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ABSTRACT

Gene mapping infers the relationship between genotype and phenotype in a segregating
population. We map thousands of mRNA expression phenotypes, or expression QTL, using
dimension reduction methods to uncover correlated genetic architecture, including number and
location of genomic regions as well as gene action and epistasis. We show a novel blending of
principal components and discriminant analysis with functional information to detect multiple
expression QTL that together may affect the expression of many correlated mRNA. These
common patterns of gene action are largely overlooked by simple interval mapping when
conducted separately for each mRNA. In our current study with 60 F; mice from a B6-BTBR
ob/ob model of diabetes and over 40,000 mRNA transcripts measured with Affymetrix chips, we
find three pairs of genomic regions of particular interest associated with signal transduction,
apoptosis, and lipid metabolism. We propose to join genetic architecture with graphical models
of biochemical activity. Our approach is directly applicable to gene mapping for other “omic”

measurements on the horizon.



INTRODUCTION

Gene mapping infers the relationship between genotype and phenotype in a segregating
population (LANDER and BOTSTEIN 1989). The mRNA abundance data obtained from
microarrays, “expression phenotypes”, can be genetically mapped to identify loci that regulate
gene expression. We map thousands of mRNA expression phenotypes to find expression trait
loci (ETL), using dimension reduction methods to uncover their complex genetic architecture.
Genetic architecture involves the number and location of genomic regions that affect phenotypic
traits, as well as their gene action and possible epistatic interactions (KAO ef al. 1999). We show
how the novel use of principal components and discriminant analysis, in conjunction with
functional information, can detect multiple expression QTL. These approaches identify loci that
act together to coordinately regulate the levels of many mRNAs. Such patterns of gene action are
largely overlooked by simple interval mapping conducted separately for each mRNA.‘

Our ultimate goal is to model causal biochemical networks based on biological process
measurements on a panel of individuals from an experimental cross. Causal biochemical
networks, or directed graphical models connecting genes, consist of nodes (genes and/or their
mRNA) and connecting arrows indicating causal direction in a putative biochemical pathway.
Several authors have proposed models to discover associations in genomic expression data using
correlation (ZHOU ef al. 2002), partial correlation (DE LA FUENTE ef al. 2004) and Bayesian
networks (FRIEDMAN 2004; SEGAL et al. 2002; SEGAL et al. 2003). Causal direction from gene to
mRNA follows from the experimental cross, a perturbation to create unique genetic mosaics of
the parent strains. Our approach extends existing causal biochemical networks using expression

arrays in experimental crosses (SCHADT ef al. 2003b; ZHU et al. 2004) by incorporating greater



complexity of genetic architecture and using meta-traits to identify sets of correlated expression
traits for network construction.

Our model system consists of two mouse strains carrying a mutation that causes morbid
obesity, the leptin"b mutation, “0b”. One strain, B6, is insulin resistant, but not diabetic. The
other strain, BTBR, is insulin resistant and severely diabetic (LAN ef al. 2003a). This allows us to
search for genetic differences between the strains that are responsible for these dramatically
different interactions with obesity. Our current study involves 60 mice selected for phenotyping
(JIN et al. 2004) from an intercross of B6 and BTBR ob/ob mice as a model of diabetes, with
over 40,000 mRNA traits measured with Affymetrix chips. Here, we report three pairs of
genomic regions of particular interest that may be associated with signal transduction, apoptosis,
and lipid metabolism.

Central to the identification of such causal networks is finding expression (or other
‘omic’) phenotypes that are heritable in the broad sense and inferring patterns of genetic
architecture that influence that heritability. The strategy is as follows: (1) find all mRNA
showing evidence for heritability at one or more genomic loci; (2) organize these heritable
mRNA into functional groups and create meta-traits (defined below); (3) map meta-traits to infer
the genetic architecture of the biological process; (4) infer graphical models of biochemical
pathways using the genetic architecture. In short, we build on a Bayesian identification scheme
(KENDZIORSKI ef al. 2004) by formally incorporating genetic architecture, allowing for multiple
QTL gene mapping. We map meta-traits, weighted averages of heritable expression phenotypes,
to infer the regions of the genome that may contain transcription factors or other regulators that

broadly influence heritability.



Three important issues have not been addressed in previous efforts at gene mapping of

expression traits (BREM ef al. 2002; LAN et al. 2003b; SCHADT et al. 2003a; YVERT ef al. 2003).
First, it is important to establish the false discovery rate across inference for all mRNA (STOREY
and TIBSHIRANI 2003). Second, many genes probably affect each phenotype, and several allelic
combinations may yield the same observable phenotype through heterogeneity. Thus multiple
expression QTL affect mRNA expression, and multiple QTL models are crucial to uncover
genetic architecture. Even apparently cis-acting mRNA could be affected by trans-acting QTL,
missed in a single QTL scan. Finally, one gene can affect the expression of multiple mRNAs
through pleiotropy. Meta-trait gene mapping provides a coherent framework for uncovering the
pleiotropic action of a few genetic loci on multiple co-regulated mRNA. Post-hoc analysis
without such a formal framework is potentially quite misleading.

METHODS
Meta-trait Gene Mapping Framework
Simultaneous identification of heritable mRNA expression: Our first step involves
simultaneous mapping of all mRNAs to identify a subset of mRNAs that show evidence for
genetic control (KENDZIORSKI et al. 2004). Suppose H signifies the event that the expression of a
particular mRNA is heritable at some set of loci for an experimental cross. We want to estimate
pr(H | ¥, O), the probability that the mRNA is heritable given the observed expression values ¥
and genotypes Q at those loci. We find all mRNA that for some Q have pr(H | ¥, Q) > 0.95,
which controls the expected posterior false discovery rate (NEWTON ef al. 2004) at 5%.

Bayes theorem yields the posterior probability of linkage,

pr(H | Y, Q)=pr(Y| O, H) pr(H [ Q) / pr(Y | Q).




where pr(H | O) can be estimated from the data. The marginal probability of expression is a
weighted average over the cases of heritable versus non-heritable traits,

pr(Y' | ©) = (1 = pr(H|Q)) pr(Y | O, not H) + pr(H|Q) pr(Y | O, H).
An mRNA trait with no heritability has marginal probability of

pr(Y | O, not H) = fo(¥) = [ AY| 1) pr(s9) ds,
the average of a probability of expression, f{¥]4), weighted by a prior probability for the mean
expression level, pr(x). Heritable traits have marginal probability of

pr(Y| O, H) =AY | Q) =Tlq/o(Yy),
with the product over all possible genotypes ¢g. Here, Yq = {¥i| O; = g} are the mRNA expression
values for the subset of ng individuals with QTL genotype ¢, and n = sumg ng.
Functional groups and meta-traits: We focus on modeling genetic architecture for a few meta-
traits that are highly correlated with many mRNA expression traits. A meta-trait (DOBRA ef al.
2004) is a weighted average of heritable mRNA expression traits that approximates a putative
transcription factor or regulator driving expression of a set of mRNA transcripts. That is, Z =
YW, with Y a matrix of all heritable trait values and the weights /¥ determined to capture the
correlation across expression mRNA. We use principal components or discriminant analysis to
determine different weights, /¥, but other dimension-reduction methods could be used.

Principal component (PC) meta-traits can be created for functional groups of heritable
mRNA with strong putative co-regulation to capture the major phenotypic variation in one or
two dimensions. Roughly half of the genes corresponding to mRNA expression traits can be
organized using gene ontology principles (www.geneontology.org). We followed a strategy
analogous to MOOTHA et al. (MOOTHA et al. 2003) on a subset of heritable traits to develop

functional groups. We then constructed the first two principal components (meta-traits) for each



functional group and prioritized analysis based on the percent variation explained by the first PC
meta-trait.

Discriminant analysis (DA) meta-traits are weighted averages of a//l mRNA that show
evidence of heritability, yielding the highest heritability relative to a particular genetic
architecture. We scan over a class of possible genetic architectures to find the combinations of
QTL and DA meta-traits with the highest heritability. Due to computational considerations, this
was limited to models with two QTLs.

Mapping meta-traits to infer genetic architecture: Gene mapping (LANDER and BOTSTEIN
1989) associates phenotype with genotype via models of genetic architecture, including putative
genetic loci and their associated gene action. Here, we propose a model search for multiple QTL
that act together to influence gene expression. We gene-map a modest number of meta-traits,
then use their inferred genetic architectures to map expression traits most closely associated with
each meta-trait.

The genetic architecture of a meta-trait, Z, involves a model, M, for the gene action and
epistatic interactions of genetic loci, A For instance, with three loci, A = (41, A, 43), the model
M= {41, 22, A3, (A1, A2)} includes the main effects of loci A, A, and A3 as well as the epistatic
interaction of pair 4; and A,. The main effects could be further partitioned into additive and
dominance effects, but need not be. Those individuals with genotype Q = ¢ at the loci, A, have
phenotypes with probability fZ | 14,) that depends on the genotype g only through the genotypic
mean, /,. This mean expression can be partitioned into genotypic effects for each model

component,

Hg=E(Z|M,OQ=q)= o+ Zkinm By«




In the absence of data, the genotypic means, 14, follow the same prior probability

assumed for non-heritable traits, pr(«), discussed in the previous section. This prior can be
partitioned into priors for each model effect. For instance, we can give /4 and £ independent
priors po() = pr(u/ ) / © and py,,(1) = pr(u/ Tim) / Tim, respectively, with m = |M|, the number of
effects in the model, T an arbitrary value between 0 and 1, and (t,,)* = (1—=t°) / m. Ideally (1—°)
is proportional to heritability (see GAFFNEY 2001).

With a dense genetic map and completely informative markers, O would be known
exactly for every set of loci. In practice, a map is incomplete, and we infer O based on flanking
markers, X, to loci, A, using a recombination model fQ = ¢ | X, 1). The interval mapping
problem formally involves finding the genetic architecture, M, that maximizes the probability

AZ| X, M)=24 AZ]| p1g) AQ =q| X, N).

This was developed as single QTL interval mapping (Lander and Botstein 1989), and later
extended to multiple QTL (KAO et al. 1999; SATAGOPAN et al. 1996; SEN and CHURCHILL 2001;
Y1 and XU 2002; Y1 ef al. 2003). Multiple QTL interval mapping includes searching over
possible loci, 4, and possible models, M, and assessing the best model according to Bayes factors
or another criterion. Additional issues arise when the meta-trait depends on the model, as with
discriminant analysis (GILBERT and LE Roy 2004).

A meta-trait, Z, represents multiple traits that are correlated, while its inferred genetic
architecture, M, identifies genomic regions, or loci, driving the major heritable aspects of those
correlated traits. We approximate each meta-trait by a subset of heritable traits, Z ~ YW, in a
parsimonious way (cf. TIBSHIRANI 1996) to balance the fit and keep the subset of traits
conveniently small. We can then extend M to a multiple trait genetic architecture, M, using

multiple trait mapping (¢f. JIANG and ZENG 1995).
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Causal Bayesian networks to infer biochemical pathways: Now we wish to find the best
graphical model, G, to explain the relationship among a set of expression traits, ¥, with respect to
the genetic architecture, M. This graphical model then estimates the key biochemical pathways
important to the meta-trait and its associated expression phenotypes.

We model their genetic correlation structure using a graphical model that connects traits
in a directed graph along putative biochemical pathways. We wish to infer the posterior
probability of a graph, G, given the genetic architecture, M; the genotypes, O, at the loci of M;
and the expression traits, Y-

pr(G| Y, O M)=pr(X| O, G) pr(G | M)/ pr(X]| Q).

Here pr(G | M) is a prior probability on valid graphs given the genetic architecture, and the
denominator is the marginal probability for traits averaged across all possible graphs. The
marginal probability for the correlated traits, ¥, given a particular graph, G, is

pr(Y| 0 G)=AX|Q G)=Ily filly] G).

The trait probabilities, fy(¥ | G), now are multivariate,

filly| G) =X | & G) pr(u) du
with prior, pr(z) = [1; pr(), assumed independent across the traits.

The multivariate trait probability, f/1(Y'| Q, G), depends on the correlation structure
through the graph G. The phenotype model for a graph follows the chaining implied by the
graphical model. For instance, with two traits and a graph g such that ¥; — Y5, this probability
becomes the product of two univariate trait probabilities,

M Geg) = gAY FilY5| 0 X7,

Essentially, the second probability models the genetic architecture of the QTL on the residuals

after regressing ¥, on Y;. We focus graphical models on the QTLs identified by the meta-trait,
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although individual expression mRNA in the identified subset of heritable traits, Y, need not be
influenced by all these QTLs. Details of inference across graphical models will be reported
elsewhere.

Details of Implementation

We use an empirical Bayes histogram estimate of the prior pr(x) by combining all mRNA
measurements (KENDZIORSKI ef al. 2004). We control the expected posterior false discovery rate
by directly estimating the heritability via single marker regression for all mRNA traits. For
convenience, we consider traits Y as log base 2 expression (IRIZARRY ef al. 2003) and assume the
phenotype model fis normal.

We report two-QTL gene mapping using the Haley-Knott (HALEY and KNOTT 1992)
regression, which is fast and fairly close to the Bayesian evaluation. Even with two QTL, the
computational costs were substantial. Further, with 60 mice in our study (JIN ef al. 2004), it
seemed prudent to restrict attention to at most two QTL to avoid over-interpreting our data. We
used R/qtl (BROMAN ef al. 2003) to scan the mouse genome in a variety of ways sketched below.
Genetic architectures with highest LODs for meta-traits were tested using 500 permutations
under the null model of no heritability.

Functional groups and meta-traits: Roughly 4000 mRNAs were identified as heritable by one
of several methods (KENDZIORSKI ef al. 2004). A subset of over 1500 was organized by the Attie
laboratory by molecular function into 84 functional groups using gene ontology.

Functional groups with the PC meta-trait explaining over 65% of the variation were
considered promising candidates for gene mapping for one or two QTL. The PC meta-trait was
mapped using one-dimensional and two-dimensional genome scans with the Haley-Knott

(HALEY and KNOTT 1992) regression approximation. The chromosome pair with the peak LOD
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for 2-D scans was evaluated using a permutation test with 500 replications. Factor loadings, or
correlations of mRNA expression with PC meta-trait, were plotted to show patterns of
correlation within a functional group. Groups with high correlation between the first PC meta-
trait and many mRNAs show evidence for coregulation. The mRNAs in these groups were then
fit separately to the same genetic architecture.

Discriminant analysis (DA) meta-traits are based on genotype under a model M. Gilbert
and le Roy (GILBERT and LE ROy 2003; GILBERT and LE ROY 2004) gene-mapped using DA at 2
cM spacing for single QTL in a backcross. We considered all possible pairs of the 194 markers.
The DA meta-trait for a marker pair is that weighted average of phenotypes with highest
heritability relative to two QTL at the marker pair. That is, the DA meta-trait produces the largest
possible F statistic from a two-factor ANOVA on the marker pair. The nominal p-value is
artificially deflated, but provides a relative basis for comparison. Locus pairs with the best fits
(smallest p-values) across the genome scan were evaluated using 500 permutations: QTL
genotypes were permuted and new DA meta-traits were computed for each permutation. Each
DA meta-trait was mapped using a 2-D scan with Haley-Knott (HALEY and KNOTT 1992)

regression to verify that it peaked only near the marker pair.
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RESULTS
Principal components on functional groups: Eight functional groups had two or more unique
mRNA and at least 65% of variation in the’PC meta-trait (Figure 1a). Single QTL scans had
highest LODs of 2 to 4, barely significant. Strong evidence emerged for two QTL on several of
the functional groups, with joint LODs above 8, significant at the 1-5% level based on
permutation tests (not shown). Permutation tests for epistatic interactions were generally not
significant.

“Translation machinery” and “RNA binding” functional groups had strong correlation of
mRNA expression with their PC meta-trait, suggesting coregulation (Figure 1b-c).
“Chromosome organization” had small factor loadings in general, with the exception of one
mRNA trait (not shown). The other five groups showed intermediate patterns and were dropped.

The translation machinery PC meta-trait LOD peak of 9.55 occurred at Chr 4 at 37 cM
and Chr 15 at 15 ¢cM. One gene, EIF 3 subunit 6, appears to be cis-regulated as it resides in the
Chr 15 locus support interval. Seven of 11 unique mRNA in this group had peaks coinciding
with that of the PC meta-trait, and five of these seven had joint LODs above 8. Thus two of the
seven mRNA with correlated transcription in this group would have been missed by individual
analysis.

The RNA binding PC meta-trait had its LOD peak of 8.62 coincident with that of
translation machinery. Six of 12 unique mRNA in this group had LOD peaks at this loci pair
between 4.9 and 8.0, and would otherwise have been missed. Across all heritable traits in
functional groups, we found over 600 mRNA with absolute correlations to the translation

machinery PC meta-trait above 0.5. This implied a much broader function for our locus pair.
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Discriminant analysis genome scan: A discriminant analysis genome scan of the 1500+
heritable traits with known function turned up three promising pairs of loci showing epistatic
interaction. These all had nominal p-values just below 107'°, or —logo(p-value)>10, for ANOVA
of the DA meta-trait on the nine genotypes determined by pairs of loci.

One of these (DA1) was the same Chr 4 at 37 ¢M and Chr 15 at 15 ¢M loci pair identified
by principal component analysis on functional groups. This is not surprising, given that we found
strong correlation between that PC meta-trait and many of the heritable mRNA traits. The other
two loci pairs are Chr 2 at 25 ¢cM and Chr 13 at 0 cM (DA2) and Chr 5 at 49 ¢cM and Chr 9 at 45
cM (DA3). Permutation p-values for DA meta-traits at these three pairs are 0.008, 0.036, and
0.036, respectively. All three DA meta-traits had genome-wide maximum LODs at these
locations.

Representation of functional groups (Table 1) strongly suggests association of DA meta-
traits with signal transduction (DA1), apoptosis (DA2) and lipid metabolism (DA3). The fatty
acid synthesis functional group, including SCD1, figures prominently in DA2 and DA3 meta-
traits.

Figure 2 shows the epistatic interactions of the DA meta-traits. Additive effect of Chr 4
locus apparent only when heterozygous at Chr 15 locus; (b) B6/B6 genotype is significantly
different from other genotypes Chr 2 and Chr 13 loci; (¢) additive effect of Chr 5 and Chr 9.
Note the similarities in epistatic interaction patterns for SCD1 at these same loci, shown in
Figure 3. Reanalysis using the 4000 traits identified as heritable confirmed these pairs as
interesting; although the nominal p-values were somewhat larger (near 10®), the permutation p-
values were similar (0.004, 0.036, 0.092, respectively). In addition, a few other promising

marker pairs were identified (not reported here).
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Causal biochemical networks: At this point we are tracking down the cis- and trans- acting loci
that influence mRNA abundance. Complementary but independent biochemical investigations in
the Attie lab are converging on the same regions in Chr 2 and Chr 9. These results will be
reported elsewhere.

DISCUSSION
Our main interest is building causal biochemical networks with a coherent statistical model of
multiple QTL tied directly to observed expression phenotypes. We present a data-driven
theoretical framework and show preliminary results that will allow us to focus attention on a few
important regulatory pathways. We believe this can sharpen the search for key network
components, reducing the rate of false discovery while allowing directly for the
multidimensional nature of such networks.

No research team to our knowledge has attempted DA-based multiple QTL interval
mapping, especially with thousands of traits. Gilbert and le Roy (GILBERT and LE Roy 2003;
GILBERT and LE Roy 2004) use exact methods for one QTL in a backcross. We found certain
anomalies with multiple QTL, in particular when one possible genotype O=¢ had only one
individual who differed from the others for a small subset of heritable traits. We had to remove
one mouse because it created 29 spurious associations at loci pairs where it had a unique
genotype.

While we focus in this development on mRNA expression, the methods naturally extend
to other high throughput “omic” data on the horizon. In addition, other massive data
technologies, such as brain and body scans, could be used in gene mapping with modest

adjustments.
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Table 1. Top ten functional groups associated with each DA meta-trait. Functional groups
were ordered by the average absolute correlation of mRNA within each group with the DA meta-
trait after dropping mRNA with absolute correlations below 0.5. Number of unique mRNA and
100 * average absolute correlation (100 = perfect correlation) included in parenthesis. For
éndocytosis, 3 unique mRNA have average correlation of 0.84 with DAL.

DA1 meta-trait at Chr 4 at 37 ¢M & Chr 15 at 15 ¢M (signal transduction): endocytosis (3, 84);
RNA binding (11, 79); cholesterol/sterol biosynthesis (5, 79); translation machinery (8, 78); RAS
oncogene superfamily (14, 77); mRNA processing (5, 76); calcium binding protein (6, 76);
intracellular signal transduction (15, 75); transcription factor (24, 75); transcription machinery
(12, 74); plus 60 others with 2 or more.

DA?2 meta-trait at Chr 2 at 25 ¢cM & Chr 13 at 0 ¢cM (lipid metabolism): nerve signal transduction
(2, 64); fatty acid synthesis (10, 63); membrane protein (3, 62); Krebs-TCA cycle (2, 61);
triglyceride/phospholipid biosynthesis (2, 61); retinol metabolism (2, 61); cholesterol/sterol
biosynthesis (3, 61); digestion (3, 60); cytoskeleton (2, 59); protein degradation/ubiquitin (2. 58);
plus 15 others with 2 or more.

DA3 meta-trait at Chr 5 at 49 ¢cM & Chr 9 at 45 c¢cM (apoptosis): apoptosis (2, 66); nuclear acid
metabolism (2, 61); cell adhesion (3, 61); cytochrome P450 (4, 60); calcium binding protein (2,
58); fatty acid synthesis (3, 58); solute carrier (3, 57); small molecule transporter (3, 57); urea

cycle (2, 55); amino acid metabolism (5, 54); steroid hormone metabolism (3, 53).
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Figure 1. PC meta-trait filtering. (a) Percent of variation in functional groups explained by first

two principal components. Circle for functional group have area proportional to the number of

unique mRNAs. Vertical dashed line at PC1 = 65% indicates first cut for analysis. (b-c) Factor

loadings (correlations) with first two principal components for two functional groups with

PC1>65%. Points joined by lines are different probe sets for the same mRNA. (b) “RNA

binding” (13 unique mRNA); (c¢) “translation machinery” (11 unique mRNA).
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Figure 2. Epistatic interaction plots for three most significant DA meta-traits. Genotypes at

markers are AA (B6 type), AB (heterozygous) and BB (BTBR type). Vertical units are standard

deviation. (a) DA1: additive mRNA effect of Chr 4 locus only when heterozygous at Chr 15

locus; (b) DA2: B6/B6 genotype is significantly different from other genotypes Chr 2 and Chr 13

loci; (¢) DA3: additive effect of Chr 5 and Chr 9.
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of interaction patterns with Figure 2.
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