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ABSTRACT
The power of a genetic mapping study depends on the heritability of the trait, the number of individuals

included in the analysis, and the genetic dissimilarity among them. In experiments that involve microarrays
or other complex physiological assays, phenotyping can be expensive and time-consuming and may impose
limits on the sample size. A random selection of individuals may not provide sufficient power to detect
linkage until a large sample size is reached. We present an algorithm for selecting a subset of individuals
solely on the basis of genotype data that can achieve substantial improvements in sensitivity compared to
a random sample of the same size. The selective phenotyping method involves preferentially selecting
individuals to maximize their genotypic dissimilarity. Selective phenotyping is most effective when prior
knowledge of genetic architecture allows us to focus on specific genetic regions. However, it can also
provide modest improvements in efficiency when applied on a whole-genome basis. Importantly, selective
phenotyping does not reduce the efficiency of mapping as compared to a random sample in regions that
are not considered in the selection process. In contrast to selective genotyping, inferences based solely
on a selectively phenotyped population of individuals are representative of the whole population. The
substantial improvement introduced by selective phenotyping is particularly useful when phenotyping is
difficult or costly and thus limits the sample size in a genetic mapping study.

GENETIC mapping involves the ascertainment of a strong incentive to limit the number of animals studied
with microarrays. Having a fairly large sample of animalsphenotype in a genetically segregating population

followed by an analysis of association between the phe- that were genotyped, we asked if a selected subset of
this full mapping panel would be more informative thannotype and genotypes at marker loci spanning the entire

genome. Due to high-throughput technologies, geno- a randomly selected subsample.
We describe a selective phenotyping strategy that cantyping no longer limits the sample size in a genetic map-

ping study. Increasingly, the cost and logistics of pheno- substantially increase detection efficiency whenever
phenotyping requires much more effort than genotyp-typing impose limits on sample size. This is especially

true of phenotypes involving complex physiological or ing. We performed simulations to study the behavior of
selective phenotyping and then successfully applied thebehavioral traits.

Microarray technology has broadened our definition method to our mouse gene expression mapping study.
We first consider the performance of selective pheno-of phenotype to include the mRNA abundance data

obtained from microarray experiments. Gene mapping typing for a range of sizes of full mapping panels and
for different proportions of individuals selected in sub-using microarray data as phenotypes is now emerging

(Brem et al. 2002; Schadt et al. 2003; Yvert et al. 2003) samples from these mapping panels. We then show how
sensitivity improves with increasing score, a measure ofand will soon be commonplace (Jansen and Nap 2001;

Doerge 2002; Bochner 2003). The high cost of mi- genetic difference, when some markers used for selec-
tive phenotyping are linked to QTL. Next, we investigatecroarrays greatly limits the sample size of a gene map-

ping study of mRNA abundance traits. the relative merits of different criteria of selective phe-
notyping. Finally, we examine the performance of selec-We have studied the inheritance of physiological traits

and mRNA abundance traits in an F2 sample segregating tive phenotyping on our mouse mapping panel.
for obesity and diabetes (Stoehr et al. 2000; Lan et al.
2003). Because of the high cost of microarrays, we had

MATERIALS AND METHODS

F2 mice selection: Our mapping panel includes 108 (B6 �
BTBR) F2-ob/ob mice used to study QTL associated with obesity1Corresponding author: Department of Statistics, University of Wiscon-
and diabetes (Stoehr et al. 2000). The framework map wassin, 1300 University Ave., MSC-1239, Madison, WI 53706.

E-mail: byandell@wisc.edu constructed with MapMaker/EXP (Lander et al. 1987) and
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consists of 188 microsatellite markers spanning the 19 mouse mean, K 1, and optimizes selection for nonepistatic effects. The
second moment or variance, K 2 (see appendix), would furtherautosomes, composing a framework map with average spacing

of 20 cM augmented by markers in identified regions. The optimize for epistatic QTL. Xu (2003) recommends first select-
ing subsamples based on K 1 and then selecting the designphenotypes include 11 physiological traits, such as fasting

plasma glucose, fasting plasma insulin, and body weight at 8 with the smallest K 2. Alternatively, we could consider some
weighted average of K 1 and K 2. Simulations (not shown) sug-and 10 weeks of age, and the abundance of 12 mRNA species
gest little difference between these approaches in practice.involved in liver metabolic pathways relevant to insulin action
Higher-order moments are probably not effective and are notand glucose homeostasis, such as stearoyl-CoA desaturase 1
considered further.(SCD1), fatty acid synthase (FAS), and acyl-CoA oxidase (ACO).

Two-step implementation: Subset selection is a challengingThe liver mRNA abundances in the F2 mice were estimated
computational problem due to many possible subsets to evalu-using the quantitative real-time reverse transcriptase-PCR
ate. Therefore, we propose a two-step approach: forward se-(qRT-PCR) as described earlier (Lan et al. 2003). Previous
lection of individuals followed by optimization through pairstudies have found that regions on chromosomes 2, 4, 5, 9,
swapping. Initially, the pair of individuals with the minimum16, and 19 harbor QTL for insulin, glucose, and SCD1 mRNA
similarity is selected. Each iteration adds one individual to thetraits (Stoehr et al. 2000; Lan et al. 2003). In this study, we
set based on the MMA criterion. It is well known that this ap-selected 60 mice according to their genotypes on these six
proach may not reach the global optimum, since individualschromosomal regions for subsequent analysis.
chosen earlier may no longer be optimal in light of laterSelection criteria: Assuming only a modest number of quan-
choices. The optimization step swaps individuals out of thetitative trait loci, how do we best select a subsample from the
chosen set to be replaced by new individuals. A swap is retainedmapping panel for phenotyping? We want to select individuals
if the resulting set has a lower similarity. This swapping proce-that are genotypically dissimilar to maximize the available
dure is repeated until no larger dissimilarity can be found.genetic information. Detection of a major QTL in an F2 map-

Genomic information: When we have little informationping panel with an additive genetic effect has the most power
about genetic architecture, we could select individuals on thein a sample that has a 1:1 ratio of individuals homozygous for
basis of a framework map for the entire genome (genome-either parental genotype at the QTL locus (O’Bren and Funk
wide selective phenotyping). However, if previous studies sug-2003). A random sample at this locus would have an �1:2:1
gest that certain genomic regions may be important, we canratio of A:H:B genotypes and would require up to twice the
employ chromosome-wide selective phenotyping, which usessample size for comparable power to detect a strictly additive
information only from chromosomes of particular interest, oreffect. If we cannot afford to phenotype all individuals, we
marker-based selective phenotyping, concentrating on a fewwould prefer to selectively phenotype equal numbers of homo-
genetic markers in the genomic regions of interest.zygotes. The selection criterion can also be modified to favor

Performance measures: We used simulations to establisha 1:1:1 ratio to detect general differences among the three
the performance characteristics of different selective pheno-genotypes. Inference obtained through standard interval map-
typing strategies. Selected sets of individuals were comparedping is not affected by selection based on marker genotypes
to random samples of the same size and to the full mapping(see appendix). This is in contrast to selective genotyping
panel to assess the overall efficiency of selection. Detectionwhere it is well known (Lander and Botstein 1989) that
of a QTL is defined as a LOD exceeding the permutation-ignoring unselected progeny leads to bias in QTL effect esti-
based threshold (Churchill and Doerge 1994) within a 40-mation.
cM window surrounding the true locus. The following perfor-We build our algorithm on the experimental design concept
mance measures were used in this study:of minimum moment aberration (MMA), which is equivalent

to other statistically justified criteria (Xu 2003). The basic idea Specificity: one minus the false-positive rate is the percentage
is to select a subsample of individuals that are as dissimilar as of simulation runs for which no QTL were found over
possible. MMA measures similarity for a subsample as an aver- regions of the genome where no QTL were present.
age of all pairwise similarities, K1 (see appendix), with the Sensitivity: the percentage of simulation runs in which all QTL
similarity for two individuals being the “similarity” between present were detected.
their marker genotypes summed across a subset of markers QTL effect bias: the difference between expected and true
from the linkage map. Similarity at a marker could be 1 for value of the QTL effect.
the same genotype and 0 for different genotype to emphasize QTL effect standard error: typical deviation of estimated QTL
general QTL effects. For a subsample of 60 individuals, we effect.
prefer to measure similarity as the number of alleles two indi- QTL location estimates: s is the average absolute distance of
viduals share (0, 1, or 2) to optimize detection of additive detected LOD peak from the known underlying QTL; c is
genetic effects. This measure preferentially selects homozy- the frequency that the true position falls into the interval
gotes at the markers of interest. defined by LOD within 1.5 of the peak LOD.

The MMA criterion depends on the size of the mapping
Simulations: We conducted simulations under a variety ofpanel and the number of markers considered in the similarity

situations that we expect to encounter in a genetic mappingmeasure. We standardized the similarity K1 to allow compari-
experiment. For each situation, we simulated 100 replicate F2son across experiments of different size. Our score is normal-
mapping panels on the basis of the Haldane mapping functionized between 0 and the square root of sample size,
with evenly spaced (10 cM) markers. Environmental noise was
drawn from a standard normal distribution, with heritabilityscore � √n

(max � K1)
range

, (0.25–0.75) coming from additive genetic effects. Significance
thresholds were calculated on the basis of 100 permutations

where the “max” is the maximum possible value of K1 and per simulated mapping panel at significance level 0.05.
the “range” is the difference between the maximum and the We first considered efficiency over a wide range of situations,
minimum possible (see appendix). Note that because of the with varying size of mapping panels (N � 50–200), sample sizes
inverse relationship between K 1 and the score, minimizing (n � 10–N), and proportion of individuals selected (10–90%).
similarity is equivalent to maximizing the score. We considered one QTL on chromosome 1 with heritability

h 2 � 0.25, 0.50, 0.75, on the basis of the range of heritabilityOur MMA criterion corresponds to the first moment or
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encountered in previous studies (Broman and Speed 2002;
Yvert et al. 2003). We primarily considered marker-based
selective phenotyping, except for the last set of simulations.

We then addressed our specific problem with 110 F2 individ-
uals, up to 20 chromosomes of length 70–100 cM, and one
to three QTL. Markers were placed every 10 cM along chromo-
somes, similar to that in Cheung et al. (2003). For each simu-
lated mapping panel, a subset of 60 individuals was selected
either at random or by using one of the three selective pheno-
typing methods. The subsets were compared with each other
and with the full mapping panel in terms of sensitivity, speci-
ficity, bias, and precision of inferring the correct QTL.

Software: The selective phenotyping algorithm was imple-
mented in R (www.r-project.org). Multidimensional scaling
was performed using the R/mva package. QTL analysis was
performed using standard interval mapping with the R/qtl
package (Broman et al. 2003).

RESULTS

How many individuals do we need for selective pheno-
typing? We simulated various mapping panel sizes while
keeping the selected sample size fixed (n � 50, h 2 �
0.25) and limiting attention to one 100-cM chromosome
with one QTL at 35 cM. When progeny are selected
randomly, no improvement of sensitivity is observed
with increasing mapping panel size (Figure 1a). In sharp
contrast, selective phenotyping based on flanking mark-
ers (30 and 40 cM) was able to take advantage of the
increasing mapping panel. Sensitivity increased with
mapping panel size and with the proportion selected.
It leveled off when the selected proportion reached 50%
(Figure 1a). With higher heritability, the curve levels
off below 50% (data not shown). Fixing the selected
proportion at 50% (n � 0.5N, h 2 � 0.25), the sensitivity

Figure 1.—Effect of mapping panel size on sensitivity andincreased roughly linearly with mapping panel size (Fig-
score with selective phenotyping. F2 progeny were selected onure 1b). The intercept decreases for selected markers
the basis of markers at 30 and 40 cM, from a mapping panel

further away from the QTL position. of varying size. The true QTL is located at 35 cM on a single-
In a situation where the mapping panel is already chromosome genome. The phenotype is simulated with herita-

bility of 0.5. The horizontal axis represents the size of theestablished, what proportion of individuals do we need
mapping panel (N). (a) Effect of N on sensitivity (vertical axisto selectively phenotype to retain high performance?
on the left) and on score (vertical axis on the right), whenFor fixed mapping panel size (N � 100), as we increased
50 F2 progeny were selected. (b) Effect of N on sensitivity

the proportion selected, the sensitivity rose to a point of (left) and score (right) when 50% of the panel was selected.
diminishing returns, depending on heritability (Figure
2a). Selection was more effective for highly heritable
traits. Even with h 2 � 0.25, there is not much improve- score appears to increase when sensitivity improves (Fig-
ment with �50% selected. This is consistent with the ure 2b) when some markers used for selective phenotyp-
findings with fixed selection sample size above. This ing are linked to QTL. Consequently, score is especially
indicates that, with high heritability, selectively pheno- useful in “predicting” the performance of different se-
typing 50% of the progeny from the full mapping panel lection schemes (not just selective phenotyping) with-
can retain most of the information needed for QTL out the need to refer to a particular phenotype or herita-
detection. More progeny are needed when the heritabil- bility.
ity is low. What is the most appropriate selective phenotyping

These same relationships are reflected in curves with criterion? We compared three selective phenotyping cri-
our genetic difference score (Figures 1b and 2b, aver- teria that focus on different amounts of the genome.
aged over 100 replicates). A major assumption behind The genome-based criterion used markers across the
the concept of selective phenotyping is that sensitivity entire genome region. The chromosome-based crite-
is positively correlated with genetic difference. This as- rion used only markers on the chromosome that con-

tained a known QTL, while the marker-based criterionsumption seems to hold, since for any fixed heritability,
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Figure 3.—Comparison of selective phenotyping with ran-Figure 2.—Effect of heritability and sample size on sensitiv-
dom sampling. (a) The relationship between score (horizontality and score with selective phenotyping. Varying numbers of
axis) and sensitivity (vertical axis) for different selective pheno-progeny were selected on the basis of a marker at 30 cM, from
typing methods with one, two, four, or eight chromosomes ina mapping panel of size 100. The true QTL is located at
the genome. “g” stands for genome-based, “c” for chromo-33 cM on a single-chromosome genome. The phenotype is
some-based, and “m” for marker-based selective phenotypinggenerated with heritability (H) of 0.245, 0.5, or 0.75. (a) The
methods. Sample size n is 30, mapping panel size is 100, andeffect of sample size n (horizontal axis) on sensitivity (vertical
heritability is 0.5. (b) Sensitivity (vertical axis) comparisonaxis) under different heritabilities. (b) The relationship be-
of genome-based (g), chromosome 1-based (c), and marker-tween score (horizontal axis) and sensitivity (vertical axis)
based (m) selective phenotyping methods against full map-under different heritabilities.
ping panel analysis (f) and random selection (r). The hori-
zontal axis denotes the number of chromosomes in the genome.
Sixty F2 progeny were selected from a mapping panel of sizehad a single marker near the true QTL. A set of simula-
110. The true QTL is located at 33 cM on chromosome 1 of

tions had one QTL with pure additive effect (h 2 � 0.245) a two-chromosome genome. Heritability is 0.245.
on chromosome 1 at 33 cM in a genome with 20 chromo-
somes. The mapping panel had 110 individuals, and
60 were selected by one of the criteria or by random Genome-based (40%) and chromosome-based (�60%)

selection were also considerably better than randomsampling.
We found substantial differences in sensitivity to de- selection. A restricted search of a portion of the genome

yields smaller differences and higher sensitivity (Figuretect QTL when searching the whole genome (Figure
3). The sensitivity to detect a single QTL decreased as 3b). The dissimilarity scores for either the marker-based

or chromosome-based criterion did not change with athe number of chromosomes increased, regardless of
selection criteria. With 20 chromosomes in the genome, restricted search of the genome (Figure 3a), as they

depend only on markers used for selection, not on thegene mapping based on random sampling can detect
QTL only 30% of the time, compared with 80% sensitiv- QTL search strategy. However, the dissimilarity score

for the genome-based criterion decreased as the regionity of the full mapping panel. This tremendous loss of
sensitivity can be rescued with selective phenotyping. increased. The score is most useful for relative compari-

sons of the various selection methods when the searchMarker-based selection captured most (�70%) of the
sensitivity of the full mapping panel, two- to threefold region is fixed.

Figure 4a shows the median LOD maps of 100 repli-of the sensitivity obtained through random sampling.
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Figure 4.—LOD map comparison for differ-
ent selective phenotyping methods. (a) We
simulated 100 F2 mapping panels with 110 indi-
viduals, 10 chromosomes, and one QTL and
performed standard interval mapping. Sixty in-
dividuals are selected using the three selective
phenotyping methods: genome based (dotted
dashed line), chromosome based (dotted
line), and marker based (dashed line). Ran-
dom method (thin solid line) and full mapping
panel analyses (thick solid line) are provided
as reference. The vertical axis is the median
LOD obtained at each location. The horizontal
axis represents the map location. The arrow
points at the QTL location, and the solid bar
points at the marker used for marker-based
selection. (b) Marker-based selective pheno-
typing. We simulated 100 F2 mapping panels
with 110 individuals, markers every 10 cM, two
linked QTL on one chromosome, and a third
QTL on a second chromosome. For each simu-
lated panel, we performed standard interval
mapping. The vertical axis is the median or
quartile LOD obtained at each position. The
horizontal axis represents the map location
for the two chromosomes. Arrows point to the
QTL loci, vertical lines indicate markers, and
the solid bar indicates the marker used for
marker-based selection. Sixty individuals are
selected randomly (dashed line) or using the
marker-based selection (thick solid line). The
25 and 75% LOD quartile from random
method (dotted line) and the median LOD
from full mapping panel analyses (thin solid
line) are provided as reference.

cates based on one QTL and a genome consisting of 10 lower LODs. Thus, the more specific we can be in selec-
tion using previous knowledge, the more sensitive ourchromosomes. The median LOD may not correspond to

a result of any single analysis across the genome, but it QTL analysis will be. Even without any prior informa-
tion, our analysis still does slightly better than randomprovides a pointwise summary of LOD analysis for QTL.

The full mapping panel had the highest LODs at the sampling.
Genome-based selective phenotyping improves ontrue QTL location, followed by the marker-based and

chromosome-based methods. Genome-based selective random sampling when there is no prior information
about genomic regions of interest for QTL. In a simulationphenotyping and random sampling had considerably
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TABLE 1

Comparison of performance measures

Full mapping Random Selective
panel subset phenotyping

a. Genome-based selective phenotyping (60 mice) with one additive QTL and two chromosomes
Sensitivity (%) 97 69 77
Specificity (%) 97 92 91
LOD

33 cM 5.34 (0.21) 3.21 (0.16) 3.97 (0.17)
Region 5.59 (0.21) 3.48 (0.17) 4.24 (0.17)

Position
c (%) 99 94 94
s (cM) 4.24 (0.41) 8.34 (1.20) 8.24 (1.13)

Additive effects
Bias 0.021 0.055 0.010
SD 0.014 0.020 0.017

Dominance effects
Bias �0.001 �0.0005 �0.005
SD 0.020 0.033 0.044

Variation
Bias 0.003 0.003 �0.007
SD 0.010 0.011 0.010

b. Simulated data with full dominance (full mapping panel analysis; 110 mice)
and random selection (60 mice)

Sensitivity (%) 82 50 65
Specificity (%) 92 94 93
Additive effects

Bias �0.006 �0.004 0.026
SD 0.017 0.024 0.018

Dominance effects
Bias 0.013 0.014 0.040
SD 0.022 0.036 0.040

Values in parentheses are standard errors.

with one additive QTL focusing on two chromosomes, the QTL, located on chromosome 1. Chromosome-based
selective phenotyping based only on chromosome 1 pro-LOD curve for the genome-based selective phenotyping

came close to the 75th percentile of the random method vides considerably higher sensitivity than random sam-
pling and slightly better sensitivity than genome-based(not shown). No QTL signal was found on chromosome

2 for the full mapping panel or any subset; thus the false- selective genotyping (Figure 3). If we know further the
approximate region(s) containing QTL of interest, thenpositive rate is low. Both random selection and genome-

based selective phenotyping maintained a specificity of at marker-based selective phenotyping, relying on one or
a few markers, does even better (Figure 3). Thus, we canleast 90%, lower than that of the full mapping panel

(97%). Reducing the number of subjects selected seemed improve over random sampling provided the selection
region is chosen correctly. However, if we choose re-to affect detection power. Genome-based selective pheno-

typing had smaller bias and standard deviation for additive gions for either criterion that do not contain QTL, such
as chromosome 2, then selective phenotyping behaveseffect (Table 1). Our selection procedure tends to choose

homozygous progeny more often, as expected, slightly like random selection on average for detection of QTL
(not shown).favoring estimates of additive effects over dominance ef-

fects. A second simulation with one QTL having pure We performed another F2 simulation with two QTL
on chromosome 1 (at 23 and 62 cM) and one QTL ondominance showed that genome-based selective pheno-

typing still generated a higher LOD score than the random chromosome 2 (at 48 cM), all additive of the same
magnitude of 0.7, and the residual phenotypic variationmethod, again tracking the 75th percentile of the random

sampling (not shown). Other measures of performance is assumed to be normally distributed with mean 0 and
variance 1. Marker-based selective phenotyping with onedid not change much. This supports using selective phe-

notyping even in the presence of full dominance. marker near the first QTL on chromosome 1 had a
higher LOD score and better detection for both QTLFrequently, some chromosomes are of more interest

at the beginning of a study. Suppose there is only one on chromosome 1 (Figure 4b). Sensitivity for the QTL on
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chromosome 2 is close to that of random sampling on
average. Thus, the stronger and more specific the prior
knowledge, the more detection power we can gain near
these locations.

Mouse experimental design: We have 108 (B6 �
BTBR) F2-ob/ob mice, and our goal is to select a subset
of 60 mice for future gene expression studies. We chose
them using the marker-based selective phenotyping ap-
proach with the following considerations: (1) the sensi-
tivity gain with all 19 chromosomes would be minimal
with genome-based selection methods; (2) we have pre-
viously identified six regions of particular interest, each
�20 cM in length; and (3) there are few missing geno-
types for the markers in these regions.

According to the specified criteria, the selected sub-
jects should be as dissimilar as possible. To visualize the
dissimilarity, we used multidimensional scaling (MDS),
which projects individuals onto a two-dimensional map
on the basis of their pairwise similarity. Selective pheno-
typing should choose individuals that are as dissimilar
as possible, and we should not see any evidence of
clumping. For the 108 mice, a two-dimensional projec-
tion explains �30% of the variation and shows no obvi-
ous pattern (Figure 5a), except that the progenies not
selected tend to have more heterozygous genotypes in
these six regions, which is desirable for our purpose.

We examined the performance of our selective phe-
notyping method on the SCD1 phenotype by comparing
its resulting LOD profile to that obtained through re-
peatedly drawing random samples of 60 mice (Figure
5b). Our LOD score was generally higher than the me-
dian LOD from random sampling with the exception Figure 5.—Mice selection experiment. (a) Multidimen-
of chromosome 5, where there appeared to be evidence sional scaling visualization of the mice selection projected

onto the first two principle components, which explain, re-for dominance and unequal variance for SCD1 across
spectively, 23 and 9% of the total variation. The 60 marker-the marker genotypes. Selective phenotyping thus is
selected mice are solid circles; the remaining 50 mice aresuperior to a random sample of equal size because it open circles. The size of the circle measures the abundance

provides considerably more resolving power. of homozygous genotypes. The smaller the size, the more “H”
it has. (b) Interval mapping of SCD1 trait for chromosomes
2, 4, 5, 9, 16, and 19. The LOD curves are for the full mapping

DISCUSSION panel with 110 (B6 � BTBR) F2-ob/ob mice (thick solid line), 60
marker-selected mice (dashed line), and 60 randomly selectedIn this study, we present a criterion for selecting a mice (thin solid line). The vertical axis is the LOD obtained

subset of individuals for phenotyping based on their at each position. The horizontal axis shows the chromosomes
genotypes. We used an F2 mapping panel for all the of interest with markers from the genetic map.
examples, but the method can be easily extended to
other experimental designs and combined crosses. The
decision to use genome-based, chromosome-based, or search focus. Assigning the same pairwise similarity be-

tween different genotypes results in a balanced design,marker-based selection is made according to prior
knowledge of both the presence and the localization where approximately the same number of progeny is

selected for each genotype. This is more desirable if weof putative QTL. Stronger, more specific, and more
accurate prior information leads to better resolution are equally interested in a broad range of hypotheses

about gene action. For an F2 single-QTL analysis, thisfor those regions of interest. Chromosomes not used in
the selection criterion tend to perform like a randomly includes tests for additivity, dominance, fully dominant

and fully recessive. Further selection of individuals withchosen subset. By selecting individuals that are as geneti-
cally dissimilar as possible, the approach proposed here identical K 1 based on smallest second-moment similar-

ity, K 2, results in a more balanced design across pairsselects subsets of individuals that provide a better map-
ping panel than random sampling. of markers, which can improve detection of epistasis.

Alternatively, with a limited number of progeny, toThe choice of pairwise similarity depends on the re-
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reach sufficient detection power, one may want to focus genetics, major adjustment is needed. The possible num-
on certain tests of interest. Additive effects are usually con- ber of genotypes at a certain locus may vary greatly, and
sidered the most important and most prevailing among the study subjects may come from an unknown number
all. The similarity measure we present emphasizes the of hidden populations. The genetic similarity between
examination of additivity both within and across loci. each pair of subjects may be obtained through a more
There is little evidence from our simulations to suggest sophisticated alternative, relationship estimation (Gor-
an improvement in performance when the second mo- ing and Ott 1997; McPeek and Sun 2000). However,
ment is included with our measure (not shown), but we situations may exist when it is desirable to retain subjects
have not carried out an in-depth study of epistatic QTL. with a certain marker genotype pattern. Selective phe-

The MMA criterion is conceptually simple and easy notyping can be performed after estimation of hidden
to implement, but current theory relies on complete populations (Corander et al. 2003) based on different
data and uncorrelated factors. Correlation from genetic genotype patterns. The genetic similarity measure shall
linkage can be minimized by selecting widely spaced be defined accordingly to reflect the population struc-
markers, in the extreme at most one per region. Since ture. It is worth mentioning that maximizing unrelat-
we had few missing genotypes in regions of interest, we edness in a general population sample may lead to max-
imputed missing values on the basis of flanking markers imizing genetic heterogeneity in the sample, which may
using the Haldane map function of no interference. not be desirable in some cases.
Repeated imputation yielded only minor changes in We have demonstrated that selective phenotyping
selection. More imputation error will generally be intro- provides an effective strategy to maximize the efficiency
duced into selective phenotyping when using chromo- of genetic mapping studies that require expensive or
some-based or genome-based selection. We are investi- time-consuming assays. This can substantially reduce
gating the importance of missing values and linkage in research costs while maintaining high power to detect
the experimental design criteria. A natural solution is QTL. This methodology could be extended to associa-
to define similarity as the expected value of similarity tion studies to select individuals on the basis of haplo-
measures based on the flanking marker genotypes when type block information.
the genotype at this locus is missing.
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APPENDIX Score: Score is a standardized version of genetic dif-
ference. It is defined asNo bias for selective phenotyping: It is well known that

interval mapping is affected by selective genotyping based
score � √n

(max � K 1)
range

,on phenotype information (Lander and Botstein 1989).
However, inference obtained through standard interval
mapping is not affected by selection based only on where max � 2m (the number of markers) is the maxi-
marker genotypes (Jin et al. 2003). To demonstrate this, mum possible value of K1, and the range equals max �
we introduce a sampling variable, s i , which equals 1 if the min � mn/(n � 1), where the “min” is obtained through
ith progeny is selected, 0 otherwise, with i � 1, . . . , N . Let solving the equation by setting the first derivative to 0
Zi and Mi denote the phenotype and flanking marker at any given marker. It is assumed that the markers are

independent.genotypes, respectively. Consider analyzing only the se-




