981; Hall and Titterington, 1984, 1985). These nonparametric approaches involve a single mixture and
require data from the component distributions. Without the categorized data, nonparametric identification
of the component distributions is impossible. In the multiple mixture formulation (1.1) for quantitative
trait mapping, the genotypes at the loci of interest may not be observed and there may not be direct
information from the components. Thus, the previous results are not appropriate. In Section 2, we provide
a sufficient condition for nonparametric identifiability of the component distributions with K > L and
known Ag;. The variability of the weights is critical to establishing the result. Of course, if K = 1, then
F;,1 = 1,..., L, are nonidentifiable, just as with unknown Ag;. To our knowledge, our identifiability
result for the phenotypic distributions has not appeared in the genetics literature.

In Section 3, we introduce intuitive least squares estimators for the components in the general mixture
set-up (1.1). The estimators are linear combinations of the empirical distributions for Hx, k =1, ..., K.
They have a closed form, are unbiased and their finite sample variance may be evaluated explicitly and
estimated unbiasedly. Large sample behavior is derived from the theoretical properties of the empirical
distributions and functional mapping concepts. It is established that the estimators are uniformly consistent
and converge weakly to Gaussian processes with variances which may be consistently estimated. In
Section 4, the estimators are extended to right censored data. The asymptotic distribution is given, with
the technical details in the Appendix. A competing approach to estimation is nonparametric maximum
likelihood, which can be implemented using the EM algorithm (Dempsteret al., 1977). A difficulty is
that the algorithm may be quite slow to converge, especially in the nonparametric setting. Furthermore,
because the model is infinite dimensional, the usual asymptotic results for parametric maximum likelihood
are not applicable. The theoretical properties of the estimators are unclear and variance estimation may
not be straightforward.

Our simple nonparametric estimators complement the rank-based tests of Kruglyak and Lander
(1995). We view their role in quantitative trait analyses as somewhat analogous to that of the Kaplan
and Meier (1958) estimator in clinical research, where the logrank statistic (Mantel, 1966) is first used
to test for survival differences. The usefulness of this strategy is illustrated in Section 5.2 in a reanalysis
of the rat data (Lan et al., 2001) on mammary carcinoma. The standard assumptions, e.g. normality,
are inappropriate for the tumor count phenotype and the nonparametric estimates of the component
distributions are helpful in understanding the nature of the genetic effects. In Section 5.3, the censored
data methodology is demonstrated on flowering times from a breeding experiment of the plant species
Brassica napus (Ferreira et al., 1995). Existing mapping software cannot handle the censored data and
may give misleading results if the censoring is naively disregarded. At the least, the estimates of mean
genotypic effects based on parametric analyses are invalid, owing to the improper use of information in the
tail of the phenotypic distributions. The nonparametric analyses enable robust inferences about descriptive
measures, i.e. the median, which are nonparametrically identifiable with such censoring. In Section 6, the
paper concludes with general remarks on the practicability of nonparametric methods in gene mapping
studies.

2. IDENTIFIABILITY OF PHENOTYPIC DISTRIBUTIONS

Let F(r) = {Fi(0),....Fo)Y, H®) = {Hi(r), ..., Hg("))T and let A be a known K x L
matrix with kth row (Ag1, Ax2, ..., Axr). For fixed ¢, the relationship of the mixture distributions and
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the component distributions is described by a system of K linear equations
AF@) = H@®). 2.1

Because data are observed directly from Hg, k =1, ..., K, these mixture distributions are nonparametri-
cally identifiable via the corresponding empirical distributions. The only quantities not yet identified are
Fi(t),l =1,..., L. Evidently, the component distributions are nonparametrically identifiable if there is a
unique F solvmg equations (2.1) with A and H fixed. The reason for requiring K > Listhatif K < L,
then this cannot be guaranteed without stronger conditions on the components and the mixtures.

For K > L, identifying the components uses the variability of the mixing proportions. A sufficient
condition for nonparametric identification is that the L x L matrix ATA is nonsingular, as occurs when
A is full rank. The invertibility of AT A gives that

F)y=ATMTATA@®). (2.2)

Since the weights in A are known, the rank of the matrix is easily verified in applications. In quantitative
trait studies, K > L and the proportions from different mixtures are linearly independent, giving the
nonsingularity of AT A.

3. ESTIMATING PHENOTYPIC DISTRIBUTIONS WITH UNCENSORED DATA

It seems natural to estimate F(¢) by replacing H(r) in (2.2) with its empirical counterpart H ® =
{(Hi(0), ..., He ()T, where ﬁk(z) = n;! 2’;'; I(Xgj < 1) is the empirical distribution based on the
sample from mixture k (=1, ..., K) and /() 1s the indicator function. The resulting plug-in estimator is
Fe@) = {FF@), . .. F*(t)}T (ATA) YAT A(1). Since H is unbiased for H, F*(¢) is unbiased for F.
In finite samples, each component in H () is a left continuous step function. This means that F, 1* ® (=
1, ..., L) has potential jumps (in ¢) at the distinct values in (Xzj, k=1,..., K, j=1,...,np).

The large sample properties of F* follow from those of H. Fork = 1,..., K, I:Ik(t) is uniformly
consistent for Hi(¢) for t € [0, 7], where F;(t) < 1 (! = 1,..., L). The uniform consistency of F*(t)

for F (1) for t € [0, 7] follows from a continuous mapping theorem on functional spaces (Andersen et al.,

1993). The empirical distributions H; and H are computed from independent samples for i # j. Thus,
it is easy to show that n!/ 2{H (t) — H ()} converges in distribution to a K-variate Gaussian process for
t €[0,t]asn — oo and ngn~! — pr > 0. The value py is the limiting proportion of observations from
mixture k. Under these asymptotic conditions, the functional delta method (Andersen et al., 1993) gives
that n'/2(F* — F) behaves like an L-variate Gaussian process.

When K = L and A is full rank, there is a one-to-one transformation between H and F. One might
expect that the invariance property of maximum likelihood estimation would hold in this set-up. That is,
since H is the nonparametnc maximum likelihood estimator (NPMLE) for H (Wellner 1982), F* is the
NPMLE for F and is efficient. However, as we discuss later, transforming H using the weight matrix
may not yield F whose components satisfy the definition of distribution functions. This means that the
estimator may be inadmissible. For the case where Fis admissible, that is, each component is monotone
increasing on [0, 1], it is the NPMLE, but this cannot be guaranteed in a given sample. An exception
is when Axixg = 1,k = 1,..., K, in which case the data are from the component distributions and the
estimators reduce to the usual empirical distributions.

When K > L, F* may give large weight to H; with small oz, leading to suboptimal estimation.
It is desirable to improve the efficiency of the plug-in estimator without compromising its ease
of implementation and its theoretical tractability. This may be achieved by using the linear model
E{Ny(t)} = Z,le Ak Fi(t) to construct a least squares criterion for each ¢ € [0, t], where Ng;(t) =
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I(Xj < t). The component distributions can be estimated separately at different time points, which may
not be possible with maximum likelihood. Observe that the mixture model for Xg; induces a linear model
for the expectation of Nj(z), not a logistic model, which is popular for binary data. In the regression

analogy, Ax; and Fl(At),l =1, e L, are thf; ‘covariates’ and the ‘coefficients’, respectively.
Now, consider F**(t) = {F}*(t), ..., F*(t)}T minimizing
O{F (0} = Z Z{Nk, (* - Z M Fi () 3.0
k=1 j=1

The objective function (3.1) gives equal weight to each observation. If A is full rank and n;y >
0,k = 1,..., K, then the estimator exists and has a closed form. Let N(z) be the n x 1 vector
{N11(®), Nio(®), ..., Niny @), ..., Ngng (t)}T and let A be the n x L matrix with kth row equal to the
vector of mixture proportions for the kth element of N(¢),k = 1,..., n. The formula for F* (1) is
(ATA)YATN(1). As with F*, the estimators in F** are unbiased and are left continuous step functions
with possible jumps at the distinct values in the observed data. That the estimators are piecewise constant
in ¢ is computationally convenient. One only minimizes Q at the change points.

Since the observations from each mixture are exchangeable, the estimator can be written as linear
combinations of the empirical distributions. Some matrix algebra gives that F** = YK | ¢\ Ay, where
cx is a random L x 1 vector defined to be the summation of those ny columns of (AT A)~'AT with

corresponding elements Ng;(¢) in N(t),k = 1,..., K. If K = L, then one may establish that cz equals
the kth column of (ATA)'AT k=1,..., K.For K > L, the two estimators are connected by showing
that if o = K 1 k=1,..., K,then, as n — 00, ¢ has deterministic limit & which is the kth column

of (ATAY AT k=1,..., K, and nV/2(F** — F) and n"/2(F* — F) are asymptotically equivalent.

The linear representation for F**(t) makes its uniform congistency and its weak convergence
transparent. The derivations use similar arguments to those for F*. For inferences about F usmg elther F*
or F**, variance estimation is needed. We obtain results for a general estimator 8 = (F¥, ..., F§)T of
the form Zk:l Wy Hk, where (wx, k =1, ..., K) are bounded L x 1 vectors independent of H. Assume
the estimator is unbiased, that is £ (13’ 8) = F , and uniformly consistent, and has a limiting Gaussian
distribution. Then, the exact (fixed n) covariance function, cov[n!/2{F8(s) — F(s)}, nY/2{F8(r) — F(1))]
is

K
Tuls, ) =n Y wewf Hi(){1 — Hi (1)}

for s < t. The single summation occurs because cov(ﬁi, H ) =0,i # j. A consistent estimator f)(s, 1)
may be calculated with Hy in £,(s, t) replaced by Hik=1,..., K. Amore complicated but unbiased
estimator is

K
s, =nY nlwpw! | Ae(s) = { ——
,; kTR nk<nk -1

> Nj()Nj(8)
J#E7

A (1 — 2w) confidence interval for Fi(¢t) (i = 1,..., L) may be constructed with by (or f)”) and the
normal approximation. Let m be an invertible and differentiable function chosen to stabilize the variance
of Fig and to bound the interval in [0, 1]. The endpoints of the interval are

m~! [m{ﬁ;ga)}in—‘/%{ﬁ;g(z)} ﬁia,r)vfa], (3.2)
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where ri(x) = d{m(x)}/dx, £;(s, 1) is the ith diagonal element of (s, #), and ¥ is the o quantile of the
standard normal distribution.

The rank tests of Kruglyak and Lander (1995) may have low power to detect differences between the
phenotypic distributions under certain alternatives. A test for homogeneity of the components may also be
conducted using the proposed nonparametric estimators. For given 7, the null hypothesis is Ho : AF (1) =
0, where A is an (L — 1) x L matrix containing (L — 1) linearly independent contrasts of F1(¢), ..., F1(¢).
Under Hy, the statistic

L) = {AFSONAZ @, 0 AT HAF@®)8)T

has a chi-squared distribution with L — 1 degrees of freedom. Evaluating the distribution of £ as a process
in ¢t € [0, t] would enable omnibus testing procedures which are sensitive to differences amongst the
component distributions at all time points. For example, using sup, £(¢) would provide a statistic which is
sensitive to all alternatives, unlike the test of Kruglyak and Lander (1995). Unfortunately, the theoretical
developments are beyond the scope of the current paper and appear to be rather challenging. In practice,
permutation methods (Churchill and Doerge, 1994) can be used to generate the reference distribution of
the sup test under Hp. .

A minor issue is that in small samples Fg G = ., L) are not constrained to be monotone
increasing in ¢ and to be in [0, 1]. The problem occurs malnly in the right tail of the distribution, which is
difficult to estimate well. Note that it applies to F* and F**. We propose a straightforward modification of
8 which has the properties of a distribution function. The estimator is £ (r) = min[max,<; {F(s)}, 1].
Tt accepts 8 (1) if it satisfies the constraints. Otherwise, it equals either the largest value of F¥(s) fors < ¢
or 1. If /¢ is monotone and in [0, 1], then 8™ = F¥. Since F¥ is uniformly consistent, the same holds
for F¥™. Under mild conditions, n'/2(F8 — F) and n!/ 2(13’ 8™ _ F) have the same limiting distribution,
where 8" = (F§", ..., ") Thus, inferences for 8™ may use .

4. ESTIMATING PHENOTYPIC DISTRIBUTIONS WITH CENSORED DATA

Next, we consider the case where the data are subject to right censoring. The potential censoring
times Cgj, k = 1,..., K, j = 1,..., ng, are independently distributed, where pr(Cy; > 1) = Gg(t) is
the survivor function for censoring in mixture k. It is assumed that Cy; and Xg; are independent. The
observable data are Wy; = min(Xg;, Crj) and Ag; = [(Xpj < Cij) k=1,..., K, j=1,...,m

It is not obvious that the least squares criterion can be adapted to the censored data. First, replace
Nj(t) with Ni j(t) = I(Wy; > t) in (3.1). Next, note that the binary response N j(¢) has expectation

Pr(Wi; > t) = Pr(t) = Gr(t){1 — Hr (1)), 4.1

fork =1,...,K,j = 1,...,nt. The mixture model for H; and equation (4.1) suggest substituting
Gk(t){zlel A Si(t)} for Hy in Q, where S;(t) =1 — F;(#),l =1, ..., L. The modified criterion is

0*{S()} = Z Z{Nk,a) - Gi() stl(r)}

k=1 j=1

where S(1) = {S1(1), ..., S.(H)}T. Minimizing Q* yields (AT A)~'AT N*(z), where N*(¢) is N(¢) with
Nkj(t){Gk(t)}_l in place of Ngj(t),k=1,....K,j=1,...,m

If censoring is fixed in advance, that is G is known, then the minimizer is unbiased and can be
shown to be consistent and asymptotically normal using ideas from Section 3. In practice, the censoring
distribution may be unknown. Assume Gy = G,k = 1,..., K, and replace G in N* with G, the right
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continuous version of the Kaplan-Meier estimator for G based on (Wy;, 1 — Agj,k =1,..., K, j =
1, ...,nx). Denote this estimator for S by §** = ($¥*, ..., S‘i*)T. It is easy to see that

K
80 = (GO Y P,

k=1

where ¢y is given in Section 3 and ﬁk(t) = nk_l Z'j”; 1 Nkj (t) is the empirical estimator for Pi(¢) in

(4.1). Each term in $** is a right continuous step function with possible jumps at the distinct values in
(Wrj,k=1,...,K,j=1,..., nr). When the censoring distributions differ amongst mixtures, one may
use Gk instead of G, where Gk is the Kaplan—Meier estimator for G using only data from mixture k. The
theoretical developments are slightly more difficult than the results for Gy = G below.

Because of G, §** may not be unbiased in finite samples. However, G() converges uniformly to
G(t) and 13k (#), the empirical distribution for Ny j(t), converges uniformly to Pe(t) (k = 1,..., K),
for t € [0, t]. Therefore, assuming that G(r) > 0, a continuous mapping theorem gives the uniform
consistency of §** for S.

Obtaining the weak convergence of n'/ 2(8** — 8) is challenging compared to without censoring.

The issues are that G and ﬁk are dependent for k = 1,..., K, and the influence function for G
involves counting process martingales. Deriving the result requires considering the joint distribution of
(G, Py, ..., Pr). In the Appendix, we demonstrate that

J() = nHG@) — G0, PL(t) — Pi(2), ..., Px(t) — Px(1))T

converges weakly to a (K + 1)-variate Gaussian process on [0, T] with covariance function W(s, t). The
functional delta method provides the weak convergence of n'/2{8**(r) — §(r)}.

The asymptotic covariance function T*(s, 1) = cov[n/2{$**(s) — S(s)}, nV/2{§**(1) — S(1)}] is
k(W (s, O (t)T for s < t, where « is defined in the Appendix. The theoretical quantities in £* may
be estimated with plug-in formulae using the observed data. The details are tedious and are sketched
in the Appendix. Denote the estimators for « and ¥ by « and W, respectively. A consistent estimator
for T*(s, 1) is £*(s, 1) = &(s)W(s, HR()T. As with uncensored data, inferences may be based on the
asymptotic normality of the estimators and the variance estimates. For example, a (1 — 2«) confidence
interval for S;(¢) is

m~! [m{S;‘*(z)} £+ 12 (S (1)) £, z)wa} , 4.2)

where £%(z, 7) is the ith diagonal element of £*(z, 7).
_ For small n, the estimators in S may not be survivor functions. They can be modified similarly to
Fg in Section 3 without affecting the validity of the large sample inferential procedures.

5. EXAMPLES
5.1 Background

In this section, we give background material for the examples in Sections 5.2 and 5.3, which involve the
analysis of data from backcross and double haploid experiments.

In a backcross, there are two inbred parents which differ in a quantitative trait. The allele of parent P1
is labelled m and that of P2 is labelled M. Because of inbreeding, P1 has genotype m/m at each locus,
while P2 has genotype M /M at each locus. Mating P1 and P2 yields an F1 generation which is m/M
at each locus. Crossing F1 with a parent, P1 say, generates the backcross progeny, BC. By the laws of
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Mendelian inheritance, the BC specimens have equal probability of genotypes m/M and m/m at each
locus. Within each BC, the genotype may vary amongst loci depending on the pattern of crossover events
during meiosis in the F1 parent.

In a double haploid experiment, the haploid gametes from an F1 individual are chemically treated
to create double haploid, DH, individuals. Ordinarily, gametes only contain one of the F1 chromosomes,
either that from P1 or that from P2. However, the treatment causes a duplication leading to individuals with
two identical copies of the parental chromosome. These specimens are either m/m or M /M at each locus
with probability 0.5. As in the backcross, recombination in F1 during meiosis means that the genotype for
DH individuals may vary amongst loci.

While the constructions of the BC and DH lines are quite different, the rationale for analysing the data
is identical. The idea is to test for differences in the distributions of the traits amongst genotypes across the
genome. That is, one screens all loci for genetic effects. Genotypes are only observed at markers at known
chromosomal positions. At these loci, the mixing weights are either O or 1, and each mixture corresponds
to a component distribution for a particular genotype. However, for both BC and DH, for a locus in an
interval between markers, there are two possible genotypes and four possible pairs of genotypes at the
flanking markers. Hence, L =2 and K = 4.

Using basic genetic principles, the distribution of genotypes between markers may be computed
conditional on the genotypes at the markers. To illustrate, suppose a QTL is situated between a left marker
M1 and a right marker M2. Let the recombination fractions between the QTL and M1 and between the
QTL and M2 be 6; and 65, respectively. In BC, if the genotypes at M1 and M2 are m/m and m/m, then
with probability pum = (1 — 61)(1 — 62){(1 — ) (1 — 62) + 616,)~! the genotype at the QTL is m/m,
and with probability 1 — pm, the genotype is m /M. This calculation is based on the Haldane (1919) map
function, which assumes recombination events in nonoverlapping intervals are independently distributed.
In DH, the same logic gives that the probabilities of m/m and M /M at the QTL, when both flanking
genotypes are m/m, are also pum and 1 — pp.,, respectively.

Such reasoning generates the conditional probability distributions for the genotype at the QTL for
all possible pairs of genotypes at the flanking markers. It is these distributions which define the mixing
weights. For instance, if k = 1 denotes m/m at M1 and m/m at M2 and [ = 1 denotes m/m at the QTL,
then A 11 = pmm a0d A12 =1 — ppm.

5.2  Mammary tumors in rats

Female rats from the WKy strain resistant to carcinogenesis were crossed with male rats from the WF
strain (Lan et al., 2001). The F1 progeny were mated to WF animals, producing 383 female rats in the BC
generation. These backcross rats were scored for number of mammary carcinomas and were genotyped at
58 markers on chromosome 5. Using Mapmaker/QTL, (Lan et al., 2001) found that marker DSRat22 was
strongly associated with lower tumor counts. That is, the female rats with a WKy allele at DFRat22 had
fewer tumors than those rats with no WKy allele. The mean numbers of counts estimated from the normal
mixture are 2.68 and 5.43 for the WKy/WF and WE/WF genotypes, respectively.

The data are now analysed with nonparametric methods. Lan et al. (2001) used rank tests (Kruglyak
and Lander, 1995) to confirm the genomic region linked to the tumor counts. The maximal test statistic
is at a site very near to D5Rat22, between markers at 42.88 ¢cM and 45.88 ¢cM on chromosome 5. We
compute nonparametric estimates of the carcinoma distributions for the WKy/WF and WF/WF genotypes
at this locus. The recombination fractions are 8; = 0.011 and 8, = 0.018, giving A;; = 0.9998, A;; =
0.627, A31 = 0.373 and Aq1 = 0.0002, with Ago =1 — Agr, k=1, ..., 4.

The estimated tumor count distributions for genotypes Wky/WF and WE/WF are displayed in Figure 1
along with 0.95 pointwise confidence intervals based on the untransformed estimators with m{u) = u in
(3.2). The plots exhibit that WE/WF rats have higher tumor counts. The estimated means in the WKy/WF
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Fig. 1. Nonparametric point estimates (+) and 0.95 pointwise confidence intervals (o) for tumor count distributions
from Lan et al. (2001), and point estimates (o) from the negative binomial mixture model. (a) WEF/WE, (b) WKy/WEFE.

and WE/WF groups are [xdFi(x) = 2.64 and [xdf>(x) = 5.46, respectively, which agrees with
Mapmaker/QTL. However, the estimated distributions from the normal mixture are rather different from
the nonparametric estimates. The estimates from the normal mixture are not shown here but their lack of
fitis evidenced in Figure 2 of Zou et al. (2002). Instead, the estimated components from a model with F;
and F, assumed to be negative binomial, which was fitted by Lan et al. (2001), are displayed. These fall
entirely within the 0.95 limits, indicating that this model matches the data well.

Interestingly, while the normal model does not seem to fit very well, the estimates of the gene’s
location are rather similar to those from the rank and negative binomial mapping procedures. Research on
lod score analyses of pedigree data in human genetics suggests that, in certain cases, estimates of genetic
parameters may be robust to misspecification of the genetic model (Clerget-Darpoux, 1982; Clerget-
Darpoux et al., 1986). Preliminary numerical studies (Zou et al., 2003) indicate that similar properties
may be shared by likelihood based analyses of quantitative trait loci in plant and animal studies. However,
under model misspecification, the parametric analyses may be less efficient than the rank based tests
(Kruglyak and Lander, 1995). A rigorous theoretical analysis of the behavior of the statistical procedures
under different types of genetic model misspecifications has not yet been undertaken.

5.3 Flowering times in Brassica napus

Flowering in Brassica napus is important in oilseed production. Understanding the genes controlling
the trait may be valuable for commercial breeding programs. Some variants require a period of low
temperature (vernalization) to flower (biennials), while others do not (annuals). In this experiment, a
single plant of cv Major (a biennial rapeseed cultivar) was crossed as a female to a double haploid line
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Fig. 2. Points estimates (+) and 0.95 pointwise confidence limits (o) for flowering time distributions from Ferreira ez
al. (1995). Dotted lines are point estimates from the normal mixture model. (a) S/S, (b) M/M.

from cv Stellar (an annual canola cultivar). Ninety-nine F1-derived DH lines were evaluated in the field
for flowering time. Plants from each line were given no vernalization, 4 weeks or 8 weeks of vernalization.

We analyse the non-vernalization data. Out of 99 plants, 27 plants had not flowered after 83 days.
In Ferreira et al. (1995), the flowering time was set to 100 days for the non-flowering plants and
Mapmaker/QTL was used with F; assumed normal. The genomic region N2 was strongly associated
with flowering time. Censoring has not been formally addressed for quantitative trait loci in the genetics
literature and a typical analysis is the one just described. Because the censoring time is fixed and hence
independent of the flowering time in this example, the ad hoc approach is suitable for testing the null
hypothesis of no genotypic effects, but is invalid for estimating the phenotypic distributions. It is worth
emphasizing that with general random censoring patterns, this strategy is invalid and may lead to biased
tests and biased estimates of a gene’s location. Such patterns occur frequently in animal studies where
dropout cannot be completely controlled by the experimenter.

The estimated means from the normal mixture are 41 days and 81 days for S/S and M/M, respectively,
where S denotes the Stellar allele and M the Major allele. Since the data are heavily skewed and the
censoring rate is high, the estimates may severely underestimate the true means. Nonparametric methods
which avoid assumptions on the tails of the distributions seem more appropriate. In fact, since flowering
is not observed beyond 83 days, the distributions are not identifiable beyond that time. This means that
nonparametric estimation of the mean flowering times is not possible and brings into question the values
in Ferreira et al. (1995). We will report medians, which are supported by the observed data.

Setting the censored times to 100, the nonparametric testing procedure in Kruglyak and Lander (1995)
reaches a maximum at a site in N2 close to that in Ferreira ez al. (1995). The locus is between markers
at 63.4 cM and 70.6 cM in this region, with 8; = 0.044 and 6, = 0.025. The mixing weights are
A1 = 0.999, A1 = 0.361, A31 = 0.639 and A4y = 0.001, with Axzo = 1 — Agy, k = 1,..., 4. Figure 2
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exhibits 1 — §** and 0.95 pointwise confidence intervals based on the untransformed estimators for S/S
and M/M with m(u) = u in (4.2). The estimated distributions from Mapmaker/QTL are also shown and fit
poorly, particulary in the S/S group. Based on the nonparametric estimates, the estimated median is &~ 33
days for S/S and the estimate has a lower bound of 83 days for M/M. Without vernalization, substitution
of M/M for S/S substantially increases the flowering time.

6. REMARKS

Nonparametric methods provide robust analyses for genetic studies of quantitative traits. The
distribution estimators complement existing rank tests and are useful in summarizing genetic effects for
comparing different genes and in assessing parametric assumptions, e.g. normality. Diagnosing model
misspecification is an area which has received little attention in the genetics literature. Formal tests
of the assumptions in Mapmaker/QTL (Lander and Botstein, 1989) and other mapping software are
not available. We plan future work on the construction of numerical goodness-of-fit tests using the
nonparametric techniques.

If the normality assumption holds, then there may be a modest reduction in power to detect genes
using the rank tests and a modest loss of efficiency in estimating the magnitude of the genetic effects (Zou
et al., 2003). These losses are comparable to those in the simple two-sample problem where the t-test and
rank sum test have been thoroughly studied. While the likelihood analyses give unbiased estimates of the
location of a gene under model misspecification when using permutation methods (Churchill and Doerge,
1994), empirical studies have shown large gains in power and efficiency with rank methods when the data
are either heavy tailed or skewed (Zou et al., 2003). In addition, maximum likelihood estimation of the
genetic effects may exhibit large biases under model misspecification, which may impact the comparison
of genes. For this reason, we recommend robust nonparametric methods, particularly when it is obvious
that the normality assumption fails to hold, as in Sections 5.2 and 5.3.

An R function implementing the nonparametric procedure in Section 3 is available at http://www.
bios.unc.edu/~fzou. It provides estimates of the phenotypic distributions, their standard errors, and their
means and medians, at a fixed locus along with nonparametric hypothesis tests based on these estimates,
including sup £(#) and [ £(7). The function is compatible with R/qtl (Broman ez al., 2003), which should
enable genome screens using permutation methods (Churchill and Doerge, 1994). It would be worthwhile
to conduct simulations to evaluate the extent to which power to detect genes and efficiency in estimation
of genetic effects is either gained or lost using our new nonparametric approach relative to existing rank
methods and likelihood methods.

The single gene models for backcross and double haploid experiments in Section 5.1 have K = 4 and
L = 2 in (1.1). An alternative to the backcross design is the intercross design, where an F1 is mated to
another F1, instead of to a P1, which leads to K = 9 and L = 3. The nonparametric formulation is also
applicable to genetic models with multiple loci (Zeng et al., 1999). The estimators should prove helpful
in evaluating complex genetic hypotheses, such as whether a gene has either an additive or a dominant
effect and whether several genes have nonlinear interactions, e.g. epistasis. Typically, such hypotheses are
explored in the context of parametric models, specifically, the linear model with normal errors. The model
(1.1) allows these issues to be addressed nonparametrically.

ACKNOWLEDGMENTS

The authors are grateful to the associate editor and referee for helpful comments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



512 J. P. FINE ET AL.
APPENDIX A

The martingale representation for n'/2(G — G) (Gill, 1980, p. 37) is

K mng
n'HG(0) = GO =n""2Y "N " g0 + 0, (1), (A1)

k=1 j=1

where g () = —G(1) fé n(u)_ldej ), t(u) = G(u) 2,5:1 pr{l — Hr(u)} is the deterministic limit
of #(uw) = n~' 5, D0y Nij @), Mj ) = {1 = Nij))Agj — oy Nej($)ye(s)ds and ye(u) =
—d[log{l — G(u)}]/du is the common hazard function of (Cyj,k = 1,....,K,j = 1,...,n). A
martinAgale limit theorem provides the weak convergence of (A.1) for ¢ € [0, t]. The empirical process
nV2{Pe(t) — Pu(1)} also converges weakly on [0, 7] and is asymptotically equivalent to

Nk
n2 " (0 + 0p (1), (A.2)

j=1

where g (1) = p 2 (Nij (1) — Pi(®)).

Combining (A.1) and (A.2) gives J() = n~'2Y K Y (D) + 0p(1), where (1) =
{gri (D), Ik = Dhyj(@®), ..., Ik = K)hg;j (H)T. The multivariate c.L.t. gives convergence to a (K + 1) f-
variate normal distribution for any finite collection of times 0 < #1,...,#f < 7, f < oo. The weak
convergence of the terms in (A.1) and (A.2) gives tightness of these processes in ¢. Hence, the convergence
in distribution of J(¢) is uniform on [0, r]. The limiting covariance function cov{J(s), J(¥)} =
(s, 1), s < t, may be consistently estimated by replacing theoretical quantities with empirical estimates.

Since $**(¢) is compactly differentiable in {G(?), Pi(?), ..., Px ()}, the functional delta method
gives that Z(t) = n'/2{$**(1) — S(r)} converges weakly. The covariance function T*(s, ) =
cov{Z(s), Z(t)} s < tis k($)W(s, Hx ()T, where the jth column of «(s) is the partial derivative of
G(s)™ 1 Zk:l ckPk(s) with respect to the jth element of {G(s), Pi(s),..., Px(s)},j=1,..., K + 1.

The terms «, W are estimated by replacing theoretical quantiAties with empiricals. Let U(s, 1) =
n~! Z,le Z'j’.’;l fkj(t)fkj(s)T, where 7 (1) = {gxj(®), I(k = Dhyj(),..., 1k = K)th(t)}T. The
term 8 (1) = —G () fg 7 @)~ dMyj(u), where #(u) = n=' 3300, Y0, I(Wij > ), Myj(u) equals
{1 = Nej@)Aij — [y Nej(s)dle(s) and Te(u) is the Nelson-Aalen estimator of the cumulative hazard
function for censoring distribution. The term hg;(r) = (nx/n)~"/*(Ni;j(t) — Pe(t)). For fixed s, «(s)
is a L x (K + 1) matrix with first column equal to —G(s)~ 1S(s) and (j + Dth column equal to
G(s)™! ¢j, j=1,..., K.Define c to be « with ¢, G and §** in place of &, G and §.
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