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Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates
aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene
expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state
levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others,
abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct
and indirect targets, total RNA from wild-type (Nmdþ) and mutant (Nmd�) strains was probed with high-density arrays
across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics
of RNA decay. 45% 6 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in
Nmd� strains. Parallel experiments using conventional methods were conducted to empirically test predictions from
the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets.
Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames,
upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms
fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be
elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting
chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview
for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for
analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism
where cultured cell lines are available.
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Introduction

In eukaryotes, a conserved RNA surveillance system that
depends on nonsense-mediated mRNA decay (NMD) causes
rapid degradation of transcripts that contain a premature
termination codon [1]. RNA surveillance prevents the
accumulation of potentially deleterious truncated proteins.
Because NMD is linked to mRNA splicing in mammals, it has
been suggested that the NMD pathway may have co-evolved
with introns and may play an important role in determining
the positions of introns in mammalian genes [2]. More
importantly, NMD has a direct impact on the etiology of
human genetic disorders, where about 25% of all mutations
causing genetic disorders and inherited cancers are chain
termination mutations that most likely trigger NMD [3].

In the yeast Saccharomyces cerevisiae, three trans-acting factors
are required for NMD, including Upf1p, Upf2p, and Upf3p
[4–7]. Orthologs of these genes have been found in all
branches of the eukaryotes, including humans [1]. The Upf
proteins and translation termination factors eRF1 (SUP45)
and eRF3 (SUP35) form a surveillance complex leading to
premature termination of translation, 59 decapping, and
poly(A)-independent degradation of the nonsense-containing
transcript [8–12]. Genomic studies have shown that the

surveillance complex also performs functions in the regu-
lation of gene expression. NMD affects the accumulation of
;600 naturally occurring RNAs [13,14]. The impact of NMD
on the global expression profile has been shown to have
physiological consequences. Nmd� strains have alterations in
chromosome structure, including a reduction in the average
number of hexameric repeats at telomeres, an impairment of
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gene silencing in silent regions of DNA near telomeres, and
altered function of kinetochores. Nmd� strains also grow at
reduced rates on some non-fermentable carbon sources [15–
18].

In upf� mutants defective for NMD, changes in the
accumulation of NMD-sensitive transcripts are sometimes
associated with a change in the rate of RNA decay. Tran-
scripts that behave in this manner are referred to as direct
targets of NMD. Two mechanisms for the selective, direct
targeting of naturally occurring, error-free transcripts for
accelerated decay have been described, including the pres-
ence of an upstream open reading frame (uORF) that triggers
translation termination in the 59 leader of the CPA1
transcript [19] and out-of-frame premature translation
termination following improper translation initiation of the
SPT10 transcript [20]. Other mechanisms must exist since
uORFs and out-of-frame translation initiation are not
responsible for the NMD-sensitive half-life of PPR1 mRNA
[21].

NMD-sensitive changes in accumulation are not always
accompanied by altered decay rates. These transcripts are
referred to as indirect targets of NMD. A model accounting
for direct and indirect targets was proposed on the basis that
the mRNAs coding for several transcription factors were
shown to be sensitive to NMD. It was anticipated that changes
in the abundance of the transcription factors might cause
changes in the rates of transcription of downstream-
regulated genes, which could indirectly affect the abundance
of the downstream-regulated transcripts [14]. Examples
supporting the model have been reported, including regu-
lation of URA3 and HHF2 by transcriptional activators Ppr1p
[6,21] and Spt10p [20], respectively. The URA3 and HFF2
mRNAs are indirect targets with NMD-insensitive decay rates,
whereas the PPR1 and SPT10 mRNAs are direct targets with
NMD-sensitive decay rates. Indirect targets might also arise
by other mechanisms. For example, NMD-sensitive tran-
scripts coding for chromatin remodeling factors might affect
rates of local transcription through changes in chromatin
structure [16].

No systematic genome-wide identification of the direct and
indirect targets of NMD has been undertaken and only a small
number of NMD-sensitive RNAs have been examined for
changes in mRNA decay rates [16,17,20,22,23]. To extend
knowledge about direct and indirect targeting, we developed a
computational approach to estimate the relative proportions
of direct and indirect targets among NMD-sensitive tran-
scripts. The experimental design resembles a typical mRNA
half-life experiment where transcription is blocked and the
rate of disappearance of a single transcript is monitored by
Northern hybridization, except that high-density arrays were
used for hybridization so that all transcripts could be
monitored simultaneously. By combining established and
novel statistical methods, global predictions were made
regarding the number of transcripts that are direct targets
of NMD. A statistical parameter (p-value) was calculated for
each NMD-sensitive RNA summarizing the likelihood of being
a direct target. Representative protein-coding transcripts
were analyzed by conventional methods to verify predicted
changes in abundance and decay, to assess rates of false
discoveries and misclassifications, to assess targeting mecha-
nisms and their relative frequencies of use, and to begin
describing the functional relationships among NMD-sensitive
targets. Overall, the results provide a paradigm for dynamic
analysis of RNA decay pathways and the regulatory networks
that control them, in any organism (including humans) where
the genome sequence and the means for inhibiting tran-
scription of cells cultured in vitro are available.

Results

Global Estimation of Relative RNA Decay Rates in Nmdþ

and Nmd� Strains
A two-step approach was used to investigate the global

impact of NMD on gene expression. First, RNAs that change
in abundance in the absence of a functional NMD pathway
were identified. Our studies focus on these RNAs because the
biological impact of NMD is most likely mediated through
corresponding changes in protein abundance. Some NMD-
sensitive RNAs might be excluded using this approach since
compensatory mechanisms could potentially restore normal
RNA levels by counteracting NMD-mediated changes in RNA
half-life. Such RNAs, if they exist, were ignored as being
biologically irrelevant with respect to NMD because there
would be no effect on the abundance of the protein products.
To find those RNAs expressed at different levels in Nmd�

(upf1-D) and Nmdþ (UPF1) strains (Table S1), image files of
Affymetrix YG-S98 arrays hybridized to bulk cRNA probes
from the two strains were pre-processed using robust multi-
chip average [24] and then compared by SAM (significance
analysis of microarrays) [25]. Using a 1.5-fold minimum
threshold for the change in abundance and a 5% false
discovery rate (FDR) as the statistical cutoff, 625 probe sets
corresponding to 616 RNAs were identified. 607 probe sets
(598 RNAs) were detected at elevated levels and 18 at reduced
levels in the Nmd� strain (Tables S2 and S3, respectively). The
experiments described below focus on the 607 probe sets
corresponding to the RNAs with elevated levels. The majority
of these probe sets were also identified as targets of NMD in
two previous studies [13,14,17].
To further characterize the NMD-sensitive RNAs, levels of

accumulation were monitored using YG-S98 arrays at 16 time
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Synopsis

Genes determine the structure of proteins through transcription and
translation in which an RNA copy of the gene is made (mRNA) and
then translated to make the protein. Cellular protein levels reflect
the relative rates of mRNA synthesis and degradation, which are
subject to multiple layers of controls. Mechanisms also exist to
ensure the quality of each mRNA. One quality control mechanism
called nonsense-mediated mRNA decay (NMD) triggers the rapid
degradation of mRNAs containing coding errors that would
otherwise lead to the production of non-functional or potentially
deleterious proteins. NMD occurs in yeasts, plants, flies, worms,
mice, and humans. In humans, NMD affects the etiology of genetic
disorders by affecting the expression of genes that carry disease-
causing mutations. Besides quality assurance, NMD plays another
role in gene expression by controlling the abundance of hundreds
of normal mRNAs that are devoid of coding errors. In this paper, the
authors used DNA arrays to monitor the relative decay rates of all
mRNAs in budding yeast and found a subset where decay rates were
dependent on NMD. Many of the corresponding proteins perform
related functional roles affecting both the structure and behavior of
chromosomes and the structure and integrity of the cell surface.



points across a 1-h window following inhibition of tran-
scription with thiolutin. The kinetics of disappearance of
RNAs synthesized before inhibition of transcription provide
an estimate of the relative rates of decay. We asked which of
the 607 probe sets corresponding to RNAs that were
differentially expressed in Nmd� and Nmdþ strains also had
differential rates of decay, making it possible to distinguish
direct from indirect targets.

Estimating decay rates on a global scale required develop-
ment of bioinformatic methods, including selection of a
kinetic model for decay to be used for data fitting and
methods of normalization to allow direct comparison of data
from each time interval following inhibition of transcription.
Text S1 and Tables S4, S5, and S6 describe alternative decay
models, the criteria for selecting a model for data fitting, and
methods for normalization of array data. A non-first-order
decay model was selected that is described by the equation Y
¼ c0þ b0 exp(b1X)þ e, where b1, the decay rate parameter, is
inversely related to RNA half-life (t1/2 ¼ �ln2 / b1). Graphs
describing the kinetics of RNA decay were generated using
this model. For each probe set, we fit the data using a grid
search algorithm and estimated model parameters to test the
null hypothesis that RNA decay rates are equal between
Nmdþ and Nmd� strains. Based on a likelihood ratio test
statistic, p-values were assigned to each probe set.

In addition to this approach, a novel application of
maximum likelihood was developed to predict the propor-
tion of direct targets. We found that 45% 6 5% of the 607
SAM-selected probe sets are likely to be direct targets with
altered decay rates (Figure 1). The prediction is based on the
following reasoning. We defined the parameter d equal to 1 if
the transcript is a direct target and 0 if the transcript is an
indirect target, and denote f (1) (p) and f (0) (p) to be the
probability density function (pdf) of a p-value. For hypothesis
testing, f (0) (p) [ 1 for 0 � p � 1. Since f (1) (p) is an unknown
function, the pdf with linear interpolation of the p-values for
14 mRNAs shown to be direct targets by conventional half-
life experiments (Table 1) was used to estimate f (1) (p), where
the estimated pdf is denoted as f̂ (1)(p).

Assuming Prðd ¼ 1Þ ¼ g, the marginal pdf of p is
fgðpÞ[g f ð1Þþð1� gÞf ð0Þ¼ g f ð1Þ þ 1� g, and its plug-in esti-
mation is f̂ gðpÞ ¼ g f̂

ð1Þ þ 1� g. Based on this, the estimated
log-likelihood function of g is:

lðgÞ ¼
X607
i¼1

logðg f ð1ÞðpiÞ þ ð1� gÞf ð0ÞðpiÞÞ

’
X607
i¼1

logðg f̂
ð1ÞðpiÞ þ 1� gÞ[ l̂ðgÞ ð1Þ

In Figure 1A, l̂ðgÞ reaches its maximum when g ¼ 0:450,
which is the estimated proportion of direct targets. Accord-
ing to the asymptotic theory of maximum likelihood
estimation, ðĝ� gÞInðgÞ ! Nð0; 1Þ, where n is the sample
size (in our case n ¼ 607), and InðgÞ is Fisher’s information,
then:

InðgÞ ¼ �nEp
@2log fgðpÞ

@g2

¼ �nEp

@2fgðpÞ
@g2 fgðpÞ � @fgðpÞ

@g

� �2
f 2g ðpÞ

¼ nEp
ð f ð1ÞðpÞ � f ð0ÞðpÞÞ2

ðg f ð1ÞðpÞ þ ð1� gÞ f ð0ÞðpÞÞ2

’
Xn
i¼1

ð f ð1ÞðpiÞ � f ð0ÞðpiÞÞ2

ðĝ f ð1ÞðpiÞ þ ð1� ĝÞ f ð0ÞðpiÞÞ2

’
Xn
i¼1

ð f̂ ð1ÞðpiÞ � 1Þ2

ð0:45f̂ ð1ÞðpiÞ þ 0:55ÞÞ2

’ 1172:567 ð2Þ

Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=1172:567

p
¼ 0:0292, then ðĝ� gÞ;Nð0; 0:02922Þ.

Therefore, the 95% confidence interval of g is 0.450 6 1.963

0.0292 ’ (0.393,0.507). This means that 95% of the intervals
derived by this method will contain the true proportion of
direct targets. The reliability of this approach was verified by
bootstrapping (Materials and Methods, Figure S1).
The 607 SAM-selected probe sets were divided into three

groups: protein-coding RNAs, RNAs related to yeast trans-
posable (TY) elements and the long terminal repeats (LTRs)
found alone or in association with intact TY elements, and
non-annotated RNAs corresponding to the locations of serial
analysis of gene expression (SAGE) tags that are diagnostic of
expressed sequences in the yeast genome (Figure 1B). RNAs
from each sub-class were assigned to one of two categories:
direct targets that have altered decay rates and indirect
targets that have unaltered decay rates. The assignments were
based on a comparison of the kinetics of RNA decay in Nmd�

and Nmdþ strains, where the reliability of each assignment
was based on a p-value indicating the statistical likelihood of
being a direct target.

Comparison of Global and Conventional Half-Life Analyses
In the protein-coding mRNA group identified above, 18

RNAs were analyzed by conventional half-life experiments
(Tables 1 and S7). The RNAs were part of a larger subset used
to calibrate the statistical output in the global decay rate
experiment (Materials and Methods and Text S1). For these
and other RNAs mentioned below, the accession numbers for
the Entrez Gene database are included at the end of the text
and also summarized in Table S8. SAM-selected RNAs that
accumulated to a higher level due to inactivation of NMD
were expected to be more stable in the Nmd� mutant strain
than in the Nmdþ strain. Changes in decay rates were
expressed as fold change ratios (FCRs) determined by
dividing the half-life in the mutant strain by the half-life in
the wild-type strain. The algorithm in the global decay rate
experiment included statistical tools to determine whether
the FCR was significantly different from 1 without regard to
the direction of change. When the FCR was significantly ,1
or .1, the RNA was classified as a direct target of NMD with
an altered half-life.
Direct targets of NMD that had higher accumulation levels

were expected to have slower decay rates in Nmd� strains
with an FCR .1. However, 91% had FCRs ,1 (Figure 1B and
1C). To gain an understanding of the underlying cause of
FCRs that were reversed relative to expectation, five
representative protein-coding transcripts where FCRs were
,1 in the global decay rate experiment (top panels of Figure
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2) were re-analyzed in conventional half-life experiments.
The half-lives were assayed using a distribution of time points
similar to that used in the global experiment (conventional
standard time course, middle panels of Figure 2) and an
alternate distribution including clustered points taken soon
after inhibition of transcription (conventional early time
course, bottom panels of Figure 2).
Using a standard time course, PET18 mRNA had a 3-fold

shorter half-life in the Nmd�mutant compared to the Nmdþ

strain (Figure 2B), which was consistent with FCR ,1 in the
global experiment. However, when an early time course was
used, biphasic kinetics was observed with a rapid initial phase
and a slower second phase (Figure 2C). The half-life in the
initial decay phase was 3 min in the Nmdþ and 20 min in the
Nmd� strain. The FCR was 4.9 6 1.6 (n¼ 3, p¼ 0.0002, Table
1). Using a cutoff for statistical significance of p ¼ 0.05, the
results indicate that PET18 is a direct target with an initial
decay rate that is NMD-sensitive. The anomalous FCR value
generated by the curve-fitting algorithm in the global
experiment was a consequence of the paucity of early time
points needed to accurately measure the early phase of decay.
Despite this, the algorithm correctly identified PET18 as
having an altered decay rate because it was designed to ignore
the direction of change.
Similar results were obtained when FZF1, PDR8, PDR3, and

INO4 mRNAs were analyzed by conventional half-life experi-
ments. In a representative early time-course experiment for
FZF1, biphasic decay was observed with an initial half-life of 2
min in the Nmdþ strain and 12 min in the Nmd� strain
(Figure 2F). The FCR was 5.9 6 1.3 (n¼ 4, p¼ 0.01). For PDR8,
a single decay phase was observed with a half-life of 9 min in
the Nmdþ strain and 18 min in the Nmd� strain (Figure 2I).
The FCR was 1.8 6 0.24 (n¼ 3, p¼ 0.01). For PDR3, the half-
life was 11 min in the Nmdþ strain and 27 min in the Nmd�

strain (Figure 2L). The FCR was 2.4 6 0.05 (n ¼ 3, p ¼ 0.001).
Biphasic decay was observed for INO4 mRNA using a
standard time course (Figure 2N). The half-life was 5 min in
the Nmdþ strain and 18 min in the Nmd� strain. The FCR was
3.4 6 0.32 (n ¼ 3, p ¼ 0.04).

False Discoveries, Misclassifications, and Confirmations
In the global decay rate experiment, the statistical FDR for

transcripts predicted to be direct targets was set at 0.30
according to the Benjamini-Hochberg procedure [26]. Thus,
incorrect assignments where predicted direct targets were
actually indirect targets could occur up to a maximum
frequency of 30%. Misclassifications of indirect targets as
direct targets in the global experiment could also occur, but
the frequency was reduced when a relatively high FDR was
selected (see Table S9 for further details on FDR analysis).
Four examples of false discoveries were identified (Figure

3). ARG81 mRNA was predicted to be a direct target with an
FCR .1 (Figure 3A), whereas SGF11, YRR1, and MAF1 were
predicted to be direct targets with FCRs ,1 (Figure 3D, 3G,
and 3I). In representative conventional experiments, the half-
lives in Nmdþ and Nmd� strains, respectively, were: ARG81, 20
and 15 min (Figure 3C) (FCR ¼ 1.2 6 0.24, n ¼ 4, p ¼ 0.28);
SGF11, 13 and 16 min (Figure 3F) (FCR¼ 1.2 6 0.38, n¼ 3, p¼

Figure 1. Classification of the NMD-Sensitive RNAs

(A) Maximum likelihood estimate of the proportion of direct targets of
NMD.
(B) 607 probe sets identified by SAM as NMD targets that increase in
abundance in the Nmd� strain fell into three groups: protein-coding
mRNAs, RNAs related to transposable TY elements and solo LTRs, and
non-annotated RNAs corresponding to genomic sequences identified by
SAGE tags. In each column the number of probe sets is shown. The
number of protein-coding RNAs is shown in parentheses. Some RNAs are
represented by more than one probe set. Direct targets have NMD-
sensitive decay rates and indirect targets have NMD-insensitive decay
rates. For each of the three groups, the predicted direct targets sub-
divide into those with an FCR ,1 or .1, determined by dividing the
predicted fold change in half-life in the Nmd� strain by the fold change
in half-life in the Nmdþ strain.
(C) The top panels show the relationship between FCR and the p-value.

The bottom panels show the half-lives of predicted direct targets in the
Nmdþ strain plotted against the half-lives in the Nmd� strain.
doi:10.1371/journal.pgen.0020203.g001
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0.33); YRR1, 7 and 10 min (Figure 3H) (FCR¼ 1.2 6 0.3, n¼ 3,
p ¼ 0.22); and MAF1, 6 and 8 min (Figure 3K) (FCR ¼ 0.8 6

0.09, n ¼ 3, p ¼ 0.21). Using p ¼ 0.05 as the cutoff, all four
transcripts had FCRs that were statistically indistinguishable
from a value of 1. Despite the global prediction of being
direct targets, they were falsely discovered and were actually
indirect targets.

Conventional half-life experiments revealed two misclassi-
fied transcripts, RDR1 and SET7 (Figure 3). Both were
predicted to be indirect targets (FCR ¼ 1) in the global
experiment (Figure 3L and 3O), but proved to be direct
targets. In Nmdþ and Nmd� strains, respectively, the RDR1
half-life was 4 and 12 min (Figure 3N), and the SET7 half-life
was 7 and 22 min, respectively (Figure 3P). Another tran-
script, PPT2, was also considered misclassified based on
previously published data [13]. The conventional FCRs were
2.8 6 0.77 (n¼ 3, p¼ 0.03) for RDR1 and 2.4 6 0.54 (n¼ 4, p¼
0.003) for SET7.

Global predictions for five additional transcripts were
confirmed by conventional half-life experiments (Figure 4);
including the direct target ASF2 and four indirect targets,
UGA3, MED1, SAS2, and RRN10. In representative conven-
tional half-life experiments, the half-lives in Nmdþ and Nmd�

strains, respectively, were: ASF2, 4 and 11 min (Figure 4C)
(FCR¼ 2.9 6 0.18, n¼ 3, p¼ 0.03); UGA3, 5 and 6 min (Figure
4F) (FCR ¼ 1.1 6 0.07, n ¼ 3, p ¼ 0.1); MED1, 3 and 4 min

(Figure 4I) (FCR¼ 1.0 6 0.2, n¼ 3, p¼ 0.5); SAS2, 6 and 8 min
(Figure 4L) (FCR¼ 1.1 6 0.25, n¼ 3, p¼ 0.33); and RRN10, 22
and 22 min (Figure 4N) (FCR ¼ 1.1 6 0.12, n ¼ 3, p ¼ 0.1).
Using a cutoff of p ¼ 0.05, ASF2 was confirmed as a direct
target and the others as indirect targets.
Rates of false discovery and misclassification are inversely

related to each other. High FDRs correspond to low
misclassification rates. Setting the FDR at the relatively high
value of 30% accomplished the goal of maximizing the
number of actual direct targets among predicted direct
targets. Using this approach, the empirical data indicate that
the actual FDR was 4/13 (31%) whereas the misclassification
rate was 3/14 (21%). Since false discoveries and misclassifica-
tions occurred at similar frequencies, the predicted frequen-
cies of direct and indirect targets relative in the global
experiment are likely to be close to the actual frequencies.
Direct and indirect targets were also examined to see if

members of the two groups could be distinguished by
comparing the magnitudes of change in RNA abundance
caused by the inactivation of NMD. When protein-coding
transcripts were examined, the average FCR based on RNA
abundance at t ¼ 0 were 2.6 6 1.2 for direct targets (221
probe sets, 220 transcripts) and 2.4 6 0.9 for indirect targets
(246 probe sets, 238 transcripts). The averages were statisti-
cally indistinguishable, indicating that the average magni-

Table 1. NMD-Sensitive Protein-Coding Transcripts

Transcriptsa Arrays Conventional

FCR p-Value FCR SD p-Valueb Class FD/MC

PET18 ,1 0.014 4.9 1.60 0.0002 Direct

ASF2 .1 0.031 2.9 0.18 0.03 Direct

PDR3 ,1 0.011 2.4 0.05 0.001 Direct

RDR1 1 0.164 2.8 0.77 0.03 Direct MC

SET7 1 0.215 2.4 0.54 0.003 Direct MC

FZF1 ,1 0.059 5.9 1.30 0.01 Direct

PDR8 ,1 0.031 1.8 0.24 0.01 Direct

INO4 ,1 0.014 3.4 0.32 0.04 Direct

CPA1c .1 0.003 6 — — Direct

DAL2d ,1 0.024 3 — — Direct

EST1d ,1 0.111 4 — — Direct

PPT2d 1 0.328 3 — — Direct MC

YIL164C ,1 0.004 4.9 0.7 0.007 Direct

YIL168W ,1 0.052 5.4 1.4 0.004 Direct

RRN10 1 0.143 1.1 0.12 0.10 Indirect

SGF11 ,1 0.037 1.2 0.38 0.33 Indirect FD

ARG81 .1 0.075 1.2 0.24 0.28 Indirect FD

MAF1 ,1 0.075 0.8 0.09 0.21 Indirect FD

MED1 1 0.563 1.0 0.20 0.50 Indirect

UGA3 1 0.673 1.1 0.07 0.10 Indirect

SAS2 1 0.328 1.1 0.25 0.33 Indirect

YRR1 ,1 0.021 1.2 0.30 0.22 Indirect FD

EBS1e 1 0.789 0.8 — — Indirect

EST3f,g 1 0.697 0.7 — — Indirect

STN1f 1 0.937 1.2 — — Indirect

TEN1f 1 0.268 1.0 — — Indirect

aThe transcripts listed were used to empirically calibrate the statistical output in a global decay rate experiment. The 14 direct targets listed in the table were used for maximum likelihood
estimation of the proportion of direct targets (Figure 1A). FCR values correspond to the initial phase of decay when biphasic decay curves were observed. Transcripts in black type (except
YIL164C, YIL165C, YIL168W, and YIL167W) code for known or suspected transcription factors or DNA-binding proteins. Transcripts in blue type were analyzed by c[19], d[13], e[40], and f[16].
bThe cut-off for statistical significance was p ¼ 0.05.
gThere were two probe sets for EST3. The p-value for the second probe set was 0.606.
FCR, fold change ratio for mRNA half-lives (Nmd�/Nmdþ); SD, standard deviation; FD, false discovery; MC, misclassification.
doi:10.1371/journal.pgen.0020203.t001
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tudes of changes in abundance were similar for direct and
indirect targets.

Changes in Decay Rates Are Unaffected by Thiolutin and
Mediated through 59 Degradation

Experiments were performed to test whether thiolutin,
which acts as a as a metal chelating agent [27], directly affects
RNA decay rates separately from effects on transcription
(Figure 5). Since thiolutin was used in both global and
conventional decay rate experiments to inhibit transcription,
experiments were performed to test whether thiolutin
induces accelerated decay. The half-life of RDR1 mRNA, a
direct target of NMD (Figure 3, Table 1), was assayed
following a double shut-off of transcription achieved by
adding thiolutin immediately after temperature shift in
strains that carry rpb1–1, a temperature-sensitive allele of
the large subunit of RNAPII (Figure 5A). If the effects of
thiolutin are restricted to inhibition of transcription, then
decay rates measured after double transcriptional shut-off
should resemble decay rates after temperature shift alone.

The results of the double shut-off experiment showed that
thiolutin inhibits transcription without independently affect-
ing mRNA decay rates. In UPF1 (Nmdþ) strains, the half-life of
RDR1 mRNA was 5.2 6 0.3 min in the presence of thiolutin
and 4.4 6 2.7 min in the absence of thiolutin. Using p¼ 0.05

as the cutoff, the difference was statistically insignificant (n¼
3, p¼ 0.34). In upf1D strains, the half-life of RDR1 mRNA was
14.5 6 3.5 min in the presence of thiolutin and 12.9 6 3.7
min in the absence of thiolutin. This difference was also
statistically insignificant (n ¼ 3, p ¼ 0.45). When the same
experiments were performed with INO4 mRNA, similar
results were obtained (unpublished data).
Nonsense transcripts are degraded primarily by a 59 decay

pathway requiring exoribonuclease Xrn1p [12]. An experi-
ment was performed showing that natural targets of NMD are
also degraded through the 59 decay pathway. RDR1 mRNA
was examined in a double mutant strain carrying upf1DxrnD
defective for 59 decay, a double mutant upf1D ski7D defective
for cytoplasmic 39 decay [28], and a double mutant upf1D
rrp6D defective for nuclear 39 decay [29]. In the experiment
shown in Figure 5B, the RDR1 mRNA half-life was 16 6 3.1
min in the upf1D single mutant, 18 6 3.3 min in the upf1D
ski7D double mutant, and 15 6 2.1 min in the upf1D rrp6D
double mutant. Compared to the upf1D single mutant, the
FCRs were 1.2 6 0.4 (n¼ 3, p¼ 0.27) and 0.9 6 0.1 (n¼ 3, p¼
0.15). The results suggest that in the absence of NMD, the
RDR1 mRNA is not degraded by the 39 to 59 cytoplasmic
pathway or the nuclear 39 degradation system. However, the
RDR1 half-life in the upf1D xrn1D double mutant was 42 6 1.3
min. Compared to the single mutant, the FCR was 2.7 6 0.6 (n

Figure 2. FCR for mRNA Half-Lives

Representative protein-coding transcripts where FCR was ,1 in a global decay rate experiment were re-analyzed in conventional half-life experiments.
(A, D, G, J, and M) illustrate the relative kinetics of mRNA decay from array data (n¼3) using a curve-fitting algorithm (see Text S1) (red solid lines, Nmdþ;
black solid lines, Nmd�; dashed lines, 90% confidence intervals).
(B, E, H, K, and N) show conventional half-life experiments using a standard time course.
(C, F, I, and L) show conventional half-life experiments using clustered early time points. For each mRNA, decay curves are arranged vertically. RNA levels
were monitored by Northern blotting after inhibition of transcription with thiolutin. The FCR and standard error are shown for each mRNA. In this and
subsequent figures, the FCR values correspond to the initial phase of decay when biphasic decay curves were observed. The results are summarized in
Table 1.
doi:10.1371/journal.pgen.0020203.g002
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¼ 3, p¼ 0.02), indicating that RDR1 mRNA is degraded by the
59 decay pathway.

To test whether degradation of RDR1 mRNA occurs via 59

decay when the NMD pathway is functional, the abundance
and half-life were compared in wild-type UPF1 XRN1 and
UPF1 xrn1D strains. The FCR for the relative abundance of
RDR1 mRNA at t¼ 0 was 8.9 6 1.3 (n¼ 3, p¼ 0.00009). In the
experiment shown in Figure 5C, the half-life was 3.3 6 0.6
min in the UPF1 XRN1 strain and 34 6 4 min in the UPF1
xrn1D strain. The FCR for the half-life was 10.1 6 2.2 (n¼ 3, p
¼ 0.009). These results demonstrate that the degradation of
RDR1 mRNA by NMD depends on a functional 59 decay
pathway.

Targeting of Disabled Open Reading Frames
Several types of disabled open reading frames, designated

dORFs, have been described in the yeast genome [30,31].
dORFs consist of adjacent in-frame ORFs separated by a
short gap or by a naturally occurring stop codon without a
gap. The presence of internal stops and gaps could cause
defective expression at the level of translation, and for this
reason some dORFs could be considered candidates for
unprocessed pseudogenes. Overlapping out-of-frame ORFs
are also classified as dORFs because co-expression requires a
ribosomal frameshift to achieve contiguous translation of
both reading frames. Yeast retrotransposons (TY elements)
are classified as dORFs consisting of adjacent out-of-frame
ORFs. However, programmed frameshifting occurs at low
frequency just upstream of the internal stop codon, allowing

ribosomes to contiguously translate both reading frames
[32,33].
dORFs were identified among NMD-sensitive RNAs, in-

cluding YOL163W/YOL162W (separated by 12 bp), YER039C-
A/YER039C (separated by 57 bp), YIL164C/YIL165C (separated
by 9 bp), and YIL168W/YIL167W (separated only by a stop
codon). Probe sets representing TY elements and the LTRs at
the ends of the elements were also identified among NMD-
sensitive RNAs (Figure 1), suggesting the possibility that
internal stop codons in TY elements might trigger NMD.
A genetic approach was taken to explore the basis of NMD

targeting of dORFs by creating mutations in YIL164C/
YIL165C and YIL168W/YIL167W (Figure 6). Both were
predicted to be direct targets of NMD in the global decay
rate experiment (Figure 6A), and YIL164C/YIL165C was shown
previously to be a direct target [13]. We tested the hypothesis
that the stop codon between ORFs in each dORF pair triggers
NMD similar to the way nonsense mutations trigger NMD. In
each dORF, two different substitutions were created to
change the natural stop codons to sense codons (Figure 6B).
The mutants were then assayed to determine the FCRs for
abundance and half-life in Nmd� and Nmdþ strains.
A nearly 4-fold change in the abundance of YIL164C was

observed in the absence of NMD (Figure 6C), but the
magnitude of change was the same when the UAG stop
codon at the end of YIL164C was changed to UCG or UGG.
The FCRs (n¼ 3) for the abundance of YIL164C, yil164c-UCG,
and yil164c-UGG were 3.7 6 0.4, 4.5 6 0.5, and 3.7 6 0.2,
respectively. In the experiment shown in Figure 6D, the half-

Figure 3. False Discoveries and Misclassifications

FDRs and misclassifications were empirically tested by conventional half-life experiments. Representative RNA decay data for four false discoveries and
two misclassifications (n ¼ 3) are presented in the same format as described in Figure 2. The results are summarized in Table 1.
doi:10.1371/journal.pgen.0020203.g003
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lives of YIL64C and yil64c-UGG mRNAs were statistically the
same in Nmdþ strains (3.1 6 0.4 and 4.3 6 1.4 min,
respectively), whereas both mRNAs had significantly longer
half-lives in Nmd� strains (15.6 6 2.9 and 15.9 6 2.7 min,
respectively). The FCRs for the YIL164C and yil164c-UGG
RNA half-lives were 4.9 6 0.7 (n¼ 3, p¼ 0.007) and 4.1 6 1.6
(n¼ 3, p¼ 0.018), respectively. Using p¼ 0.05 as the cutoff, the
results indicate that altering the stop codon to a sense codon
failed to abolish NMD targeting. The results indicate that the
internal stop codon could trigger NMD, but changing the
stop codon to a sense codon is not sufficient by itself to
abolish the effects of NMD. Another mechanism acting
independently of the internal stop codon must be responsible
for targeting, possibly a uORF in the 59 leader (Table 2).
Results described below indicate that uORFs can target
mRNAs for NMD.

In contrast, changing the UGA stop codon at the end of
YIL168W to a sense codon abolished targeting. In Nmd�

strains, the abundance of YIL168W mRNA increased by more
than 5-fold (Figure 6C). The difference in abundance was
substantially reduced when the stop codon was replaced with
a sense codon. The FCRs at n ¼ 3 for the abundance of
YIL168W, yil168w-GGA, and yil168w-AGA were 5.3 6 0.4, 2.1 6

0.6, and 1.6 6 0.3, respectively. The half-life of YIL168W was

1.1 6 0.4 and 5.2 6 0.5 min in Nmdþ and Nmd� strains,
respectively (Figure 6D). The half-life of yil168w-AGA was 5.5
6 1.5 and 6.9 6 0.4 min in Nmdþ and Nmd� strains,
respectively. The FCRs for the half-lives of YIL168W and
yil168w-AGA RNAs were 5.0 6 1.4 (n¼ 3, p¼ 0.004) and 1.3 6

0.3 (n¼ 3, p¼ 0.15), respectively. Using p¼ 0.05 as the cutoff,
the results indicate that altering the stop codon to a sense
codon abolishes targeting. Therefore, the stop codon targets
YIL168W for NMD.
Our results and the results of others [13] suggest that

transcripts produced from TY elements are sensitive to NMD.
However, evaluating the basis of the NMD-sensitivity is
complicated for two reasons. Different classes of elements
show significant sequence similarity causing the probe sets
tiled on arrays to exhibit extensive cross-hybridization. Also,
some of the TY-related probe sets anneal to LTRs, but the
LTRs are found not only at the ends of intact TY elements but
also as solo LTRs that lack an adjacent intact element.
To determine whether full-length TY transcripts contain-

ing adjacent out-of-frame dORFs are targeted by NMD due to
the presence of an internal stop codon, steady-state Northern
blots were analyzed using a probe that uniquely hybridizes to
transcripts produced from the two known genomic copies of
TY3 (see Materials and Methods). When TY3 RNA levels were

Figure 4. Confirmation of Global Predictions

Representative RNA decay data for five transcripts are shown (n¼3) where global predictions were borne out by conventional half-life experiments. The
format is identical to Figure 2. The results are summarized in Table 1.
doi:10.1371/journal.pgen.0020203.g004

PLoS Genetics | www.plosgenetics.org November 2006 | Volume 2 | Issue 11 | e2030008

Global Impact of NMD in Yeast



compared in Nmd� and Nmdþ strains, the FCR with respect
to abundance was 1.1 6 0.2 (n¼ 4, p¼ 0.4), indicating that the
accumulation of TY3 mRNA is not affected by NMD.
Transcripts produced from the two identical genomic copies
of TY3 are therefore insensitive to NMD. Furthermore, the
internal stop codon in TY3 transcripts fails to trigger NMD.
Although it is not yet clear why TY-specific probe sets are
heavily represented among NMD-sensitive targets, some
possibilities are presented in the discussion based on the
observation that most of the NMD-sensitive TY-related probe
sets correspond to LTRs.

Targeting through Translation of uORFs
NMD-sensitive transcripts were examined with respect to

uORFs that might potentially trigger NMD (Figure 7). The
sequence upstream of FZF1 indicates the presence of a uORF
with two potential AUG start codons at�64 and�58 followed

by an in-frame stop codon ending at positionþ29 (Figure 7A).
To determine whether the FZF1 uORF plays a role in
targeting, the two ATG start codon sequences were changed
to AGG singly or together to create the mutant alleles fzf1-D1,
fzf1-D2, and fzf1-D1,-D2. The evidence described below
indicates that FZF1 mRNA is targeted for NMD by the uORF.
A 6.6 6 0.3 (n ¼ 3, p ¼.005) -fold change in the relative

abundance of the wild-type FZF1 mRNA was observed when
Nmdþ and Nmd� strains were compared (Figure 7B),
confirming that FZF1 mRNA is a target of NMD. Fold
changes in the levels of the mRNAs produced from the fzf1-
D1 and fzf1-D2 single mutant alleles (FCR¼ 5.9 6 0.9, n¼ 3, p
¼ 0.006; FCR ¼ 5.9 6 0.6, n ¼ 3, p ¼ 0.002, respectively) were
similar to that found for FZF1 mRNA, suggesting that these
mRNAs were also targets of NMD. However, the fold change
in abundance was abolished in the fzf1-D1,-D2 double mutant
(FCR¼ 1.1 6 0.2, n¼ 3, p¼ 0.21), indicating that sensitivity to
NMD might be dependent on uORF translation. An addi-
tional observation inherent in the data was that overall
reductions in mRNA levels were evident in both single and
double mutants in both Nmdþ and Nmd� strains, suggesting
that mutations in the DNA corresponding to the uORF start
codons affected mRNA abundance by a second mechanism
that was independent of NMD.
To further examine the sensitivity of the double mutant

mRNA to NMD, the half-lives of FZF1 and fzf1-D1,-D2 were
compared in Nmdþ and Nmd� strains. In the representative
set of experiments shown in Figure 7C, FZF1 mRNA had a
half-life of 2.1 6 0.5 min in the Nmdþ strain and 12.3 6 4.0
min in the Nmd� strain. The FCR was 5.9 6 1.3 (n ¼ 3, p ¼
0.005). Using a p ¼ 0.05 cutoff, the results confirm that FZF1
mRNA is a direct target of NMD. The mRNA produced in the
fzf1-D1,-D2 double mutant had a half-life of 9.8 6 1.0 min in
the Nmdþ strain and 12.0 6 2.3 min in the Nmd� strain. The
FCR was 1.2 6 0.1 (n ¼ 3, p ¼ 0.121). Using a p ¼ 0.05 cutoff,
the results show that the NMD-dependent change in half-life
observed for wild-type FZF1 mRNA was abolished in the
double mutant. This result supports the conclusion that
translation of the uORF is required for the targeting of FZF1
mRNA. This is the first demonstration of a uORF required for
targeting that starts in the 59 leader and terminates in the
coding ORF.
To estimate the number of NMD-sensitive protein-coding

mRNAs targeted by uORF translation, an algorithm was used
to screen direct targets of NMD for uORFs that start and end
between nucleotides �100 and þ100 relative to the coding
ORF AUG. Uncertainties were inherent in the screen because
the locations of most transcription start sites are unknown,
but those that have been mapped are typically within 100
nucleotides of the coding ORF AUG. The median length of
known 59-UTRs is 61 nucleotides [34], and .95% of 59-UTRs
are ,100 nucleotides in length [35]. 135 of the 220 predicted
direct targets of NMD contained a putative uORF (including
CPA1, which has a leader longer than 100 nucleotides) (Figure
7D). 85 transcripts were devoid of uORFs. 70 transcripts had a
uORF that was self-contained in the 59-UTR (including CPA1),
and 65 had a uORF that terminated translation out-of-frame
in the coding ORF. Potential uORFs for the transcripts listed
in Table 1 are described in Table 2. Potential uORFs
identified among direct targets of NMD are listed in Table
S10.

Figure 5. Degradation of Natural RNA Targets by NMD

(A) Thiolutin has no effect on mRNA decay. RDR1 mRNA decay was
examined using two methods to inhibit transcription: addition of
thiolutin and exposure of cells carrying rpb1–1 (impaired RNAP II) to a
restrictive growth temperature of 39 8C [70]. Transcription was inhibited
in UPF1 and upf1D cells by temperature-shift alone or by temperature-
shift combined with the addition of thiolutin. A representative experi-
ment (n ¼ 3) is shown where RNA levels were determined by Northern
blotting.
(B) A representative experiment (n ¼ 3) is shown where the kinetics of
RDR1 mRNA decay were monitored after addition of thiolutin in upf1D
cells carrying mutations that block decay from the 59 end (xrn1D) or the
39 end (ski7D or rrp6D).
(C) A representative experiment (n ¼ 3) is shown where the kinetics of
RDR1 mRNA decay was monitored after addition of thiolutin in UPF1 cells
carrying XRN1 or xrn1D.
doi:10.1371/journal.pgen.0020203.g005
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Targeting through Out-of-Frame Initiation of Translation
SPT10 mRNA is targeted for degradation by NMD because

translating ribosomes frequently bypass the coding ORF AUG
due to a suboptimal context, scan to a downstream AUG in an
alternate reading frame, and initiate translation. Termina-
tion of translation at an out-of-frame stop codon triggers
NMD [20]. Whether this mechanism, referred to as ‘‘leaky
scanning,’’ is responsible for targeting other transcripts for
NMD remains unverified.

The context surrounding an AUG initiation codon is
believed to influence the efficiency of translation initiation,
especially the nucleotide at the �3 position [36,37]. The
context relevant to initiation includes the �6 to þ6
nucleotides based on the frequencies of nucleotide usage
around the AUG start codons of a set of highly expressed
genes. The consensus for optimal initiation is (A/U�6)A(A/

C)AA(A/C)AUGUC(U/Cþ6) [38]. A codon adaptation index
(AUGCAI) was previously developed to evaluate all possible
context sequences based on frequency of nucleotide usage at
each nucleotide position [39]. To test the generality of the
leaky scanning model for NMD targeting, we revised the CAI
to create an index AUGCAI(r) ranging from 0 to 1 based on
the weighted contribution of each context position and the
relative frequency of nucleotide use at each position
(Materials and Methods and Table S11). The relative
importance of each context nucleotide is summarized by a
Web logo (Figure 8).
AUGCAI(r) scores were calculated for predicted direct

targets of NMD (Figure 8A, bar graph and Table S12). To
visualize the effects of the scoring method, AUGCAI(r) scores
were compared with a simpler system to evaluate the
initiation context based solely on the nucleotide at the �3

Figure 6. Targeting of dORFs

(A) Relative kinetics of decay from array data for two NMD-sensitive dORFs.
(B) Organization of the dORFs. The stop codons were changed to rare (low CAI) and commonly used (high CAI) sense codons [77].
(C) Effects of the mutations on RNA abundance expressed as the FCR (n¼ 3).
(D) Comparison of half-lives of yil164-UGG and yil168W-AGA RNA. FCRs were calculated for n¼ 3.
doi:10.1371/journal.pgen.0020203.g006
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position, where U or C are considered bad context and A or G
are considered better context [20] (Figure 8A, dot plot). Red
dots represented by transcripts with a sub-optimal�3 context
(U or C) are skewed on the y-axis towards low AUGCAI(r)
scores, but are distributed across a broad range between 0.2
and 0.6. When the context of the second out-of-frame AUG
was evaluated (x-axis), the transcripts were also skewed
towards low AUGCAI(r) scores but with an even broader
range between 0.1 and 0.8. The results suggest that an index
based solely on nucleotides at �3 position is an inadequate
predictor of the efficacy of translation initiation. The revised
index is an improvement because it distinguishes initiation
contexts with the same �3 nucleotides. The results also show
that the AUGCAI(r) scores for the second out-of-frame AUG
are not necessarily higher than the scores for the first AUG.

The AUGCAI(r) for SPT10 initiation codon is 0.32. For
EBS1, which is not targeted by leaky scanning [40], the
AUGCAI(r) for the initiation codon is 0.44. We therefore
anticipated that transcripts with scores �0.44 might be poor
candidates for leaky scanning and those with scores �0.32 or
lower might be good candidates. To further test whether
AUGCAI(r) is a predictor of leaky scanning, RDR1: AUGCAI(r)
¼ 0.50 and ASF2: AUGCAI(r) ¼ 0.17. mRNAs were analyzed
using a genetic approach. In each transcript, sequences in
between the first and second AUG codons were altered to
create a new in-frame AUG codon in a good context:
AUGCAI(r) ¼ 0.70 for rdr1-AUG and 0.83 for asf2-AUG. The
mutant alleles were analyzed by comparing transcript
abundance and half-lives in Nmdþ and Nmd� strains (Figure
8B and 8C). If leaky scanning targets RDR1 or ASF2 mRNA
for NMD, the new AUG codon should abolish the effects of
NMD on RNA abundance and half-life.

The results show that leaky scanning is not a likely
targeting mechanism for RDR1 mRNA. When Nmdþ and

Nmd� strains were compared, the change in abundance was
1.8 6 0.2 (n¼ 3, p¼ 0.001) for RDR1 mRNA and 1.7 6 0.4 (n¼
3, p¼ 0.014) for rdr1-AUG. Using a p¼ 0.05 cutoff, the results
show that mRNA abundance is not affected by the introduc-
tion of the new AUG codon. In a representative experiment
(Figure 8B), the RDR1 half-life was 3.9 6 1.8 min in the Nmdþ

strain and 12.6 6 1.0 min in the Nmd� strain. The FCR for
half-life was 3.6 6 1.6 (n ¼ 3, p ¼ 0.02), confirming prior
results (Table 1) showing that RDR1 mRNA is a direct target
of NMD. The half-life of rdr1-AUG mRNA was 4.7 6 0.8 min
in the Nmdþ strain and 12.1 6 3.6 min in the Nmd� strain.
The FCR for the rdr1-AUG half-life was 2.6 6 0.4 (n ¼ 3, p ¼
0.001). These results indicate that the introduction of a new
AUG in a good context had no effect on mRNA half-life. The
AUGCAI(r) score of 0.50 for the RDR1 mRNA start codon is
not low enough to trigger leaky scanning.
By contrast, leaky scanning is a likely targeting mechanism

for ASF2 (AUGCAI(r) ¼ 0.17). When Nmdþ and Nmd� strains
were compared, the change in abundance was 1.8 6 0.3-fold (n
¼3, p¼0.003) for ASF2mRNA and 1.1 6 0.2-fold (n¼3, p¼0.2)
for asf2-AUG mRNA. Using a p ¼ 0.05 cutoff, the results
suggested that the introduction of the new AUG codon
abolished the effect of NMD on ASF2 abundance. In a
representative experiment (Figure 8C), the ASF2 half-life was
4.4 6 0.3 min in the Nmdþ strain and 11.6 6 4.8 min in the
Nmd� strain. The FCR for the half-life was 2.6 6 0.9 (n¼3, p¼
0.03). The half-life of asf2-AUGmRNA was 7.2 6 1.7 min in the
Nmdþ strain and 7.7 6 2.7 min in the Nmd� strain. The FCR
for the half-life was 1.1 6 0.03 (n ¼ 3, p ¼ 0.3). Since the
abundance and the half-lives were statistically indistinguish-
able using a p¼0.05 cutoff, the results show that the sensitivity
of ASF2mRNA to NMD was abolished in the asf2-AUGmutant.
The results suggest that NMD-mediated degradation of ASF2
mRNA is triggered by leaky scanning. Inefficient translation
initiation at the ASF2 mRNA start codon is reflected by the
relatively low AUGCAI(r) score of 0.17.

Discussion

This paper describes how to estimate relative rates of RNA
decay on a global scale by monitoring RNA abundance on
DNA arrays at time intervals following a block that prevents
further transcription. Furthermore, methods were developed
to estimate the proportion of direct targets with altered
decay rates versus indirect targets with unaltered decay rates
among 607 SAM-selected RNA targets of NMD that rose in
abundance when the NMD pathway was inactivated. To
estimate RNA decay rates on a global scale, alternative kinetic
models describing rates of decay were tested. In order to be of
practical use, data fitting had to be accomplished within the
constraints imposed by limits on the number of time points
used to monitor the disappearance of RNA following
inhibition of transcription.
Our general experience from conventional decay rate

experiments is that deviations from exponential first-order
decay are commonplace. It was important that decay models
recognize departures from first-order caused either by
features of experimental design or biological origin. The
models we considered, the methods for testing them, and the
criteria for selecting an appropriate non-first-order decay
model are described in detail in Text S1. In addition, the
statistical methods used to control for experimental error by

Table 2. Evaluation of the Likelihood of Direct Targeting by
Known Mechanisms

NMD Direct

Target

Potential uORF

within �100 to

þ100 Nucleotides

Initiation

Context

AUGCAI(r)

Nucleotide at

�3 Position

PET18 �92 to �54 0.44 A

ASF2 None 0.17 C

PDR3 None 0.43 G

RDR1 None 0.50 C

SET7 �32 to þ46 0.53 A

FZF1 �64, �58 to þ29

(verified)

0.60 A

PDR8 �71 to þ25 0.33 G

INO4 �67 to �53 0.56 A

YIL168W/YIL167W None 0.56/0.43 Ad

CPA1a �134 to �57

(verified)

0.46 C

DAL2b None 0.49 A

EST1c �22 to þ8 0.35 A

PPT2c �44 to þ1 0.39 G

YIL164C/YIL165C �51 to �43 0.70/0.32 Ad

a[19].
b59 end is at�20, no uORFs from �20 to þ100 [13].
c[13].
dRefers to the first ORF.
doi:10.1371/journal.pgen.0020203.t002
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normalization of data to stable reference RNAs are described.
Normalization procedures were needed to permit useful
array-to-array, time point-to-time point, and strain-to-strain
comparisons of the data.

After the normalization step, a non-first-order decay model
was implemented using least squares estimations of the
parameters including the decay rate (b1) for the 607 SAM-
selected NMD targets. Extensive searching of b1 in a proper
interval was performed. Notably, none of the b1 decay rate
estimates for the 607 targets hit the boundary of the interval,
implying adequacy of model fitting. To our knowledge, this
estimation procedure is a novel contribution. A likelihood
ratio test was used to compare b1 in Nmdþ and Nmd� strains.
This standard tool in regression setting was successfully
applied in our data analysis. The results indicate that 47%–
48% of the protein-coding mRNAs that are targeted by NMD

are direct targets. We also estimated the proportion of direct
targets using a novel application of maximum likelihood. At
the 95% confidence level, maximum likelihood predicts a
similar frequency of direct targets estimated to be 45% 6 5%
of the SAM-selected NMD-sensitive targets.
In S. cerevisiae, RNA accumulation levels vary over a .1,000-

fold range and decay rates vary from several minutes to
several hours. Accumulation levels and decay rates do not
always correlate with each other [41]. Although NMD-
sensitive RNAs tend to be present at low abundance [14],
there was no prior basis for assuming a similar skew toward
rapid decay. Because of this, time points in the global decay
rate experiment were distributed over 1 h to capture a broad
range of rates with sufficient data points but at the expense of
accurately describing rapid decay rates for short-lived RNAs.
Our high-throughput study revealed that NMD-sensitive

Figure 7. Targeting through uORFs

(A) Two uORF start codons are present in the FZF1 sequence. The uORF stop codon is located upstream of the start codon of the coding ORF in the�1
reading frame. The position of a sequence resembling a downstream element reported to be required for NMD [78,79] is shown. uORF start codons
were changed to AGG sense codons. DSE, downstream element.
(B) Steady-state RNA levels for FZF1, fzf1-D1, fzf1-D2, and fzf1-D1,-D2 determined by Northern blotting.
(C) Comparison of FZF1 and fzf1-D1,-D2 RNA half-lives in Nmdþ and Nmd� strains. Half-lives, FCRs, and p-values were calculated for n ¼ 5.
(D) Potential uORFs with end points between�100 andþ100 nucleotides of predicted direct targets as a function of start position and total length. Left:
upper and lower numbers refer to uORFs that end downstream and upstream of the coding ORF start codon, respectively.
doi:10.1371/journal.pgen.0020203.g007
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RNAs tend to be both non-abundant and short-lived. Many
RNAs differentially disappeared in the Nmdþ strain in the
first few minutes after inhibition of transcription, making
them challenging to monitor on arrays.

Some RNAs known to respond to NMD were excluded by
SAM on statistical grounds and were not analyzed, including
CTF13, SPT10, ADR1, and PPR1 [13,14,17]. These are all
known to be among the least abundant mRNAs. The
transcripts excluded in our study were also excluded in other
global studies [13]. Although some NMD targets were not
captured in the analyses, the results of all of the published
global studies identify a large common subset of transcripts as
being sensitive to NMD (Figure S2). More probe sets could
have been captured using less stringent statistical parameters,
but at the cost of low reliability. The 607 SAM-positive probe
sets were deemed to constitute a sufficiently large fraction of
NMD-sensitive targets to draw general conclusions.

The results from the global approach provided a starting
point for conventional studies to learn more about how RNAs
are targeted for NMD and about the relationship between
direct and indirect targets. 18 transcripts were strategically

selected for conventional studies to complement the high-
throughput analysis of RNA decay rates. Using the global
approach, the initial abundance at the time of thiolutin
addition, intrinsic decay rates, differential decay rates, the
distribution of time points, and methods of data fitting all
influence the measurement of decay rates. Although these
factors frequently converged to produce FCRs that were
unexpectedly ,1 in the global experiment when the results
from Nmd� and Nmdþ strains were compared, conventional
analyses of decay rates consistently showed this to be an
anomaly. Except for false discoveries, FCRs that were ,1 in
the global experiment were .1 in conventional experiments,
indicating that the global approach accurately predicted
direct targets within statistical limits.

Targeting of dORFs by NMD
dORFs were uncovered as targets of NMD. Two dORFs

shown to be direct targets of NMD were studied in an effort
to understand the targeting mechanisms. Genetic analysis of
YIL164C/YIL165C, consisting of in-frame ORFs separated by a
9-bp gap, revealed that translation termination at the

Figure 8. Targeting through Out-of-Frame Initiation of Translation

(A) AUGCAI(r) scores were calculated to evaluate the influence of context on the efficiency of translation initiation. The bit score indicates relative
sequence conservation at a given nucleotide position and the height of nucleotide symbols indicates the frequency of nucleotide use. Standard
numbering (parentheses) differs from Web logo numbering. The bar chart shows the distribution of AUGCAI(r) scores for protein-coding transcripts that
satisfy criteria for targeting by leaky scanning. The dot plot shows the distribution of candidate transcripts where the AUGCAI(r) score of the initiator
AUG is plotted against the score for the downstream out-of-frame AUG. Red dots correspond to transcripts considered to be likely candidates for leaky
scanning based solely on the presence of U or C at the�3 position.
(B) Sequence changes in RDR1 DNA and comparison of RDR1 and rdr1-AUG transcript half-lives in Nmdþ and Nmd� strains.
(C) Sequence changes in ASF2 DNA and comparison of ASF2 and asf2-AUG transcript half-lives in Nmdþ and Nmd� strains.
doi:10.1371/journal.pgen.0020203.g008
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YIL164C stop codon fails to trigger NMD. Leaky scanning is
an unlikely targeting mechanism: AUGCAI(r)¼ 0.70. However,
a putative uORF in the 59-UTR could potentially be
responsible for targeting (Table 2). The dORFs YIL168W/
YIL167W are organized like YIL164C/YIL165C but without a
gap. We found that the YIL168W stop codon targets the
mRNA for NMD and is presumably recognized as a
premature site for termination similar to premature termi-
nation events caused by nonsense mutations.

When a special class of dORFs were analyzed that are
translated through programmed frameshifting, it was found
that internal stop codons fail to trigger NMD. EST3 mRNA
(YIL009C/YIL009C-A), which codes for a telomerase regulator
[42], was shown to be an indirect target of NMD [16],
indicating that the YIL009C stop codon is not involved in
targeting. ABP140 mRNA (YOR239W/YOR240W), which codes
for an actin-binding protein [43], was not identified as NMD-
sensitive in three different genome-wide studies of NMD
[13,14]. Most TY elements contain dORFs (TYA/TYB) that
undergo contiguous translation by low-frequency pro-
grammed frameshift events [32,33]. Our results indicate that
the TY3 transcript is insensitive to NMD, indicating that the
TY3A stop codon is not involved in targeting. Overall, the
results suggest that most stop codons associated with
programmed frameshifting do not trigger NMD.

Most of the NMD-sensitive probe sets related to TY
elements contain LTRs, including d (11 probe sets), r (1
probe set), and s (12 probe sets). These LTRs are located as
direct repeats at the ends of intact TY1/TY2, TY3, and TY4
elements, respectively. When intact elements recombine
within LTR sequences, solo copies of the LTRs are left
behind. Solo LTRs are found at 270 different locations in the
genome. The LTR-related probe sets may detect NMD-
sensitive RNAs that initiate at promoters in solo LTRs and
extend into neighboring DNA. These transcripts most likely
serve no functional purpose and are probably degraded due
to the fortuitous presence of premature stop codons that
trigger NMD. The degradation of these types of transcripts
illustrates a role for NMD in RNA surveillance as opposed to
its role in controlling the expression levels of transcripts that
code for functional proteins.

Targeting Mechanisms
NMD-sensitive protein-coding mRNAs were further exam-

ined to reveal what features of the RNAs cause direct
targeting. Targeting by uORF termination and leaky scanning
were examined in detail. Overall, the results suggest that these
two mechanisms account for only a portion of direct targets.

FZF1 mRNA is targeted for NMD by a translated uORF that
starts in the 59 leader and ends in the coding ORF. In order to
abolish uORF translation and targeting for NMD, it was
necessary to mutate two AUG start codons. Although the FCR
for half-life in the double mutant fully accounted for the
effect of NMD on the abundance of the wild-type mRNA, the
single and double mutant mRNAs were generally reduced in
abundance in both Nmdþ and Nmd� strains. The 59 end of
FZF1 mRNA is not known, but the AUG codons for the uORF
could be near the 59 end, and mutations at these sites might
influence rates of transcription. This could potentially
explain the NMD-independent effects on abundance that
were observed. The only other verified uORF demonstrated
to target a transcript for NMD is found in CPA1 [19]. The

CPA1 uORF starts and ends in the 59-UTR. These examples
show that uORFs can target transcripts for NMD whether
they are self-contained in the 59-UTR or whether they extend
into the ORF. The CPA1 uORF is conserved in related species
of yeast [35], but the FZF1 uORF varies among related species.
Three species contain one or the other of the two AUG uORF
start codons in FZF1 and five lack both AUG start codons.
Thus, the mRNAs subject to uORF targeting show some
evolutionary conservation but with some variation even
among closely related species.
Among the 220 predicted direct targets of NMD, 135

transcripts contained a uORF potentially involved in target-
ing. After evaluating the median length, average distribution,
and known positions of transcription start sites [34,35], the
presence of translatable uORFs were ruled out for 16
transcripts, typically because transcription initiates down-
stream of the uORF start codon, leaving 119 candidates for
uORF targeting. Among these, the uORFs in 63 transcripts
were self-contained in the 59 leader and the uORFs in 56
transcripts extended into and terminated in the coding ORF.
In order for these uORFs to trigger NMD, they must be
translated. 45 uORFs begin with translation start codons that
reside in a poor context for initiation: AUGCAI(r) � 0.32,
leaving 74 uORFs with a likelihood of being translated.
Overall, it appears highly unlikely that uORFs target more
than 35% of direct targets for NMD.
Prior to this study, only one transcript, SPT10, has been

demonstrated to use leaky scanning as a targeting mechanism
[20]. This occurs when ribosomes fail to initiate and scan past
the first AUG. NMD is triggered when translation initiation at
a second out-of-frame AUG leads to premature termination
at an out-of-frame stop codon. To estimate the frequency of
use of leaky scanning as a targeting mechanism, a revised
method was developed to evaluate context sequences
surrounding AUG initiation codons that influence the
efficiency of initiation. The codon adaptation index (AUGCAI)
[39] was modified to account for the frequency of nucleotide
usage at each context position and the weighted contribution
of each nucleotide relative to the overall context. Candidate
transcripts were ranked according to their AUGCAI(r) score.
The best candidates for targeting by leaky scanning were
presumed to be those transcripts with low AUGCAI(r) scores
corresponding to a poor context for translation initiation.
We demonstrated that ASF2 mRNA (AUGCAI(r) ¼ 0.17) is

targeted by leaky scanning. Although RDR1 is a direct target,
the index score is 0.50 and our results shows that leaky
scanning is not the mechanism responsible for targeting. The
finding that leaky scanning targets a second transcript
increases the confidence that leaky scanning is a general
mechanism dependent on the context surrounding AUG
codons. Combined with previous results, SPT10 mRNA with a
score of 0.32 is targeted by leaky scanning [20], whereas the
EBS1 [40] and RDR1 transcripts with scores of 0.44 and 0.50,
respectively, are not targeted by leaky scanning.
The best candidates identified for leaky scanning were 53

transcripts with scores of �0.32 (Table S12). Combined with
our analysis of uORFs, we estimate that approximately 100
transcripts out of the 220 direct targets are very likely to be
targeted by one of these known mechanisms. 55 transcripts
were identified as being very unlikely to be targeted by either
mechanism. RDR1 mRNA is a candidate for an alternative
targeting mechanism since no uORFs were found and leaky
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scanning is an unlikely targeting mechanism. PPR1 mRNA
might also be targeted by an unknown mechanism [21]. It is
possible that features of the 39-UTR of some transcripts might
play a role in targeting as a third mechanism based on the
mutant allele unc54(r293) in Caenorhabditis elegans, which is
deleted for 39 UTR sequences and produces an NMD-sensitive
transcript [44]. Further studies of the candidates for novel
targeting mechanisms will be required to establish alternative
mechanisms.

Functional Relationships among NMD Targets
Striking new functional relationships are evident in the

genomic data. 35% of the protein-coding NMD targets
identified in this study can be organized around two central
themes (Figure 9). 62 NMD-sensitive transcripts code for

proteins involved in replication and maintenance of telo-
meres, chromatin-mediated silencing, and post-replication
events related to the transmission of chromosomes during the
cell division cycle: including recombination, synapsis, cohe-
sion, disjunction, segregation of chromatids, and the for-
mation and function of the spindle apparatus (Figure 9A). 36
transcripts are direct targets of NMD-sensitive and 26 are
indirect targets. 16 NMD-sensitive transcripts were identified
that code for proteins known to function in the replication
and maintenance of telomeres or as chromatin remodeling
factors that affect either global or local aspects of chromatin
structure. Previously unrecognized NMD-sensitive transcripts
affecting telomere replication and DNA silencing were
uncovered, including YKU80 mRNA coding for a subunit of
the Ku complex that plays a role in telomere length

Figure 9. Networks of NMD-Sensitive Transcripts

(A) Summary of NMD-sensitive genes coding for proteins that affect chromosome structure and behavior, including telomere replication and
maintenance, chromatin silencing, replication, recombination, repair, components of the spindle apparatus such as the kinetochore and spindle pole
body, and chromosome transmission. Among these, 32 probe sets detected RNAs expressed at higher levels due to de-silencing of repeated genes in
six multi-gene families whose members are located in the sub-telomeric repeats near chromosome ends.
(B) Summary of NMD-sensitive genes coding for proteins that affect the cell surface and environmental interactions, including surface receptors for
signal transduction, macromolecular transport, synthesis breakdown of the plasma membrane, cell wall mannoproteins, and the MDR system for
cellular defense against toxins. Transcripts that increase in abundance in Nmd� strains are indicated in red for direct targets with altered decay rates and
blue for indirect targets with unaltered decay rates. Targets that decrease in abundance in Nmd� strains are indicated in green.
doi:10.1371/journal.pgen.0020203.g009
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maintenance [45], SIR1 mRNA coding for a protein required
for silencing of mating type cassettes [46], and LRS4 mRNA
coding for a protein required for rDNA silencing [47].

Evidence for NMD-mediated effects on telomere replica-
tion and silencing of telomere-proximal reporters was
previously reported [16]. In this study, we identified 32 probe
sets that detected increased levels of the RNA products of
repeated genes located in the sub-telomeric repeats near
chromosome ends. The probe sets, which corresponded to
genes at one or both ends of 15 out of the 16 haploid
chromosomes, include representatives of the PAU [48],
DUP380 [49], DAN [50], MAL [51], AAD [52,53], and YRF [54]
multi-gene families. Most of these transcripts were predicted
to be indirect targets of NMD (the exceptions could be false
discoveries). As expected for genes located in silent chroma-
tin, the RNAs were barely detectable in Nmdþ strains.
Clusters of telomere-proximal genes residing next to each
other that were co-expressed in Nmd� strains included DAN3,
MAL31, and MAL33 on C2R, PAU11 and COS12(DUP380) on
C7L, PAU18 and YRF1 on C12L, PAU6 and COS10 on C14R,
and PAU20 and AAD15 on C15L. We propose that regional
de-silencing is the underlying mechanism for the expression
of telomere-proximal genes in Nmd� strains.

Interestingly, many of the telomere-proximal repeated
genes are naturally de-silenced under anaerobic growth
conditions. In Nmd� strains, unscheduled de-silencing occurs
under conditions of aerobic growth. The YRF genes differ
from other telomere-proximal repeated gene families in that
expression occurs when the telomere replication machinery
is compromised, as is the case in Nmd� strains [16]. It was
suggested that the putative DNA helicase encoded by the YRF
genes may function in protecting the integrity of chromo-
some ends [54]. These findings build on the previous results
showing that disruption of NMD reduces the number of
hexameric DNA repeats at telomeres and de-silences report-
ers inserted near telomeres [16]. RNAs that increase in
abundance due to de-silencing constitute a previously
unrecognized class of indirect targets of NMD.

The dynamics of the plasma membrane and cell wall is
another central theme evident among the targets of NMD. 71
NMD-sensitive transcripts (including some of the sub-telo-
meric de-silenced transcripts mentioned above) code for
proteins that have an impact on communication with the
extracellular environment, including synthesis and break-
down of the plasma membrane, plasma membrane receptors
involved in signal transduction, transport of macromolecules
and nutrients, cell wall proteins, and cellular defense (Figure
9B). Of these, 32 are direct targets. 13 NMD-sensitive
transcripts, including one transcription factor, INO4, code
for proteins involved in fatty acid and phospholipid metab-
olism. Two transcripts required for mating, STE6 coding for
the a-factor membrane transporter [55] and STE2 coding for
the a-factor membrane receptor [56], are direct targets of
NMD. 21 transcripts code for proteins that transport
nutrients and small molecules across the plasma membrane.

Transcripts coding for cell wall mannoproteins, the
enzymes for assembling GPI anchors (glycosylphosphatidyli-
nositol) that attach mannoproteins to the cell wall, and cell
wall regulators are targets of NMD [57]. The genes for these
proteins are unusual because they contain Ser-Thr repeats
that expand and contract in their copy number leading to
proteins of differing size and antigenicity [58]. Also, many of

the NMD-sensitive genes in telomere-associated silent regions
code for GPI-anchored cell wall mannoproteins.
A surprising number of NMD targets play central roles in

multi-drug resistance (MDR), a phenomenon observed in
organisms ranging from yeast to humans, which involves
complex mechanisms of intracellular reorganization to
remove or sequester toxins and other agents that threaten
cell viability. MDR, which is clinically relevant and is a major
cause of the failure of chemotherapy in cancer patients [59],
is controlled by a complex network of transcription factors
that auto-regulate their own synthesis, regulate each other,
and regulate the expression of ATP-binding cassette trans-
porters, permeases, and genes involved in lipid metabolism.
NMD targets key transcription factors that control MDR,
especially PDR3 [60], PDR8 [61], RDR1 [62], and YRR1 [63].
The transcription factor FZF1, which is sensitive to NMD due
to uORF targeting, is part of the MDR network that causes a
cellular response to the presence of nitric oxide leading to
detoxification. FZF1 transcription, which decreases in strains
carrying a mutation in PDR3 [64], controls the expression of
the five genes including the NMD-sensitive transcript
YNL335W [65].
The levels of the transcripts coding for the Upf proteins do

not appear to change during the environmental stress
response in which yeast cells adapt to the sudden exposure
to suboptimal environments through global changes in the
gene expression program [66]. However, like the transcripts
affected by NMD, many of the transcripts affected by the
environmental stress response code for proteins that influ-
ence chromosome dynamics and cell surface dynamics. To
explain why so many NMD-sensitive mRNAs code for proteins
that influence both chromosome and cell surface properties,
we suggest a possible connection between NMD and the
environmental stress response that might involve post-tran-
scriptional regulation of the Upf proteins. Further studies will
be required to substantiate whether this model has merit.

Extension of Global Methods to Other RNA Decay
Pathways and Other Organisms
Using our methods it should be immediately possible to

examine other RNA decay pathways on a global basis in yeast
using appropriate mutants. Furthermore, recent evidence
from steady-state expression profiling of human cell lines
indicates that numerous RNAs are up-regulated when cells are
depleted of hUPF1, including transcripts that contain 59

uORFs, alternatively spliced nonsense RNAs, transposons, and
retroviruses [67]. Using our methods for global analysis of
decay rates, these findings could be extended to distinguish
direct versus indirect targets. In theory, global RNA decay
rates could be monitored in any multi-cellular eukaryote
where cell lines are available and could be employed to
examine a multiplicity of mRNA decay pathways, including
but not limited to NMD. We anticipate that global decay rate
experiments will provide a wealth of new information on RNA
surveillance and post-transcriptional control mechanisms.

Materials and Methods

Strains and genes. The strains used in this study are listed in Table
S1. The sources of RNA for global gene expression studies were the
congenic Saccharomyces cerevisiae strains S288C and YRZ1. S288C has a
functional NMD pathway and is referred to throughout as the wild-
type strain. Strain YRZ1, which is defective for NMD because it
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carries the null allele upf1D::KanMX4, is referred to throughout as the
upf1� strain. It was shown previously that null alleles of UPF1, UPF2,
UPF3, or all three genes affect abundance of the same subset of
transcripts [14].

Bioinformatics. The 96 raw image files (.CEL) were processed using
the method of robust multichip average [24] to remove non-
biological variation between arrays resulting in background adjusted,
normalized signals summarized as ln(PM) (perfect match) values for
each transcript. Several alternative mathematical models describing
the kinetics of RNA decay were evaluated using both simulated and
actual array data to determine the model giving the best fit. The
models, methods for testing the models, and other bioinformatic
methods used to analyze array data are described in detail in Text S1.
Genomic DNA sequences were retrieved from the Saccharomyces
Genome Database (http://www.yeastgenome.org). Transcription fac-
tors and target genes are described in the Promoter Database of S.
cerevisiae (http://rulai.cshl.edu/SCPD). The yeast transcriptome data
[68] were downloaded from http://web.wi.mit.edu/young/pub/data/
orf_transcriptome.txt. The RNA sequence alignment to generate
the AUG initiation context was done by using the logo generation
form at http://weblogo.berkeley.edu/logo.cgi. The database for tran-
scriptional start sites in S. cerevisiae is available at http://data.cgt.duke.
edu/5sage.php.

Verification of maximum likelihood estimation. Bootstrapping was
used to validate the maximum likelihood method used to estimate the
proportion of direct targets (Figure S1). 607 data points were
randomly sampled from the 607 p-values with replacement, and g was
estimated using the same f̂ (1)(p) and maximum likelihood method as
described in the Results. The process of re-sampling and estimation
was repeated 1,000 times to get a distribution of ĝ. The distribution
was very close to a normal distribution, with the mean at 0.449521,
2.5% percentile at 0.39, and 97.5% percentile at 0.508. These
numbers are very close to the inference of g obtained using the
theoretical derivation. The empirical f̂ (1)(p) using linear interpolation
of 14 known direct targets (Table 1) was not strictly isotonic in the
interval [0, 1]. Isotonic regression was used to obtain a revised
empirical distribution denoted as ĝ (1)(p). Using this modified
empirical distribution ĝ (1)(p) to replace f̂ (1)(p), the bootstrap
procedure was repeated and similar results were obtained with the
distribution of the mean at 0.46298, 2.5% percentile at 0.407, and
97.5% percentile at 0.522. This indicates that the inference of g is
robust.

RNA methods. To prepare probes for array hybridization, cell
cultures of S288C and YRZ1 were grown to mid-log phase (O.D.¼0.6)
and harvested at 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, and 60
min after the addition of 10 lg/ml thiolutin (a gift from Pfizer, Inc.,
part number CP-4092), which inhibits transcription [69]. The
effective concentration of thiolutin was established by assaying for
growth inhibition and inhibition of transcription of selected tran-
scripts. At each time point total RNA was isolated by hot phenol
extraction [7]. Double-stranded cDNA was synthesized by two-step
reverse transcription from 15 lg total RNA and 100 pmol oligo(dT)
primer, purified by PLG-P/C extraction, precipitated with ethanol,
and resuspended in 12 ll of RNase-free water. 5 ll of the reaction
mixture was used to prepare biotinylated cRNA using the Enzo
BioArray HighYield RNA transcript labeling kit (T7). Half of the in
vitro transcription products were purified using Qiagen (http://www1.
qiagen.com) RNeasy spin columns. The cRNA quantity was measured
and adjusted as directed by the Affymetrix Technical Manual. 20 lg
of biotinylated cRNA was fragmented using 6 ll of 53 fragmentation
buffer in a 30-ll reaction and incubated at 94 8C for 35 min, mixed in
a hybridization cocktail as described in the Affymetrix Technical
Manual, and hybridized to a YG-S98 GeneChip array for 20 h.
Following hybridization, the arrays were washed and stained using a
GeneChip Fluidics Station 400 and scanned with a GeneArray
scanner following the manufacturer’s instructions. Three independ-
ent trials were performed using RNA from each of the two strains for
16 time points giving a total of 96 arrays.

To measure mRNA half-lives, transcription was inhibited by
adding thiolutin dissolved in DMSO (10 lg/ml for S288c and related
strains; 25 lg/ml for W303 and related strains) or by shifting cell
cultures to the restrictive temperature of 39 8C for strains carrying
the rpb1–1 allele coding for a temperature-sensitive subunit of RNAP
II [70]. Total RNA was extracted at time intervals following inhibition
of transcription, and 20 lg of RNA from each sample was
fractionated on agarose gels, transferred to GeneScreen Plus
(Dupont, NEN Research Products, http://www.dupont.com) and
analyzed by Northern hybridization using sequence-specific probes
prepared by in vitro reverse transcription. TY3 transcripts were
detected on Northern blots using a fragment complementary to

nucleotides 1366–1624 in the TY3B ORF [71], which specifically
recognizes transcripts from two full-length TY3 elements in the
genome but does not hybridize to genomic copies of TY1, TY2, TY4,
or TY5. Hybridization signals were normalized to SCR1 RNA [72].
Graphs were generated with SigmaPlot (version 9.0). Data fitting for
experiments based on conventional Northern blotting was accom-
plished by non-linear regression using a biphasic decay model (y ¼
ae�bx þ ce�dx).

To determine the half-lives of YIL168W and ASF2, RNA levels were
measured by quantitative real-time PCR using an ABI 7900HT RT-
PCR thermocyc le r (App l i ed Biosy s tems , h t tp : / /www .
appliedbiosystems.com). The cycling conditions were: 48 8C for 30
min, 90 8C for 10 min, and 40 cycles at 95 8C for 15 s and 60 8C for 1
min. RNA was treated with DNase I (Ambion, http://ambion.com) at
37 8C for 30 min and then amplified with a TaqMan one-step RT-PCR
master mix (Applied Biosystems) in the presence of 0.7 lM of each
gene-specific primer and 0.35 lM 5,- 6-carboxyfluorescein (6-FAM),
3,- 6-carboxytetramethylrhodaminutese (TAMRA)-labeled probe. The
RNA quantity in each time-course reaction was determined by
comparison with standard curves generated by amplification of the
time-zero RNA sample. Data were analyzed using the SDS 2.2.1
software (Applied Biosystems).

Mutagenesis. Mutations were created by PCR mutagenesis. Centro-
meric (CEN) plasmid pQG29 contains YIL164C/YIL165C plus 800 bp
and 750 bp of upstream and downstream sequence, respectively. The
TAG stop codon of YIL164C was changed to TCG (pQG44C) or TGG
(pQG44G). CEN plasmid pQG32 contains YIL168W/YIL167W plus 580
bp and 400 bp of upstream and downstream sequence, respectively.
The TGA stop codon of YIL168W was changed to GGA (pQG47G) or
AGA (pQG47A). CEN plasmid pQG20 contains FZF1 plus 195 bp and
731bpof upstreamanddownstream sequence, respectively. TwouORF
AUG codons starting at�64 and�58 were changed to AGG codons to
generate fzf1-D1 (AGG at�64) (pQG38), fzf1-D2 (AGG at�58) (pQG39),
and the double mutant fzf1-D1,-D2 (pQG40). CEN plasmid pZW29
contains RDR1 plus 317 bp and 595 bp of upstream and downstream
sequence, respectively. CEN plasmid pZW28 contains ASF2 plus 344 bp
and 516 bp of upstream and downstream sequence, respectively.

To create an in-frame AUG in the RDR1 ORF, GGCTTGC was
changed to AATGTCT between the first AUG and the downstream
out-of-frame AUG (pZW31) (Figure 8B). To create an in-frame AUG
in the ASF2ORF, AATCGT was changed to ATGTCT between the first
AUG and the downstream out-of-frame AUG (pZW30) (Figure 8C).
The wild-type genes were separately deleted in strains W303 (UPF1)
and AAy320 (upf1D) and replaced with KanMX4, conferring resistance
to 200 lg/ml geneticin [73], to generate strains QGy29, QGy30,
QGy33, QGy34, QGy11, QGy12, ZWY58, and ZWY59 (Table S1). These
strains were transformed [74] with the appropriate plasmids.

Revised codon adaptation index. In order to determine whether
transcripts were eligible for targeting by leaky scanning, the context
surrounding the initiation codon was evaluated as follows: A revised
AUG context adaptation index termed AUGCAI(r) was created based
on a previous methodology developed by Miyasaka [39]. Two
modifications were made. To avoid the arbitrary selection of
reference genes, which should be highly representative of the
nucleotide/codon usage bias, 63 highly expressed genes were used
in the AUGCAI(r) calculation. They represent 1% of the yeast
transcriptome and were selected from iterations of computational
algorithms used to detect the most predominant codon bias [75].

The relative weight given to each nucleotide in the AUG context
was calculated as follows. Position-specific weight matrices (PWM)
were generated by calculating the frequency of a nucleotide j (A, U, G,
C) at position i (�6, �5, �4, �3, �2, �1, 4, 5, 6) of the AUG initiation
context from 63 reference genes. Since the occurrence of some
nucleotides at some positions was zero, a value of 1 was added to the
number of occurrences of each nucleotide at each position. The
information content (IC) (bit score, see Figure 8), which measures the
sequence conservation at each position, was calculated using the
equation in [76]:

IC ¼ lnN � �
XN
n¼1

Pnln Pn

 !
; ð3Þ

where N¼ 4 (A, U, G, C) and Pn is the frequency of a nucleotide at a
particular sequence position as calculated in the PWM. The corrected
weight for each nucleotide was calculated by multiplying the
frequency for nucleotide j at position i (the values in PWM) by the
IC value at position I (Table S11). Unlike the values in [39], the weight
for the optimum nucleotide at each position is not equal to 1, but is
dependent on both the nucleotide frequency and the weighted
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importance of the position. When the context adaptation index is
calculated using the equation from [39], the maximum value is 0.22.

AUGCAI ¼
ðW�6j 3W�5j 3W�4j 3W�3j 3W�2j 3W�1j 3Wþ4j 3Wþ5j 3Wþ6jÞ1=9

ð4Þ

In order to obtain values ranging from 0 to 1, the AUGCAI(r) was
calculated using a denominator equal to the maximum AUGCAI value
of 0.22. A unique AUGCAI(r) for each individual mRNA was calculated
using equation:

AUGCAIðrÞ ¼ P
i
wi

� �1=9

=MaxðAUGCAIÞði ¼ �6;�5;�4;�3;�2;�1; 4; 5; 6Þ ð5Þ

The higher the AUGCAI(r) value, the closer the context is to the
optimal context for translation initiation. Low values correspond to a
higher probability of read-through without initiation.

Candidates for targeting by leaky scanning were screened as
follows: To avoid the presence of introns while at the same time
retaining 59 and 39 flanking sequences for each gene, source code was
written to attach the intronless coding sequence and flanking
sequences downloaded separately from the SGD (Saccharomyces
Genome Database). Source code was written to scan each ORF from
start codon to termination codon. The algorithm calculates the
AUGCAI(r) value of the first AUG and identifies those ORFs where the
second AUG is out-of-frame and followed a termination codon in the
same alternate frame.
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Source codes for all of the algorithms developed for use in this study
were deposited at http://www.SourceForge.net. The Entrez Gene
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼gene) accession
numbers for some of the entities discussed in this paper are ADR1
(851802), ARG81 (854874), ASF2 (851330), COS10 (855812), COS12
(852628), CPA1 (854479), CTF13 (855119), DAN3 (852603), EBS1
(851787), FZF1 (852638), HHF2 (855701), hUPF1 (5976), INO4
(854042), LRS4 (852049), MAF1 (851568), MAL31 (852601), MAL33
(852600), MED1 (856183), PAU6 (855813), PAU11 (852630), PAU18
(850662), PDR3 (852278), PDR8 (850971), PET18 (850382), PPR1
(850701), RDR1 (854562), RPB1 (851415), RRN10 (852256), RRP6
(854162), SAS2 (855157), SET7 (851844), SGF11 (856060), SK17
(854243), S1R1 (853976), SPT10 (853315), STE2 (850518), STE6
(853671), SUP35 (851752), SUP45 (852440), UGA3 (851384), unc-54
(259839), Upflp (855104), Upf2p (856476), Upf3p (852963), URA3
(856692), XRN1 (852702), YER039C-A/YER039C (856762/856761),
YIL009C/YIL009C-A (EST3) (854806), YIL164C/YIL165C (854642/
8854641), YIL168W/YIL167W (854638/854639), YKU80 (855132),
YNL335W (855381), YOL163W/YOL162W (854001/854002), YOR239W/
YOR240W (ABP140) (854414), YRF1–4 (851187), and YRR1 (854333).
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