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This article proposes a general semiparametric model for multiple quantitative trait loci (QTL) analyses of complex phenotypes in backcross
and intercross designs. The model provides tests about genetic hypotheses, such as additivity, dominance, and epistasis, that do not require
specifying the form of the phenotypic distribution. This contrasts with previous approaches based on transformations to normality and
generalized linear models, which require careful consideration of the phenotypic distribution. Inferences involve extensions of partial and
conditional likelihoods developed for single-QTL backcross models. We demonstrate that conditional likelihood is robust to unobserved
selective genotyping, whereas partial likelihood and other standard methods are not. To facilitate genome screens, a novel resampling
method is proposed that is similar in spirit to the popular permutation tests. Its main advantages are that it is broadly applicable to multiple
QTLs with nonnormal phenotypes and achieves a substantial reduction in computational burden. A thorough case study of spike data on
the genetic influences to recovery from Listeria infection in a mouse intercross experiment is presented. The application reveals that the
proposed methods may give substantively different conclusions than those obtained with existing interval mapping methods from parametric
models in the presence of unobserved selection.
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1. INTRODUCTION

1.1 Overview of Quantitative Trait Loci Analyses

Quantitative trait loci (QTL) analysis is an important tool
for dissecting the genetic influences on biological traits. Such
analysis is critically important in plant and animal breeding, as
well as in understanding the etiology of human diseases. The
goal is to determine associations between genetic variability at
known locations on chromosomes with variability in the ob-
served traits, also known as phenotypes, to pinpoint the loca-
tions of genes controlling the phenotypes. Typically, genotypes
are obtained at a large number of locations (referred to as mark-
ers) throughout the genome and separate analyses may be done
at each location. Complex models may also be fit that permit
interactions between genes. A fundamental challenge in QTL
analysis is developing methods appropriate for study designs
that vary widely in natural and experimental populations.

The focus of this article is experimental populations (Doerge,
Zeng, and Weir 1997; Broman and Speed 1999). In such stud-
ies, inbred lines are systematically mated to obtain progeny
for evaluating the genotype–phenotype associations. Such de-
signs may have increased power relative to natural populations,
where natural genetic variability may obscure the associations.
The designs are staples in agriculture and animal breeding,
where the objective is to manipulate profitable traits. They are
also used to investigate human diseases (e.g., diabetes and can-
cer) in which the homology between animal models (e.g., like
rats and mice), and humans may be exploited.

The analysis of experimental populations was first consid-
ered by Sax (1923), who proposed t-tests for phenotypic means
of different genotype groups at a known marker. This idea was
generalized by Lander and Botstein (1989) to interval map-
ping at loci between known markers, where genotypes are not
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observed, and simple t-tests may not be appropriate. A likeli-
hood analysis was used, assuming a normally distributed phe-
notype and a single-gene model. When the assumptions hold,
the analysis gives efficient detection and localization of QTLs
(Haley and Knott 1992; Jansen 1993; Zeng 1993, 1994; Jansen
and Stam 1994; Kao, Zeng, and Teasdale 1999; Sillanpää and
Corander 2002). However, for complex traits influenced by
multiple and/or interacting QTLs, the single-gene normal mod-
els may be inadequate.

An example is the so-called “spike” phenotype (Broman
2003), in which the distribution has a point mass at a single
value, the “spike,” but is otherwise continuous. Hence the trait
has discrete and continuous components, which may have dif-
ferent genetic controls. Such phenotypes arise in cancer studies,
in which tumor size has positive probability at zero (absence of
tumor). Another example is survival outcomes, in which indi-
viduals may never experience the event of interest and may be
viewed as “cured” (see Farewell 1977) with event time equaling
infinity. Boyartchuk et al. (2001) obtained the death times after
Listeria infection in a mouse breeding experiment. A large per-
centage of animals recovered fully and were alive at the end of
the study. Their “death” times were set equal to the last follow-
up time. Figure 1 provides a histogram of the times; note the
“spike” at hour 264.

Broman (2003) studied two approaches to this data. The first
approach used standard interval mapping, without decoupling
the continuous and discrete components of the trait; the second
used standard interval mapping on the continuous component
and a binary regression model for the “spike,” corresponding to
the “cure” probability. This example illustrates the difficulties
with nonnormal traits: The analyses depend on the trait being
analyzed, and careful consideration of the choice of parametric
models is required. This is particularly true with multiple-gene
models, where formulating gene interactions depends heavily
on the model specification. In this article we use the Listeria
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Figure 1. Histogram of the Survival Time of the 116 F2 Female Mice
After Infection by Listeria monocytogenes.

dataset as a case study for our proposed methodology, which
provides a unified framework for QTL analyses.

1.2 A Unifying Framework

Directly applying traditional QTL mapping strategies using
a normal model may lead to low power or false detection of a
major locus (Morton and Gray 1984). Specially tailored single-
gene models are available, including Poisson (Shepel et al.
1998) and logistic (Mackay and Fry 1996; Yi and Xu 2002)
regression. Alternatively, a transformation may be used to nor-
malize the phenotype (Lan et al. 2001). These two approaches
are not automatic; there may be no obvious choice of distrib-
ution and no natural transformation to normality, particularly
with discrete traits. Generalizing to nonnormal traits with mul-
tiple QTLs involves customizing the single-QTL models and
depends critically on the phenotypic distribution. Nonparamet-
ric Wilcoxon rank statistics (Kruglyak and Lander 1995) and
Jonckheere–Terpstra tests (Poole and Drinkwater 1996) provide
model-free analyses for single-QTL mapping; however, extend-
ing these statistics to multiple potentially interacting QTLs is
not straightforward.

Zou, Fine, and Yandell (2002) proposed an interesting semi-
parametric alternative to standard QTL analyses with a single
gene. The log ratio of the phenotypic density functions is as-
sumed to satisfy a linear model across genotypes with unspec-
ified baseline density. This exponential tilt model (Anderson
1979) subsumes a range of distributions, including normal,
Poisson, binomial, and exponential. In Section 2 we study gen-
eral phenotypes with multiple genes. The standard models of
genetic variability (Falconer and Mackay 1996) for general-
ized linear models (McCullagh and Nelder 1989), including
dominance and additive effects and epistasis between two loci,
can be greatly simplified under this formulation. Tests of ge-
netic hypotheses in the generalized linear model reduce to tests
of parameters in the tilt model that are common to all link
functions. The baseline phenotypic distribution is unspecified,
which avoids the need to choose the link function in the gener-
alized linear model or a transformation to normality in standard
interval mapping. For the Listeria data, the form of the model is
the same for the “spike,” the continuous component of the trait,
and the combined trait.

Zou et al. (2002) estimated a single-gene tilt model for a
simple backcross design using a so-called “partial likelihood”

from a constrained empirical likelihood (Qin 1999). Later, Zou
and Fine (2002) demonstrated that the partial likelihood was
closely connected to the conditional distribution of the geno-
type given the phenotype. In Section 3.3 we further show that
the conditional likelihood is robust to selective genotyping bias,
when individuals lacking genotypes are omitted. These results
are similar to those for case-control studies with selective sam-
pling of diseased and nondiseased individuals (Breslow and
Day 1980). In the QTL setup, the genotype is unknown be-
tween markers, and the selective sampling is much more sub-
tle. The issue is practically important, because biased sampling
of genotypes is a common QTL design strategy for increasing
power (Lander and Botstein 1989). Such sampling may also re-
sult from an unobserved selection process, which can lead to
reduced power or bias in estimates of QTL location and effect
sizes. In the Listeria analysis in Section 6, the conditional likeli-
hood may give different conclusions than partial likelihood and
other standard QTL analyses.

Working in a single-QTL backcross design, Zou et al. (2002)
and Zou and Fine (2002) established that the estimators of QTL
effects from the partial and conditional likelihoods are consis-
tent and asymptotically normal, and that the partial likelihood
is more efficient than the conditional likelihood. Under the null
hypothesis of no QTL, the log partial likelihood ratio tests fol-
low chi-squared distributions with 1 degree of freedom, asymp-
totically. In Section 3 we extend these inferences to multiple-
gene models and more complicated breeding designs.

1.3 Genome-Wide Testing

For genome-wide analyses using backcross data, Kruglyak
and Lander (1995) showed that interval mapping tests can
be approximated by an Ornstein–Uhlenbeck process, with
genome-wide thresholds based on its extreme value proper-
ties. With multiple-QTL models, the limiting process may not
be analytically tractable. An alternative is permutation testing
(Churchill and Doerge 1994), which avoids strong assumptions
on the marker map and gives exact p values. Unfortunately, it is
only suitable for testing single gene models. For multiple QTL,
Doerge and Churchill (1996) proposed the conditional empiri-
cal threshold (CET) and the residual empirical threshold (RET),
both based on large-sample theory. CET is restricted to genome
regions unlinked to major QTLs. RET assumes a linear model
and performs repermutation after removing previously detected
QTL effects. If the model is misspecified or there are gene in-
teractions, then the method is not applicable.

Even when CET and RET are applicable, their computational
burden has hindered usage. For a genome of 2000cM, single-
QTL testing with 1,000 permutations fits 1 million models in a
2-cM scan. In Section 4 we propose a new resampling method
to approximate the genome-wide large sample distribution of
our statistics. The method only requires fitting the model once
at each locus. It is easily extended to focused genetic hypothe-
ses, like multiple QTL, additivity, and dominance, which are
not completely addressed by permutation methods.

The practicability of the exponential tilt model analyses and
the new resampling technique are demonstrated in extensive
simulations reported in Section 5. Numerical comparisons with
available analyses demonstrate improved robustness to model
misspecification and improvements in computational efficiency.
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In Section 6 we present an analysis of the Listeria data using
our unified QTL framework and other existing methods. Both
single- and double-QTL genome screens are presented, with
substantive differences in the results from the different analy-
ses. A discussion of the key issues in analyzing complex genetic
architectures concludes in Section 7.

2. MODELING MULTIPLE QUANTITATIVE TRAIT LOCI
WITH EXPONENTIAL TILT MODEL

We consider experiments that have two completely inbred
parental lines, labeled P1 and P2. Individuals from P1 are ho-
mozygous with genotype AA at all loci in the genome, and
those from P2 have genotype aa at all loci. These lines are
mated, and their F1 progeny are heterozygous Aa at all loci.
F1 individuals may be crossed with P1 or P2 to generate a back-
cross BC1 or BC2. In the sequel, BC always refers to BC2. An
F2 population is generated by selfing or mating two F1 individ-
uals (Doerge et al. 1997).

Because of recombination, the genotype at a putative locus
between two flanking markers may be unknown. The pheno-
typic distribution at that locus is a mixture over the possible
genotypes. The mixing proportions denote the genotype prob-
abilities conditioned on flanking markers and are determined
by a genetic mapping function. The component densities cor-
respond to phenotypic distributions modeled conditionally on
genotype at the putative locus. Lander and Botstein (1989) as-
sumed normal distributions with common variance. Here we
extend the semiparametric exponential tilt model of Zou et al.
(2002) to model phenotype distributions in BC or F2 popula-
tions with one or more QTL. We begin with one putative gene
to motivate the model specification for two QTL given later,
which is more complex.

Let genotypes be represented through q, the number of a al-
leles. An F2 population has AA, Aa, and aa genotypes, which
correspond to q = 0,1,2. We denote the component densities
by fq(z) and assume that fq(z) = f0(z) exp(β0q + β1qz), where
exp(β0q) = {∫ f0(z) exp(β1qz)}−1 is the normalizing constant
for fq(z). Including β0q as a separate parameter follows the work
of Anderson (1979) and Qin (1999). Without additional para-
meter constraints, the tilt model is overparameterized. We let
β00 = β10 = 0, yielding an identifiable model.

The tilt model covers the most commonly used continuous
and discrete distributions, including normal with common vari-
ance, exponential, Poisson, and binomial (Anderson 1979). In
standard QTL analysis, densities associated with AA, Aa and
aa are N(µ+ a, σ 2), N(µ+ d, σ 2), and N(µ− a, σ 2) (Falconer
and Mackay 1996), where a is the additive effect, d is the domi-
nance effect, µ is the intercept, and σ 2 is the variance, assumed
common across genotypes. The genetic effects, a and d, may
be formulated for nonnormal distributions using the generalized
linear model (GLM) (McCullagh and Nelder 1989). Table 1 re-
lates the tilt parameters (β0q, β1q) to the QTL effects in the most
commonly used GLMs.

Table 1 shows that tests about a and d can be based on the ex-
ponential tilt model without specifying the link function in the
GLM. The same contrasts on the tilt model parameters are used
for normal with common variance, exponential, Poisson, and
binomial. To be specific, regardless of f0, inference on either
the global null of no QTL effect or on genetic subhypotheses
can be made by testing the following contrasts:

1. H0: no QTL influence (a = d = 0) ⇔ H0 :β11 = β12 =
β01 = β02 = 0

2. H0: no additive effect (a = 0) ⇔ H0 :β12 = β02 = 0
3. H0 : full dominance (a = d) ⇔ H0 :β11 = β01 = 0
4. H0: no dominance effect (d = 0) ⇔ H0 :β12 + β10 −

2β11 = 0.

This “unifying” formulation is not possible using existing meth-
ods, which require correct specification of the distribution or
link function for the GLM (Hackett and Weller 1995; Visscher,
Haley, and Knott 1996; Xu and Atchley 1995; Rebai 1997).

We now generalize the tilt model to two QTL, allowing
for epistasis. Let q = (q1,q2) denote the genotypes of the
two QTL, with qi the number of P2 alleles at the ith QTL;
for example, genotype AABB has q = (q1,q2) = (0,0) and
AaBb has q = (1,1). Although our setup is quite general, the
form of the model is identical to that for BC and single-QTL
F2: fq(z) = f0(z) exp(β0q + β1qz). Here we set (β0q, β1q) =
(0,0) for model identifiability. The corresponding GLM for-
mulation includes additive effects (a1,a2), dominance effects
(d1,d2), and additive–additive (a12), dominance–dominance

Table 1. Exponential Tilt Model Representation for Single-QTL, F2 Cross

Genotype GLM representation β0q β1q

Normal AA N(µ + a, σ 2) 0 0
Aa N(µ + d, σ 2) (a − d)(2µ + a + d)

2σ 2 (d − a)/σ 2

aa N(µ − a, σ 2) 2aµ

σ 2 (−2a)/σ 2

Exponential AA E(α, µ + a) 0 0
Aa E(α, µ + d) log µ + d

µ + a − α(a − d) a − d
aa E(α, µ − a) log µ − a

µ + a − α(2a) 2a

Poisson AA P(exp(µ + a)) 0 0
Aa P(exp(µ + d)) exp(µ + a) − exp(µ + d) d − a
aa P(exp(µ − a)) exp(µ + a) − exp(µ − a) −2a

Binomial AA B( exp(µ + a)
1 + exp(µ + a) , n) 0 0

Aa B( exp(µ + d)
1 + exp(µ + d) , n) n log 1 + exp(µ + a)

1 + exp(µ + d) d − a

aa B( exp(µ − a)
1 + exp(µ − a) , n) n log 1 + exp(µ + a)

1 + exp(µ − a) −2a

NOTE: In the GLM representation, the mean conditionally on the genotype, q, denoted µq , is related to (µ, a, d) through a link function h, which equals identity for normal, N, inverse for exponential,
E, log for Poisson, P, and logit for binomial, B. The model is h(µq ) = µ + a + d. Note that the exponential density includes a shift parameter α and a rate parameter.
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Table 2. Equivalent Null Hypotheses for the GLM and Tilt Model for Two-QTL Analysis in F2

GLM H0 Tilt model H0

No QTL all β = 0
a1 = 0 β100 + β102 − β120 − β122 = 0
a2 = 0 β100 + β120 − β102 − β122 = 0
d1 = 0 2β110 − β100 − β120 + 2β112 − β102 − β122 + 4β111 − 2β101 − 2β121 = 0
d2 = 0 2β101 − β100 − β102 + 2β121 − β120 − β122 + 4β111 − 2β110 − 2β112 = 0
a12 = 0 β100 + β122 − β102 − β120 = 0
d12 = 0 β100 + β102 + β120 + β122 − 2β112 − 2β110 − 2β121 − 2β101 + 4β111 = 0
ad12 = 0 (β120 + β122 − 2β121) − (β100 + β102 − 2β101) = 0
da12 = 0 (β102 + β122 − 2β112) − (β100 + β120 − 2β110) = 0

NOTE: The equivalence holds for normal, exponential, Poisson, and binomial GLM. Conditionally on genotype at two genes,
h(µq ) = µ + a1 + a2 + d1 + d2 + a12 + d12 + ad12 + da12. Subscripts i and j on β1ij denote genotype q = (i, j), or q1 = i and q2 = j
at loci 1 and 2, respectively.

(d12), and additive–dominance interactions (ad12,da12) (Fal-
coner and Mackay 1996). The contrasts of tilt model parameters
needed to test genetic hypotheses specified using the GLM pa-
rameters are given in Table 2. Similar to Table 1, inferences can
be obtained through the same contrasts of the β’s regardless of
the link function in the GLM and f0.

3. INFERENCE USING PARTIAL AND
CONDITIONAL LIKELIHOOD

We now discuss inferences for the genetic hypotheses pre-
sented in Section 2. In Section 3.1 we establish that the full
empirical likelihood for the tilt model has an irregularity aris-
ing because the densities fq are constrained to integrate to 1. In
Section 3.2 we discuss alternative analyses based on partial and
conditional likelihood that do not enforce these constraints and
provide valid tests of the hypotheses. In Section 3.3 we address
the robustness of the analyses to selective sampling of either
genotypes or of phenotypes.

3.1 Empirical Likelihood Irregularity:
Intercross/Multiple QTLs

Inference on the tilt model parameters uses a general mixture
model framework. Let Ti be the unobserved mixture indicator
for the ith observation, zi. The density of zi, conditional on Ti =
q, fq, is assumed to satisfy the tilt model. In practice, we observe
only Mi = 1, . . . ,K, indicating the mixture from which zi arises.
The corresponding mixing probabilities for zi conditionally on
Mi = k are τqk = Pr(Ti = q|Mi = k), which are assumed known.
Under the tilt model for zi conditionally on Ti, the density for
zi conditionally on Mi = k is f (zi|Mi = k) = f0(zi)ω(zi, k,β),
where ω(zi, k,β) = ∑

q τqk exp(β0q + β1qzi). This is also a tilt
model, involving the original tilt model parameter β and the
known mixing probabilities τqk.

In the QTL application, zi is the value of the phenotype, Ti is
the unobserved genotype at the locus of interest, and Mi is the
observed genotype at the markers flanking the loci of interest.
The distribution of phenotype conditionally on observed flank-
ing marker genotypes must mix over the distribution of the un-
observed genotype at the loci of interest, situated in the inter-
val(s) between the flanking markers. The mixing probabilities
τqk are determined by the breeding design, the known marker
map, and the mapping function (e.g., Haldane 1919).

With complete data, we observe (zi,Mi), i = 1, . . . ,n. The
likelihood for zi given Mi is L(β, f0) = ∏n

i=1 f0(zi)
∏n

i=1 ω(zi,

Mi,β). Unconstrained maximization of this likelihood does

not yield valid inferences for β . Similar to the approach of
Qin (1999), we first maximize L(β, f0) over f0 for fixed β un-
der the constraint that f0 ∈ Cβ = {f0|f0(zi) ≥ 0,

∑n
i=1 fq(zi) =∑n

i=1 pi exp(β0q + β1qzi) = 1}, where pi = f0(zi), which en-
sures that fq are all proper density functions. This yields a pro-
file likelihood in β that may be maximized to obtain estimates
for β . Qin (1999) used standard empirical likelihood theory to
establish the validity of the resulting inferences.

Adapting the approach of Zou et al. (2002) for single-gene
backcross models with q = 2 and k = 4, we find that the pro-
file likelihood has an irregularity with either intercross design
or multiple QTL under the hypotheses in Section 2. The prob-
lem is that the profile likelihood may not exist for all β’s in a
neighborhood around the null values of β , as required for the
usual empirical likelihood results. The difficulty arises because
there is always a β in the neighborhood such that no f0 satis-
fies the constraints in Cβ . To illustrate, consider the case where
q = 2, as in BC. If the null f1 = f2 holds with β02 = β12 = 0,
then there is no f0 in Cβ with β02 �= 0 and β12 = 0. The issue
is that if β12 = 0, then f2 sums to 1 only if β02 = 0. Thus the
profile likelihood does not exist on the line β02 �= 0, β12 = 0,
which is contained in all neighborhoods of (0,0).

The irregularity is stated in general terms in the following
theorem.

Theorem 1 (Extension of thm. 1 of Zou et al. 2002). Let
βT denote the true value of β . Then the following results hold:

a. The set Cβ is not empty ⇔ β ∈ Jn(y), with Jn(y):= {β|
mini(β0q + β1qzi) ≤ 0 ≤ maxi(β0q + β1qzi) and mini(β0q −
β0q∗ + (β1q −β1q∗)zi) ≤ 0 ≤ maxi(β0q −β0q∗ + (β1q −β1q∗)zi),
and q �= q∗,q,q∗ = 0,1,2}.

b. βT ∈ Jn(y).
c. If β1qT = β1q∗T , or β1qT = 0, q �= q∗, then there exists

no neighborhood N(βT) of βT , s.t. ∀β ∈ N(βT),β ∈ Jn(y) as
n → ∞.

d. If the condition in (c) is not true, then such a neighborhood
N(βT) exists.

The irregularity occurs under all genetic hypotheses in Tables
1 and 2, not only the global null as in the work of Zou et al.
(2002). This means that the techniques of Qin (1999) cannot be
used to address such biological questions in QTL applications
involving intercross or multiple QTLs.
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3.2 Extensions of Partial and Conditional Likelihood

It can be shown that the profile empirical log-likelihood for
general tilt models is l[β, α̃(β)] = l1[β, α̃(β)]+ l2(β)−n log n.
The first part involves α̃, a nuisance parameter needed to en-
force the density constraints on fq. The so-called “partial likeli-
hood,” l2(β) = −∑n

i=1 log{r(zi,β)} + ∑n
i=1 log{ω(zi,Mi,β)},

where r(z,β) = ∑
q ξq exp(β0q + β1qzi) and ξq = ∑

k
nk
n τqk, is

free of these constraints. Because of difficulties associated with
the constraints, Zou et al. (2002) and Zou and Fine (2002) in-
vestigated inferences about β from the partial likelihood. Be-
cause l2 does not involve f0, such inferences do not enforce the
constraints, thereby avoiding the irregularity.

We now generalize to intercross and multiple QTLs. If (zi,

Mi) are independent and identically distributed, i = 1, . . . ,n,
then the log-conditional likelihood for Mi given zi is

lc(β) = −
n∑

i=1

log{Rc(zi,β)}

+
n∑

i=1

log{ω(zi,Mi,β)} +
K∑

k=1

nk log(ρk),

where ρk = Pr(Mi = k), nk = ∑n
i=1 I(Mi = k), Rc(zi,β) =

∑K
k=1 ω(zi,Mi = k,β)ρk, and I(·) is the indicator function.

This likelihood uses the conditional distribution of flanking
marker genotype given phenotype, unlike the usual QTL analy-
sis, in which the distribution of phenotype given flanking
marker genotype is used. Observe that lc does not depend on
f0 and that lc(β, ρ̂) = l2(β) + c, where ρ̂ = (ρ̂1, . . . , ρ̂K) =
(n1/n, . . . ,nK/n) is the maximum likelihood estimator for ρ

from the full likelihood for (zi,Mi). Thus l2(β) is a pseudo-
likelihood in the sense used by Gong and Samaniego (1981),
in that the nuisance parameter ρ is estimated separately from β

and plugged into the conditional likelihood.
Following Gong and Samaniego (1981, thms. 2.1 and 2.2),

the maximum pseudolikelihood estimator β̂p = arg maxβ l2(β)

is consistent and asymptotically normal, because ρ̂ − ρ =
Op(1/

√
n ). According to Liang and Self (1996, props. 1 and 2),

pseudolikelihood ratio statistics follow weighted sums of χ2
1

distributions in large samples, where the weights depend on the
true parameter values. In a backcross, the distribution reduces to
χ2

1 (Zou et al. 2002), but the weights are unknown with F2 and
multiple QTL. We summarize our theoretical results for partial
likelihood (with ′ denoting first derivative, and ′′ denoting sec-
ond derivative).

Theorem 2 (Extension to thm. 2, part 1 of Zou et al. 2002).
Assume that all functions are locally bounded and integrable.
Then the following results hold:

a. β̂p is consistent in probability for βT . Furthermore,√
n(β̂p −βT) → N(0,�), where � = S−1

p VpS−1
p , Sp = E{n−1 ×

l′′2(βT)}, and Vp = n−1 var{l′2(βT)}. The matrix Sp and Vp

can be consistently estimated by Ŝp = n−1{(l′′2(β̂p)}−1, V̂p =
n−1 ∑n

i=1 Q̂⊗2
pi evaluated at βp = β̂p, where Q̂pi is defined in

the Appendix. � is estimated by �̂ = Ŝ−1
p V̂pŜ−1

p .

b. (1) Under H0, no QTL is present, 2LRT → χ2
p/2, and p is

the number of unknown parameters.

(2) Under “subhypotheses,” 2LRT → a mixture of χ2’s.
For example, in single-QTL model for F2 population, testing
no additive effect, H0 :β02 = β12 = 0, 2LRT → c1(βT)χ2

1 +
c2(βT)χ2

2 , where c1(βT) and c2(βT) are related to the eigen-
values of certain matrices defined by Liang and Self (1996).

Conditional likelihood also may be used directly. The flank-
ing marker probabilities ρ are determined by the breed-
ing design, the map function, and the marker map, which
are known in the standard QTL setup (Lander and Botstein
1989). This means that β may be estimated without esti-
mating ρ. Let the conditional maximum likelihood estimator
β̂c = arg maxβ lc(β), with ρ known. Similar to the partial like-
lihood, the constraints on fq are not enforced. It follows from
standard conditional likelihood theory (Andersen 1970) that
β̂c is consistent and asymptotically normal and may be used to
conduct Wald and likelihood ratio tests in F2 and multiple-QTL
models. The key results are presented in the following theorem.

Theorem 3. Assume that all functions are locally bounded
and integrable. Then the following results hold:

a. β̂c is asymptotically unbiased and consistent in proba-
bility for βT . Further,

√
n(β̂c − βT) → N(0,−S−1

c ), where
Sc = E{ 1

n l′′c (βT)}, which can be estimated by Ŝc = 1
n l′′c (β̂c).

b. Under H0 :β = h(θ), 2LRT → χ2
r , where β is a k vector,

θ is a (k − r) vector of unknown parameters under H0, and h is
a continuous differentiable function.

3.3 Selection Bias in QTL Experiments

Sampling bias may occur in QTL analyses, either by de-
sign or by chance. Selective genotyping (Lander and Botstein
1989) is a strategy to improve QTL detection power. Typically,
progeny are genotyped only if their phenotypes are “extreme;”
selection also may occur based on correlated phenotypes. Nat-
ural selection based on the fitness of the phenotypes may occur
unnoticed. In selective phenotyping designs (Jin et al. 2004),
subjects are phenotyped based on their genotypes. This reduces
phenotyping cost while maintaining a desirable detection ef-
ficiency. For selective genotyping and selecting phenotyping,
both the phenotype distribution and the genotype frequencies in
the sample may severely deviate from those of the population.
We now show that different methods may be robust to different
sampling biases.

If all progeny are sampled, then inference uses n observa-
tions, (zi,Mi). To address selection bias, we introduce a sam-
pling variable, si, that equals 1 if the ith progeny is selected and
0 otherwise. Similar but simpler sampling issues arise in case-
control studies (Breslow and Day 1980), where Mi is a binary
variable (=1, 2) defining disease status and zi is a risk factor.
In the simplest retrospective design, an equal number of indi-
viduals with Mi = 1 and Mi = 2 are sampled, irrespective of zi.
Here Ti = Mi, which greatly simplifies the analysis relative to
QTL data, where Ti is unobservable.

Following Qin (1998), assuming that conditionally on Mi,
zi satisfies a tilt model with parameters β02 and β12 (β01 =
β11 = 0, as in BC), then, conditionally on si = 1 and Mi, zi
satisfies a tilt model with the same β12 but a different β02. Us-
ing only those (zi,Mi) with si = 1, the partial likelihood analy-
sis in Section 2 gives valid inferences about β12. However, the



Jin, Fine, and Yandell: Semiparametric Model for QTL Analyses 61

conditional likelihood may not do so if the disease prevalence
ρ1 = 1 − ρ2 = Pr(Mi = 1) is used instead of the sampling frac-
tion Pr(Mi = 1|si = 1). Interestingly, with case-control data, l2
is equivalent to a prospective logistic regression analysis for
Pr(Mi = 1|zi) = {1 + exp(β02 + β12zi}−1 (Qin 1998). The ro-
bustness of the prospective likelihood to case-control sampling
is well known (Prentice and Pyke 1979), but is more complex
in our QTL mixture model framework.

We now consider the properties of complete-case analyses
using data with si = 1 under QTL sampling schemes. Naively
applying interval mapping (IM) (Lander and Botstein 1989)
yields estimators maximizing log

∏n
i=1

∏K
k=1 Pr(zi|Mi = k,

si = 1)I(Mi=k,si=1). The conditional likelihood from sampled in-
dividuals is

∏n
i=1

∏K
k=1 Pr(Mi = k|zi, si = 1)I(Mi=k,si=1), where

Pr(Mi = k|zi, si = 1) = Pr(zi|Mi = k, si = 1)Pr(Mi = k|si =
1){Pr(zi|si = 1)}−1. With selection, ρ̂k = nk/n is unbiased
for Pr(Mi = k|si = 1), which may not equal ρk =
Pr(Mi = k), the flanking marker genotype probabilities defined
by the breeding design and map function. Moreover, the dis-
tribution of zi|Mi = k, si = 1 may not be the same as that of
zi|Mi = k.

With selective genotyping, the sampling probabilities depend
only on the phenotype zi, that is, Pr(si = 1|zi,Mi = k) = Pr(si =
1|zi). It is well known (Lander and Botstein 1989) that ignoring
phenotype-based sampling leads to bias in estimates of QTL
effects in the model for zi|Mi. That is, Pr(zi|Mi = k, si = 1) �=
Pr(zi|Mi = k). Observe, however, that Pr(Mi = k|zi, si = 1) =
Pr(si = 1|zi,Mi = k)Pr(Mi = k|zi)Pr(zi){Pr(zi, si = 1)}−1 =
Pr(Mi = k|zi). Thus conditional likelihood estimation using
known ρ gives valid results for Pr(zi|Mi = k). Substituting ρ̂ for
ρ may bias the partial likelihood estimator. This occurs because
nk/n may be inconsistent for ρk and the model for Pr(Mi = k|zi)

may be misspecified in large samples, except with random sam-
pling, where Pr(si = 1|zi) = Pr(si = 1) = p for all zi.

With selective phenotyping (Jin et al. 2004), sampling de-
pends only on the marker genotypes, Pr(si = 1|zi,Mi = k) =
Pr(si = 1|Mi = k). It follows that Pr(zi|Mi = k, si = 1) =
Pr(si = 1|zi,Mi = k)Pr(zi|Mi = k)Pr(Mi = k){Pr(Mi = k, si =
1)}−1 = Pr(zi|Mi = k). Thus inference based on a model for
Pr(zi|Mi = k, si = 1) is directly interpretable in the model for
Pr(zi|Mi = k), and hence IM is robust against selective phe-
notyping. Interestingly, because ρ̂ estimates Pr(Mi = k|si = 1)

consistently and the distribution of zi|Mi = k, si = 1 is equiva-
lent to that of zi|Mi = k, inferences from the partial likelihood
about the distribution of zi|Mi are also valid. However, condi-
tional likelihood will generally yield biased results, because ρk

may not equal Pr(Mi = k|si = 1) unless Pr(si = 1|Mi = k) =
p, k = 1, . . . ,K.

In some QTL studies, there are data for which both zi and
Mi are observed (si = 1) and data for which either zi (selec-
tive genotyping) or Mi (selective phenotyping) is observed, but
not both (si = 0). Valid estimators can be obtained from full
likelihood for IM and conditional likelihood for tilt models us-
ing missing-data methods (Little and Rubin 1987). Difficulties
arise when the sampling scheme is hidden or the investigator
has only data with si = 1. In such instances, only the complete-
case analysis is possible, as in the Listeria data analysis in Sec-
tion 6. The naive likelihood approach using (zi,Mi) with si = 1

may be biased. Our results show that using either IM or par-
tial likelihood is valid when the sampling depends on geno-
type, whereas conditional likelihood is not. When sampling is
phenotype-dependent, both IM and partial likelihood can be bi-
ased, whereas conditional likelihood is appropriate.

4. A NEW RESAMPLING METHOD FOR
GENOMEWIDE TESTING

A complete QTL analysis requires testing at all loci in the
genome. The simultaneous type I error probability is greatly
inflated relative to the pointwise level as a result of the large
number of tests across the genome. The importance of using ap-
propriate genomewide thresholds is well recognized (Kruglyak
and Lander 1995; Churchill and Doerge 1994; Doerge and
Churchill 1996). Methods based on extreme-value properties of
Gaussian processes have proven practicable with single-QTL
models. Permutation testing is more flexible but does not read-
ily extend to complex genetic models with nonnormal pheno-
types and may be computationally intensive because of repeated
likelihood maximizations. Motivated by these limitations, we
develop a computational technique that may be used with par-
tial and conditional likelihood, extending recent work for like-
lihood analyses (Zou, Fine, Hu, and Lin 2004).

We first describe the resampling for conditional likelihood
ratio tests of H0 :β = 0, corresponding to no QTL effects. Let
λ = (t1, t2, . . . , tl) index the locations of l QTL, where ti de-
notes the putative location of the ith QTL. To conduct a likeli-
hood ratio test that controls the type I error rate simultaneously
across all λ’s, we need to evaluate the distribution of 2LRT(λ)

as a process in λ under H0 to determine the threshold. Our ap-
proach is to generate numerically from the asymptotic distribu-
tion of 2LRT(λ).

We can show that if H0 holds at all λ, then 2LRT(λ) is
asymptotically equivalent to the quadratic form −nβ̂c(λ) ×
Sc(λ)β̂c(λ), where Sc(λ) = n−1l′′c (βT(λ)). We also can show
that as n → ∞, n1/2β̂c(λ) converges to a mean-0 Gaussian
process with covariance function �(λ1,λ2) = cov[n1/2β̂c(λ1),

n1/2β̂c(λ2)] under H0, where λ1 = (t11, t12, . . . , t1l) and λ2 =
(t21, t22, . . . , t2l); details are given in the Appendix. This im-
plies that 2LRT(λ) follows a chi-squared process in λ. At a sin-
gle λ, the usual chi-squared result is obtained.

The covariance function � is quite complicated, and the
distribution of the supremum test statistic is analytically in-
tractable for complex designs and multiple-QTL hypotheses.
The covariance depends on the genetic map and, with finite
unequally spaced markers, does not have the simple form of
Lander and Botstein (1989), who derived thresholds analyti-
cally for single-QTL backcrosses. We approximate the distri-
bution of the process

√
nβ̂c(λ) by Ŵc(λ) = n−1/2 ∑

i Îci(λ)Gi,
where Gi is a random sample from the standard normal, N(0,1),
and Îci is as defined in the Appendix. To approximate the
log-likelihood ratio process, LRT(λ), we then use L̂P(λ) =
−Ŵc(λ)Ŝc(λ)Ŵc(λ)T, where Ŝc(λ) is given in the Appen-
dix. In large samples, we may approximate the distribution of
LRT(λ) using L̂P(λ) and compute the genomewise threshold
for an α level supremum test using the (1 − α) quantile of
the recorded supλ(L̂Pj(λ)), j = 1,2, . . . ,N, from independent
N(0,1) samples, (Gi1, . . . ,Gin), i = 1, . . . ,N.
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Note that we fit the tilt model only once across the entire
genome to estimate Îci and Ŝc, which is then fixed when re-
peatedly generating Gi. This eliminates the repeated likelihood
maximization required by the permutation approach.

In general, genetic hypotheses may be formulated as H0 :β =
h(θ), where β is a k vector, θ is a (k − r) vector of unknown
parameters under the null hypothesis, and h = {h1, . . . ,hk}T is
continuously differentiable. For example, testing no epistasis
for a two-QTL model in BC gives the null H0 :β111 = β101 +
β110, with k = 6, r = 1, θ = (β001, β101, β010, β110, β011),
hi(θ) = θi, i = 1, . . . ,5, and h6(θ) = θ2 +θ4. Assume that β̂c(λ)

is the unrestricted conditional maximum likelihood estimator
and θ̃c(λ) is the conditional maximum likelihood estimator un-
der H0 at λ. The null distribution of LRT(λ) based on β̂c(λ) and
θ̂c(λ) can be approximated by L̂P(λ) = W̃c(λ)S̃c(λ)W̃c(λ)T −
Ŵc(λ)Ŝc(λ)Ŵc(λ)T, where W̃c(λ) = n−1/2 ∑

i Ĩci(λ)Gi. The
algorithm is as follows:

1. Compute β̂c(λ), θ̂c(λ), and LRT(λ).
2. Compute Îci, Ŝc, Ĩci, and S̃c.
3. Generate N iid samples of standard normal variates,

(Gj1, . . . ,Gjn), j = 1, . . . ,N.

4. For j = 1, . . . ,N, compute Ŵj
c(λ) = n−1/2 ∑

i Îci(λ)Gji,

W̃j
c(λ) = n−1/2 ∑

i Ĩci(λ)Gji, and L̂Pj(λ) = W̃j
c(λ) ×

S̃c(λ)W̃j
c(λ)T − Ŵj

c(λ)Ŝc(λ)Ŵj
c(λ)T.

5. Reject H0 if supλ LRT(λ) is larger than the (1 − α) per-
centile of {supλ L̂Pj(λ), j = 1, . . . ,N}.

The resampling approach also applies to partial likelihood
ratio tests. Let β̂p(λ) and θ̃p(λ) be the unrestricted and re-
stricted partial likelihood estimators. Under H0 :β = h(θ), the
genomewide distribution of the test statistics can be approxi-
mated by W̃p(λ)S̃p(λ)W̃p(λ)T − Ŵp(λ)Ŝp(λ)Ŵp(λ)T, where
Ŵp(λ) = n−1/2 ∑

i Îpi(λ)Gi, W̃p(λ) = n−1/2 ∑
i Ĩpi(λ)Gi, and

Ŝp(λ), S̃p(λ), Îpi(λ), and Ĩpi(λ) are as given in the Appendix.
Although the pointwise null distribution for the partial likeli-
hood ratio test is very complicated, the generality of the resam-
pling methods makes it possible to perform a genomewise QTL
scan using l2. The foregoing recipe for the conditional likeli-
hood ratio tests can be adapted by replacing c with p.

5. NUMERICAL STUDIES

The first set of simulations (results not shown) evaluates
the partial (PL) and conditional likelihood (CL) estimators in
an F2 cross. The QTL is located at 30 cM on a hypotheti-
cal chromosome. Markers are completely genotyped at 20 cM
and 40 cM. Datasets with n = 250 were simulated 500 times,
with f0(z) following a normal, exponential, or Poisson distrib-
ution. Both the PL and CL estimators appear to be consistent.
The variances obtained from CL are slightly larger than those
from PL, which agrees with previous findings (Zou and Fine
2002) for BC. The empirical variances and model-based vari-
ance estimates generally agree.

The next set of simulations illustrates the tilt model with
two QTLs and potential epistasis. The QTLs were constructed
40 cM apart on a chromosome with completely genotyped
flanking markers. We tested three hypotheses: (1) no QTL;
(2) one QTL versus two QTL; and (3) additivity (i.e., no epista-
sis), using CL and IM likelihood ratio tests and Wald tests from

PL (PLW) and CL (CLW). The CLW test rejects H0 : Cβ = 0 if
Wcn > χ2

r,α , where Wcn = (Cβ̂c)(−CŜ−1
c CT)−1(Cβ̂c)

T, −Ŝc

estimates the conditional Fisher information matrix and r is the
rank of C. The PLW is similar, except that β̂c is replaced by β̂p

and −Ŝ−1
c with �̂ from Theorem 2, which estimates var(β̂p).

Unless stated otherwise, we use the scanone/two functions from
the R/qtl package (Broman, Wu, Sen, and Churchill 2003) for
interval mapping. The test for the second hypothesis is not im-
plemented in the current version of R/qtl, so we omit these re-
sults for IM.

We ran 500 simulations for each model with n = 100, 200
(Table 3). The performance of all tests improves as n increases.
IM has a high rejection rate, 13–19%, compared to roughly 5%
for the other methods in case 9, where the phenotype has a Pois-
son distribution with two additive QTL. This behavior is more
prominent with increasing n and when one QTL has a large ef-
fect (not shown). In case 10, with a small interaction, IM detects
epistasis at a rate of 61–90%, roughly five times the rates for
all other methods, suggesting epistasis can be confounded with
misspecified phenotype models in IM. Tilt model tests reject at
nominal levels for all null hypotheses. Compared with paramet-
ric interval mapping, the semiparametric methods demonstrate
comparable power for detecting any QTL and a second QTL.
The CL ratio test is more powerful than the Wald tests, with
PLW being somewhat less powerful than CLW.

We now evaluate the performance of our proposed resam-
pling method. To demonstrate the computational advantage, we
conducted a small experiment with a 100-cM chromosome. Ten
backcross populations were simulated with n = 100. At each
locus, the tilt model was fitted with a genome scan based on
either the permutation method or our resampling method. The
total computing time was 205 seconds for 10 permutations,
2,169 seconds for 100 permutations and 7,185 seconds for
300 permutations, whereas the corresponding resampling took
24, 34, and 54 seconds. Note that Doerge and Churchill (1996)
recommended 1,000 permutations for a significance level of .05
to achieve <13.78% Monte Carlo error. At this level of preci-
sion, the new resampling method would achieve more than a
200-fold decrease in computing time.

Next we assessed the size and power of genome screens on
a 100-cM region in a BC with n = 100 or 200 based on 100
simulated datasets (Table 4). At each locus, we fit f1(x) =
f0(x) exp(β01 +β11x), and tested H0: no QTL, with CL and PL.
Thresholds for 5% level tests were obtained by resampling.
The tests are compared with IM using permutation thresholds.
With 100 iterations, all tests have inflated rejection rates under
H0. This distortion is not apparent with 300 iterations. Power
clearly increases with sample size. PL is slightly more pow-
erful than CL, as expected because partial likelihood has been
shown to be more efficient than conditional likelihood (Zou and
Fine 2002). IM demonstrates somewhat better power in detect-
ing QTL than do tilt model tests.

6. LISTERIA CASE STUDY

6.1 Data Description

Boyartchuk et al. (2001) studied survival (in hours) of 116
age-matched female mice after infection with Listeria mono-
cytogenes. These mice are from an intercross between the
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Table 3. Simulation Results for the Two-QTL Model in BC Cross

Case aabb Aabb aaBb AaBb QTL1 effect QTL2 effect Epistasis

1 N(2, 1) N(2, 1) N(2, 1) N(2, 1) 0 0 0
2 E(3) E(3) E(3) E(3) 0 0 0
3 P(3) P(3) P(3) P(3) 0 0 0
4 N(2, 1) N(0, 1) N(2, 1) N(0, 1) −2 0 0
5 N(1.7, 1) N(.7, 1) N(1, 1) N(0, 1) −1 −.7 0
6 N(−.3, 1) N(.7, 1) N(−1, 1) N(0, 1) 1 −.7 0
7 N(1, 1) N(1, 1) N(1, 1) N(2, 1) 1 1 1
8 P(2) P(1) P(2) P(1) −.7 0 0
9 P(3) P(1.5) P(2) P(1) −.7 −.4 0

10 P(4) P(1.5) P(2) P(1) −.7 −.4 −.3

IM Partial likelihood Conditional likelihood

Case test1 test3 test1 test2 test3 test1 test2 test3

n = 100
1 .056 .066 .048 .044 .050 (.036) 060 (.050) 068 (.060) 068
2 .048 .048 .030 .030 .034 (.020) 052 (.030) 056 (.038) 060
3 .050 .068 .024 .028 .052 (.034) 052 (.036) 064 (.064) 070
4 1.000 .062 1.000 .032 .042 (1.000) 1.000 (.040) 060 (.062) 064
5 1.000 .066 1.000 .676 .040 (1.000) 1.000 (.734) 780 (.050) 058
6 .972 .054 .900 .680 .024 (.948) 974 (.736) 788 (.042) 058
7 .980 .608 .978 .694 .532 (.974) 980 (.758) 804 (.578) 606
8 .970 .072 .906 .026 .032 (.942) 966 (.028) 042 (.044) 050
9 1.000 .132 .998 .400 .030 (.998) 1.000 (.468) 574 (.042) 050

10 1.000 .614 1.000 .822 .106 (1.000) 1.000 (.902) 944 (.146) 164

n = 200
1 .064 .042 .046 .052 .042 (.052) 064 (.052) 050 (.040) 040
2 .058 .046 .044 .028 .042 (.042) 060 (.042) 052 (.044) 050
3 .062 .058 .048 .040 .042 (.054) 068 (.044) 060 (.054) 058
4 1.000 .056 1.000 .030 .044 (1.000) 1.000 (.038) 044 (.054) 054
5 1.000 .056 1.000 .964 .060 (1.000) 1.000 (.962) 976 (.070) 070
6 1.000 .050 1.000 .974 .034 (1.000) 1.000 (.974) 988 (.046) 048
7 1.000 .876 1.000 .978 .842 (1.000) 1.000 (.980) 992 (.860) 874
8 1.000 .064 .998 .038 .040 (.996) 1.000 (.043) 050 (.046) 046
9 1.000 .192 1.000 .840 .038 (1.000) 1.000 (.851) 886 (.044) 048

10 1.000 .902 1.000 .996 .190 (1.000) 1.000 (1.000) 1.000 (.210) 226

NOTE: N, E, and P denote normal, exponential, and Poisson distributions test1: absence of QTL; test2: one QTL; and test3: epistasis. Rejection rate is reported for (CLW)CL and PLW.

Table 4. Rejection Rate for Testing Presence of QTL in a Chromosome Scan of a Single-QTL Model in BC Cross

f0(z) f1(z) n No. of permute No. of resample IM Partial Conditional

N(2, 1) N(2, 1) 100 100 100 .10 .11 .10
200 200 .05 .02 .03
300 300 .04 .06 .06

200 100 100 .07 .08 .11
200 200 .05 .03 .02
300 300 .06 .03 .04

P(3) P(3) 100 100 100 .05 .06 .10
200 200 .03 .06 .07
300 300 .02 .05 .03

200 100 100 .02 .05 .06
200 200 .04 .08 .08
300 300 .07 .07 .07

E(3) E(3) 100 100 100 .05 .06 .06
200 200 .02 .06 .04
300 300 .05 .06 .06

200 100 100 .05 .05 .08
200 200 .04 .04 .07
300 300 .04 .04 .04

N(.6) N(0, 1) 100 300 300 .67 .56 .53
200 300 300 .93 .86 .86

P(exp(.6)) P(1) 100 300 300 .76 .69 .65
200 300 300 .98 .99 .99

B(.5, 1) B(.646, 1) 100 300 300 .15 .10 .14
200 300 300 .25 .24 .18

NOTE: N, E, P and B denote normal, exponential, Poisson, and binomial distributions. Threshold was obtained through a genome scan using permutation test for IM method, and our proposed
resampling method for partial and conditional likelihood based tests.



64 Journal of the American Statistical Association, March 2007

BALB/cByJ and C57BL/6ByJ strains, with 133 genetic mark-
ers spanning 20 chromosomes. The animals that died from
infection had a mean survival of 153.8 hours. Roughly 30%
survived past the 264-hour time point and were considered
recovered (see Fig. 1). The phenotype can be decomposed into a
binary trait, indicating whether the subject survived, and a con-
tinuous trait for time to death for those dying within 264 hours
(Broman 2003). In addition to testing for QTL on the combined
trait, it is of interest to determine whether different genes influ-
ence the survival probability and the distribution of death time
for those mice that do not survive. Dissecting this complex ge-
netic architecture is the objective of this case study.

6.2 Single QTL Analysis

We first fit single-QTL models to each trait. Previous stud-
ies (Boyartchuk et al. 2001; Broman 2003) identified potential
modifiers on chromosomes 5 and 13 and a suggestive, but in-
conclusive, result on chromosome 1. For this reason, our analy-
sis focuses on these three regions. Three methods are examined:
IM (normal or binary model), CL, and PL. Genomewise thresh-
olds for IM were obtained from 300 permutations (Churchill
and Doerge 1994). For CL and PL, a 5% genomewise error rate
is controlled using our proposed resampling technique, with
1,000 runs. LODs are reported in Figure 2.

The results from IM generally agree with the previous stud-
ies. The locus on chromosome 1 appears to affect only the time
to death for nonsurvivors, whereas the chromosome 5 locus
affects the survival trait. The locus on chromosome 13 has a
strong influence on the binary trait but is marginally significant
for time to death. In all cases, PL has a very similar LOD pro-
file to that of IM. The loss of power resulting from a higher
threshold for PL is consistent with the simulations discussed in
Section 5. It is worthwhile to highlight the differences between
CL and PL. These methods match closely on chromosomes 1
and 5 for both the combined and binary traits; however, the CL
LOD is substantially higher on chromosome 13 for all traits and
noticeably higher on chromosomes 5 and 1 for the continuous
trait.

Because PL is a pseudolikelihood based on CL, differences
between the methods should be accounted for by differences
between ρ and ρ̂. In the Listeria dataset, ρk = Pr(Mi = k) is
determined by the intercross design and recombination with
flanking markers using the Haldane map function. In CL, the
known values of ρk are used, whereas in PL, ρk is estimated by
nk/n. We compared ρk and nk/n at flanking markers to the four
LOD peaks [(chr 1, 14cM), (chr 1, 81cM), (chr 5, 29cM), and
(chr 13, 26cM)] for all 116 mice and for the 81 mice that died.
Deviations were evaluated using chi-squared tests on the nonre-
combinants (Table 5). Recombinants were not included because
they are rare and may not satisfy the usual assumptions (np ≥ 5)
for the test. The tests are highly significant on chromosome 13
for combined and continuous traits and significant for the con-
tinuous trait on chromosomes 1 (at 14 cM) and 5. This reveals
distortion in the flanking marker probabilities, which was not
noticed in previous analyses.

The investigators are not aware of experimentalwise selec-
tion, other than sex and age-related matching (K. Broman,
personal communication). Therefore, selection bias is proba-
bly not due to selective phenotyping, which is typically per

(b)

(b)

(c)

Figure 2. Single-QTL Scan for Chromosomes 1, 5, and 13 Based
on IM, CL, or PL, on the Combined (a), Binary (b), and Continuous (c)
Traits. ( IM/perm; cond/resamp; part/resamp; bi-
nary/perm.)
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Table 5. Chi-Squared Test for ρ̂ versus ρ

Data chr cM ρ ρ̂ p

Combined/ 1 14 .164, .346, .164 .164, .371, .095 .176
binary 1 81 .246, .492, .246 .276, .457, .250 .698
n = 116 5 29 .225, .451, .225 .250, .440, .216 .819

13 26 .240, .480, .240 .172, .397, .397 <.001

Continuous 1 14 .164, .346, .164 .185, .407, .062 .040
n = 81 1 81 .246, .492, .246 .234, .457, .284 .697

5 29 .225, .451, .225 .358, .432, .099 .002
13 26 .244, .487, .244 .136, .370, .481 <.001

NOTE: Only nonrecombinants are tested, corresponding to flanking marker genotypes of (AA/BB, Aa/Bb, aa/bb).

protocol. It seems reasonable that the flanking marker distor-
tions in the whole sample of 116 mice is attributable to hidden
selective genotyping, based on natural selection of correlated
phenotypes. As discussed in Section 3.3, PL and IM tend to
give biased results in this scenario, whereas CL is robust and
gives valid parameter estimates for the underlying phenotype
model. The continuous trait analyses were restricted to those 81
mice not recovering from their infections. This introduces an-
other layer of selective genotyping, because mice are selected
based on whether they died, that is, if their survival time was
<264 hours. Hence it is not surprising that quite large devia-
tions are seen from ρ on chromosomes 1 and 5 for the continu-
ous trait for this subsample.

CL appears to be preferable to PL and IM if the interest lies
in the underlying models for the combined and binary traits.
However, the estimates from IM and PL may be meaningful for
the QTL influence on the survival of mice that are not “cured,”
that is, conditional on si = 1.

6.3 Two-QTL Model With Epistasis

A multiple-QTL model may improve over single-QTL map-
ping because of its ability to distinguish linked QTL and to
identify epistasis. We fit two-QTL models to the Listeria data
for the three traits. We fit the tilt model on all pairwise posi-
tions on different chromosomes or at least 40cM apart on the

same chromosome. Resampling with 300 iterations provides
genomewise thresholds at significance levels of .05 and .10.
The results are compared with two-dimensional genome scans
of IM with 100 permutations using R/qtl in Table 6. Because
chromosome 13 is only 35 cM, the two-QTL model is not fitted
on this chromosome.

Although multiple QTL have been identified with single-
QTL analyses, two-QTL IM failed to reject the null of no QTL
with the combined trait. The analysis of the binary data using
IM based on normal assumptions was unstable and failed to
converge. Unfortunately, two-QTL IM for binary data is not
available in R/qtl. Using the 81 mice that died, IM detected
two QTL on chromosomes 5 and 13, with a p value between
.05 and .10. It is somewhat surprising that the two-QTL IM
results are rather different from the single-QTL results, contra-
dicting the wisdom that simultaneously adjusting for multiple
QTL leads to increased power.

Using CL and PL, we detected the joint presence of two
QTL for most pairs. The strongest QTL effects were located
on chromosomes 5 and 13 for both the combined and binary
data. Any combination of either of these QTLs and positions
on chromosome 1 were significant. For the continuous trait, the
strongest QTLs were on chromosomes 1 and 13; these were
significant with CL but not with PL. This difference may be
explained in part by previously observed genotype distortions.

Table 6. Two-QTL Model Analysis Across the Genome With a 2-cM scan

LOD chr 1 :5 chr 1 :13 chr 5 :13 chr 1 :1 chr 5 :5 T.95 T.90

Spike data
IM J 20.7(14/30) 21.7(12/56) 13.3(12/6) 11.1(16/28) 14.2(28/26) 28.3 25.2

E 19.7(14/30) 18.1(12/56) 9.8(12/6) 3.5(16/28) 1.6(28/26) 26.4 24.4
CL J 10.6(76/12) 13.9(76/26) 15.1(36/30) 10.3(14/84) 9.9(12/54) 10.4 9.6

E 3.2(76/12) 3.0(74/18) 2.3(36/30) 4.8(14/84) .4(18/58) 6.6 5.7
PL J 10.7(82/26) 11.5(76/26) 11.9(24/18) 10.5(22/78) 7.5(18/60) 9.8 8.8

E 2.7(84/10) 3.1(76/26) 2.9(6/24) 4.6(16/84) .3(18/60) 6.1 5.6

Binary data
CL J 12.4(36/28) 10.3(36/18) 14.6(34/22) 8.3(30/82) 10.4(0/46) 8.8 8.3

E 4.4(92/36) 3.3(34/10) 2.5(58/4) 2.6(20/80) .7(0/44) 4.4 4.1
PL J 10.1(44/26) 6.6(74/26) 11.7(26/26) 8.2(24/82) 8.8(4/60) 8.7 8.2

E 3.7(92/50) 2.7(48/0) 2.3(60/4) 3.9(24/82) .9(4/60) 4.2 3.8

NonSurvival Data
IM J 8.8(64/78) 8.3(82/14) 10.9(78/16) 4.9(4/14) 5.2(12/26) 12.0 10.7

E 4.4(64/78) 2.4(82/14) 4.1(78/16) 3.8(4/14) .8(12/26) 10.0 9.3
CL J 11.1(82/16) 14.8(26/80) 12.3(30/22) 10.6(30/72) 8.0(0/50) 10.4 9.6

E 4.0(0/30) 2.0(0/32) 1.5(40/22) 1.9(30/72) 1.8(20/60) 6.1 5.4
PL J 8.9(82/18) 9.5(26/82) 5.6(4/24) 8.9(26/72) 4.2(0/58) 12.5 11.1

E 3.7(2/36) 2.0(0/40) 1.8(4/24) 2.3(30/70) 1.4(8/60) 8.4 7.2

NOTE: J, testing no QTL; E, testing epistasis. The position estimates for QTL (pos 1/pos 2) are reported corresponding to the maximum LOD, where pos 1 and 2 are on chromosome i and j from the
header (i:j). T.95 denotes the genome-wise threshold at significance level of .05, and T.90 is the threshold at .10. These are obtained from 100 permutation for IM or 300 resampling for CL and PL.
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Two QTLs were inferred on chromosome 1, near positions 14–
30 and 70–84; the joint models were significant at level .05
based on both PL and CL for the combined trait and moder-
ately significant at level .10 for the binary trait. Epistasis was
not detected using IM, which assumes that the maximum LOD
for testing epistasis occurs at the same location with maximum
LOD testing for no QTL, which may not be correct. The PL and
CL analyses suggest a moderate gene interaction (p = .05–.10)
between the region 80–92 cM on chromosome 1 and region 30–
50 cM on chromosome 5 for the binary trait.

7. DISCUSSION

The semiparametric tilt model allows us to make unified
inferences about genetic effects in QTL experiments without
specifying f0, thereby accommodating arbitrary phenotypes. If
knowledge of f0 is available, then fully parametric models can
be fit, and the resulting likelihood inferences will generally be
more efficient than those based on the tilt model, assuming that
the model is specified correctly. This is the price that must be
paid for not specifying the baseline density function.

The flexibility of the tilt model is useful in the Listeria case
study, where the presence of a “spike” corresponding to “cure”
makes the phenotype definition unclear. The specification of
parametric models critically depends on the definition (Broman
2003). Whereas the focus in this article was on QTL analysis
for experimental populations, similar issues occur with “spike”
data in human populations. Epstein, Lin, and Boehnke (2003)
proposed a variance component Tobit model for familial data in
which the time at which the “spike” occurs serves as a censor-
ing time and the underlying event time is modeled using a nor-
mal distribution. It would be worthwhile to investigate similar
parametric models for censored phenotype data in experimental
populations. As noted in Section 6, one may wish to model the
conditional distribution given no “cure” and the probability of
“cure” separately (as in Farewell 1977), which is not possible
using the Tobit model. Furthermore, if one is interested in an-
alyzing the combined trait, then the “cure” time should not be
treated as a censoring time, because the point mass at that time
point is of scientific interest. It is well known that using proper
distributions, like the normal, is inappropriate with a “cure,”
because the distribution of the combined trait is a mixture of
a proper distribution and a point mass at the “cure” time, and
hence is improper.

Bias may occur in QTL analyses with nonrandom sampling
when naive complete case analyses are used. Selective sampling
can affect QTL analyses very differently, depending on the
model and method of estimation. With phenotype-dependent
sampling, CL provides unbiased estimates, whereas IM and
PL may not be valid. Alternatively, a sample may be selected
based on the genotypes or on some other traits that happen to
be mapped to the same or closely linked genes. Here CL may
be biased, whereas IM/PL analyses are appropriate. In practice,
the sampling scheme may be hidden, and comparing IM, PL,
and CL may be useful for diagnosing such biases. If data on
individuals with si = 0 are available, then a formal likelihood
analysis based on either the distribution of zi given Mi or the
distribution of Mi given zi will give valid inferences, assuming
that si satisfies missing at random (Little and Rubin 1987).

Extensive empirical studies have suggested that interval map-
ping with the normality assumption is rather robust against non-
normal distributions in single-QTL analyses. In this article we
have shown that this is not always the case, especially with
multiple-QTL analysis and epistasis. IM may falsely detect
epistasis and overestimate small gene–gene interactions when
the baseline phenotype follows a nonnormal distribution. Inter-
estingly, in the two-QTL analysis of the Listeria data, the fail-
ure to detect any QTL in joint two-QTL models may be due in
part to violation of normality by the “spike” phenotype. This re-
sult clearly contrasts with the findings of the two-QTL analyses
based on the tilt model, which were in agreement with single-
QTL analyses.

The proposed resampling method offers increased efficiency
and versatility in obtaining p values and thresholds for QTL
studies. The computational gains may be quite large, particu-
larly with multiple-QTL models, where repeated maximization
may be prohibitive.

QTL analysis often involves multiple correlated traits. These
data present special problems, especially when genetic inter-
actions between the traits are of interest. We are currently in-
vestigating extensions of the exponential tilt model to multiple-
trait QTL analyses, which assume that the same set of QTL af-
fects all traits (pleiotropy), but with different effects on different
traits. Analyses based on a joint model that accounts for corre-
lation among the multiple traits may have increased power for
QTL detection and yield more efficient parameter estimators.
The joint model also gives formal tests for phenotypic inter-
actions and other biologically interesting concepts. The formu-
lation extends readily to other experimental crosses, including
designs involving two inbred parents (Liu and Zeng 2000).

APPENDIX: DETAILS OF RESAMPLING TECHNIQUE

Under the null H0 :β = 0, a first-order linear approximation
as n → ∞ is

√
nβ̂c(λ) = −n−1/2 ∑n

i=1 S−1
c (λ)Qci(λ) + op(1),

where Qci(λ) = ω−1(zi,β)ω′(zi,β) − R−1
c (zi,β)R′

c(zi,β). The co-
variance function �(λ1,λ2) = E{Ici(λ1)IT

ci(λ2)}, where Ici(λ) =
−Sc(λ)−1Qci(λ). The covariance may be estimated by n−1 ×
∑n

i Îci(λ1)ÎT
ci(λ2), where Îci(λ) = −Ŝc(λ)−1Q̂ci(λ) and Ŝc(λ) and

Q̂ci(λ) are Sc and Qci with β = β̂c.
Conditioned on the observed data (but not on Gi), for any fixed

n, Ŵc(λ1), . . . ,Ŵc(λm) is multivariate Gaussian, where λj = (tj1,

tj2, . . . , tjl), j = 1, . . . ,m < ∞, and cov{Ŵc(λi),Ŵc(λj)} = n−1 ×
∑

i Îci(λi)ÎT
ci(λj). As n → ∞, the covariance converges uniformly al-

most surely to �(λi,λj). Thus n1/2β̂c(λ) and Ŵc(λ) have the same

limiting process, and generating from Ŵc(λ) provides samples from
the distribution of n1/2β̂c(λ). Because LRT(λ) is a smooth function of
n1/2β̂c(λ) and Ŝc(λ), −Ŵc(λ)Ŝc(λ)Ŵc(λ)T and LRT(λ) follow the
same distribution as n → ∞.

Under the general null H0 :β = h(θ), the distribution of√
n{β̂c(λ) − β(λ)} can be approximated by that of Ŵc(λ), and the

distribution of
√

n{θ̃c(λ) − θ(λ)} can be approximated by that of
W̃c(λ), where Ĩci(λ) = −S̃c(λ)−1Q̃ci(λ), Q̃ci(λ) = Qi(λ)[h′(θ̃c)],
and S̃c(λ) = [h′(θ̃c)]TSc(λ)[h′(θ̃c)]. It follows that LRT(λ) and L̂P(λ)

have the same limiting distribution as processes in λ.
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For the partial ratio likelihood tests, Îpi(λ) = −Ŝp(λ)−1Q̂pi(λ),

Ĩpi(λ) = {[h′(θ̃)]TŜp(λ)h′(θ̃)}−1Q̂pi(λ)[h′(θ̃)],

Q̂pi(λ) = ω′(zi,βp(λ),Mi)

ω(zi, β̂p(λ),Mi)
− r′(zi,βp(λ))

r(zi,βp(λ))

−
K∑

k=1

I(Mi = k)

(
1

nk

n∑

j=1

[
ω′(zj,βp(λ),Mj = k)

ω(zj,βp(λ),Mj = k)

])

,

and S̃p(λ) and Ŝp(λ) are S̃c(λ) and Ŝc(λ), with β̂p(λ) and θ̃p(λ) in
place of β(λ) and θ(λ).

[Received November 2003. Revised April 2006.]
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